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Abstract
We describe here the general mathematical approach to constructing likeli-
hoods for fitting observed spectra in one or more dimensions with multiple
sources, including the effects of systematic uncertainties represented as nui-
sance parameters, when the likelihood is to be maximized with respect to
these parameters. We consider three types of nuisance parameters: simple
multiplicative factors, source spectra “morphing” parameters, and parameters
representing statistical uncertainties in the predicted source spectra.

1 Overview

In particle physics one often encounters the general problem of estimating physical parameters such as
particle masses or cross sections from the spectra of observables calculated in each event. In