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Abstract

We describe here the general mathematical approach toraotusg likeli-
hoods for fitting observed spectra in one or more dimensioitls multiple
sources, including the effects of systematic uncertant@presented as nui-
sance parameters, when the likelihood is to be maximizel veispect to
these parameters. We consider three types of nuisance @@sm simple
multiplicative factors, source spectra “morphing” paraens, and parameters
representing statistical uncertainties in the predictadee spectra.

1 Overview

In particle physics one often encounters the general pnoloeestimating physical parameters such as
particle masses or cross sections from the spectra of addesscalculated in each event. In the case
of a known, well-established signal process, the domirestirtique by far is to use a binned likelihood
assuming a Poisson distribution in each bin [1], and find #rampeters which maximize the likelihood.

In the case of a search for a new patrticle or effect resultingither a discovery or null result,
binned likelihoods have also been employed successfultyutie statistical significance or exclusion
bounds, respectively. From a certain point of view there desirable consistency in utilizing the same
basic statistical method for searches, discoveries, arasunements.

A key requirement here, however, is that the likelihood sleowe incorporate the effects of all
systematic uncertainties present in the analysis. In fatist methods this is almost always achieved by
generating distributions of many pseudoexperiments, &/frem one pseudoexperiment to the next the
values of all parameters are varied within their assumetliloigions. In a formal Bayesian treatment,
the nuisance parameters are removed by marginalizatitegrating them out, assuming some prior pdf.
Both of these approaches are computationally very expensiv

In measuring parameters using binned Poisson likelihcaslsjentioned above, one simply max-
imizes the likelihood (in practice one minimizes the negatog of the likelihood) with respect to alh
free parameters, and then constructs the standard erifggcatl inm-dimensional space. The fit values
of the nuisance parameters are typically of no interestjitgaone to interpret the intervals for just the
parameters of interest in a straightforward way [2].

We define in this paper three main types of nuisance paragreigresenting systematic uncertain-
ties on the source distributions, and describe how to iramate them into a binned Poisson likelihood.

We further argue in this paper that this maximum likelihooéthod, also called the profile likeli-
hood, can be applied to searches and discoveries as wh#y &y a pseudo-Bayesian interpretation of
the profile likelihood as representing a posterior densitthe parameter(s) of interest, or by likelihood
ratio methods. The profile likelihood requires significgirittss computer time, often a much as two
orders of magnitude less, than frequentist or frequemigtired methods such as C[3]. That in turn
allows much more detailed study of the properties of the §itilts.

2 Core of the Poisson Likelihood

Suppose we observe in a set/éfevents an observable or in general a set of observabldsve define
a set ofny,;,, bins (which can be of literally any shape we choose) in theesd the observables, then
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the number of events; in each bini, is assumed to be Poisson-distributed according to
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wherey; is the number of expected events in the bin. Typically we ceatew
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for integrated luminosity L, cross sectiar) for sourcej, and efficiency; for source; in bin ¢, often
obtained from MC simulation of the process. The sources helede the signal process of interest
and all background processes. Again, since we are dealitigaypossibly multidimensional space of
observables, the indexcan actually label the bins in multiple dimensions.

The Poisson likelihood for the full observed spectrum ispginthe product of the Poisson proba-

bilities:
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In the absence of any systematic uncertainties one canysimipimize — In £ with respect to all un-
known parameters in the problem and interpret the resu#itagdard error ellipsoid in the normal way
to obtain estimates of the unknown parameters and asst@atdidence intervals.

3 Multiplicative Uncertainties

Multiplicative uncertainties provide the simplest exampf systematic uncertainties that can be repre-
sented by nuisance parameters in profile likelihoods. Asxamele, let us assume that the integrated
luminosity is measured in some auxiliary study, and regalts 2% uncertainty. We would rewrite the
likelihood as
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for the measured value+ o . The functiong is a normalized Gaussian of mearand widtho;, which
serves to constrain the value of the new nuisance pararheteits measured value. Note that itlisand
not L that is used to calculate thg. The negative log likelihood is thus

(L—L)
20%

—InL = Z [—n Inp; + i) + (5)

7
and thus the remnant of the Gaussian term can be regardedesskypon the negative log likelihood.
It is in principle possible to use functions other than Garssto constrain the values of the nuisance
parameters. In Bayesian terms the constraint functionsiarply the prior probability densities of the
nuisance parameters.

Any multiplicative uncertainty can be represented in tkellhood this way, including uncertain-
ties on cross sections, overall efficiencies, and the likee €an also introduce multiplicative nuisance
parameters into Eq. 2 as needed, for any or all sources.

In many cases, however, the allowed physical bound on aplicétive nuisance parameter is that
it remain positive. If we are representing the constrainalfyaussian, then when the uncertainty in the
nuisance parameter is large the Gaussian is truncated ampbaopriate normalization factor should be
included. In such cases one might also consider constgathie parameter with a log normal or other
probability density which does not allow the parameter teadme negative.
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4 Shape Uncertainties and Morphing

Many systematic uncertainties result in an overall digtartin the shape of the observed spectrum.
A good example is an energy scale uncertainty which affdtigtaenergies in an event in the same
direction. If there are energy thresholds in the event sielecchanges in not only the shape but the
overall normalization of the efficiency (represented heréhe ¢ ;; for source j in bin i) as a function of
the observables can result.

Such spectral distortions can be modeled by altering paemé€like the energy scale) in the
MC simulation and recalculating the “shifted” set of effivdées. If we were, for example, to raise and
lower the energy scale by one standard deviation, recdioglthe efficiencies, we would then have three
measures of the shape (and normalization) of the bin effigielistribution, which we can cakl;i, e?i,

andejt.. Clearly one can obtain more measures from other altemtibthe energy scale, though this can
often be computationally very expensive.

We then face the question of how to turn our three measurdeafiectral shape into a continuous
estimate in each bin as a function of the energy scale fadfordo this we introduce a “morphing”
parameter which we will calf, and which is nominally zero (in the case of no scale shifiyl ehich
has some uncertainty (usually GaussiauFr1.

In this general technique, usually called “vertical morgii we might write the efficiency in a
bin as a function of the morphing parameter as
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In this expression we see that we are treating the differentlee shifted efficiencies in the bin as if they
represent a measurement of the first-order Taylor exparssimmd the nominal value. This may or may
not be a reliable indicator of how the efficiency spectrumngles with energy scale. Also note that for
f = %1 the above expression does not actually yig‘*;d

To provide a better estimate of the true behavior of the sgkdistortions we have introduced a
technique whereby we interpolate quadratically [ffir < 1 and extrapolate linearly beyond that range.
This does result in the exact measured behavior of the sprat f = +1 but avoids large deviations
from linear behavior outside the range. The value of theiefiity at any| f| < 1 can be determined by
Lagrange interpolation:
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Calculation of the linear extrapolation beyond this rargja straightforward exercise for the reader.

Clearly if a more accurate representation of the morphingabi®r is required, one can, at the
expense of computation and bookkeeping time obtain additishifted efficiency spectra and interpolate
using a higher order polynomial. A good measure of whethisritha worthwhile exercise is to examine
the behavior of one’s morphing parameters as a function@ptrameter of interest; if they tend to go
far from the sampled region (corresponding to one standavéhtion in the uncertainty) then it may be
desirable to obtain more measurements there, and param#éig measured region with a higher order
polynomial.

We also note that there are somewhat more sophisticatecdsetiuch as Alex Read’s “horizontal
morphing” [4] method. These are more computationally ietem but could be advantageous. However
they are not straightforwardly defined in more than one disien

The morphing method presented here can be extended to lsenephing parameters for different
systematic effects simply by adding linearly the deviatitnom the nominal efficiency due to each effect.



5 Statistical Uncertainties in Efficiencies

Typically one estimates the efficiency of each source in ddchusing a Monte Carlo simulation, and
hence the statistical accuracy of the estimate of the «ffigién each bin depends on the number of MC
events falling there. Likewise, in other, possibly datasgin methods for estimating the expected number
of events from some source in some bin, there may be some ksiatistical uncertainty in each bin.

Barlow and Beeston [5] proposed a method for representioly systematic uncertainties wherein
one introduces a separate nuisance parameter multipi@gtpected number of events from each
source in each bin. Nominally the value of these parameteksand one can then constrain the parame-
ters, which we calB;;, according to the prior pdf assumed for the number of MC exenthe efficiency
calculation. Barlow and Beeston assumed a Poisson distrib(though one might argue a binomial is
the most correct form to assume); other choices such as logatavoid the parameters possibly tending
to zero.

Though this method introduces a very large number of new p@ameters in the likelihood,
the problem can be seen to be tractable in the profile likelihcase since the values of thg which
maximize the likelihood within a bin can be found indepentjeaf those in all the other bins.

Assuming a Gaussian constraint on thg, we can write the contribution to the negative log
likelihood in a particular bin as

—InL; = —n; ln Zﬁjl:u'jl + Zﬁjl:ujl + Z 6ﬂ — . (8)

This contribution can be extremized with respect to fheby setting the derivative with respect to each
to zero. Dropping the bin indeixfor clarity we write
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We thus arrive at a set of nonlinear equations for/hén a bin. These can be approximately solved by
iterative Newton-type methods, or by more sophisticatethods.

In the context of performing the profile likelihood using MINT minimization, one can im-
plement this Barlow-Beeston type method by solving for fhewithin the “objective” function which
provides to MINUIT the value of In L given the values of all the parameters in the fit, and inclbhee t
contribution of the deviations of the;; from unity to—In L.

However, a problem arises in this approach. Any minimizatigorithm can only approximate
the values of the parameters and, hence, the true minimunfuoiciion. There is always some last step
which meets the convergence criterion, and somewhere isgaee of the input;; to the minimization
for the 3;;, one will find the place where that last step is not taken. Neah points the values of
the resultings;; and their associated contribution toln L undergo a small discontinuous jump. Such
jumps can (and do) dramatically confuse MINUIT’s MIGRAD rimnizer, which attempts to measure
the Hessian matrix by finite differences. These jumps causedsulting parameter covariance matrix
to become non-positive-definite. When MINUIT detects sudit@ation it attempts to circumvent it
by adding to the offending diagonal element of the matrix eroant necessary to restore positive-
definiteness. Sometimes this works but in many cases alsis MINUIT is now dealing with a false
measure of the Hessian matrix and it tends to send the fregeneders in the fit to wild values. We have
found no solution to this behavior short of rewriting MINUIT

The full-blown Barlow-Beeston method for dealing with bitatistical uncertainties is not ab-
solutely required to represent them properly in the likedil. What matters, in a bin, is traverall
statistical uncertainty of the predicted number of everdmifall sources. The statistical uncertainties for
each source in each bin are independent, and can be readilyiroed, particularly if they are Gaussian



or Poisson in nature. Thus, a single Barlow-Beeston typarpater is sufficient to represent the statisti-
cal uncertainty. The value of this parameter, and its cbation to— In I, can be calculated exactly by
solving a quadratic equation. Using a simplified notationafgingle bin, we write
—1)2
—lnﬁz—nlnﬁu—i—ﬁu—i-M (20)
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where herg is the total number of expected events in the bin, given theegaof all the other parameters,
andog is the relative (statistical) uncertainty in the prediaticGetting the derivative to zero we find the
guadratic equation

B2+ (noj — 1)B —noj =0 (11)

which can be solved readily and the correct root taken. Thension to other constraint functions is
straightforward though may result in transcendental égnatto solve.

6 Practical Considerations

Care must be taken in using the approach described in thex pa@void a number of potential pitfalls
which we discuss here.

Sparsely Populated Bins

In multi-bin spectra (particularly multi-dimensional &) one can encounter situations where
the number of events per bin varies by orders of magnitudés @dn sometimes lead to situations where

— there can be regions of zero-content bins, surroundedrsydmpulated by single MC events;

— such single MC-event-bins can migrate under the influefidheomorphing systematic effects,
spoiling the vertical morphing method,;

— single data events can appear in bins where there is nccpeddate.

All of these situations must be avoided. The most straigividied is to generate sufficient Monte Carlo in
all bins, but this may not be practical or even possible. Tégt blternative is to combine bins according
to some algorithm (which does not use the observed databdistm!) which ensures some minimum
statistical threshold in every bin in the fit.

Bins Entering/Leaving the Likelihood

It is also necessary to ensure that no bin enters or leavdikéibood as the parameters change.
Itis not impossible for MINUIT to drive parameters to reggowhere the contribution from a source, or
even all sources, vanishes in a bin. For example, when stgdiie profile likelihood as a function of
some new patrticle signal, also, one in general wants to atathe likelihood for the case of zero signal.
But if there are bins populated by signal only, this can cdliseontribution to go to zero, the logarithm
of which is of course-oc.

Simply excluding bins from the likelihood when there are xpexted events is not a sufficient
solution to this problem, as a moment's reflection will maleac To avoid bins entering/leaving the fit,
therefore, the bins to be used or not used must be establsshddri by finding all bins where some
contribution is expected, and making sure there are no bitiisdata but no expected contribution. Once
determined, this set must remain fixed for the duration ofctieulation.

One way to ensure that no bin leaves the calculation is toyaave it contribute at least some
tiny amount. For example to circumvent the zero-signaléssue always ensure that the signal cross
section is no less thah0~!° pb, and that no source in any bin used in the fit ever contribless
than10~'° expected events. Though this is a somewhat inelegant @oltdia nevertheless important
problem, we note that our final results do not depend on thésienuim values in practice.
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7 Pseudo-Bayesian Posterior Densities

For measuring physical parameters, the profile likelihoad be directly interpreted using the usual
A(In L) approach to derive confidence intervals in multi-dimenaigrarameter space.

To extend this treatment to setting exclusion bounds onnpetexrs such as a hypothetical new
particle’s cross sectioax, we can simply derive a posterior density by treating thdilerdikelihood,
which we shall denot&,,,,.. as one would any likelihood using Bayes’ Theorem:

o Emax(UX)P(UX)
Plox) = Tz olox Plox )dox (12)

where hereP(oy) is the assumed prior pdf imy .t

But does the profile method really result in a posterior dgrikiat can be interpreted in this way?
The most proper Bayesian treatment would not maximize #editiood with respect to the parameters
not of interest, but marginalize instead, resulting in wivatmight denote ag(o x) to highlight the fact
that the marginalized likelihood is in a sense averaged thesiprior-weighted values of the nuisance
parameters.

We have performed both calculations, profiling and mardggasibn, in a variety of complex spec-
trum fits, and it is our experience that the posterior derdgtyved either way is nearly identical, though
the marginalized one takes orders of magnitude more coninge Due to this practical consideration
alone we employ the profile method and consider it to be a pedect representation of a full and proper
Bayesian marginalization treatment.

8 Conclusions

We present in this paper the basic mathematical and nurhappsoach to fitting multi-source spectra

using a profile likelihood in which various types of systeimatncertainties are incorporated by rep-

resenting them by nuisance parameters. This method, wevbeloffers a unified approach to setting

exclusion bounds, making discoveries, and ultimatelygrering measurements on a wide range of par-
ticle physics data analyses.
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LAl the usual inveighments against improper priors applshi point. We would like to point out, however, that in every
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actualmeasurement of that parameter, no one ever uses a prior other than a umifoe.


http://pdg.lbl.gov/2009/reviews/rpp2009-rev-statistics.pdf

	1 Overview
	2 Core of the Poisson Likelihood
	3 Multiplicative Uncertainties
	4 Shape Uncertainties and Morphing
	5 Statistical Uncertainties in Efficiencies
	6 Practical Considerations
	7 Pseudo-Bayesian Posterior Densities
	8 Conclusions

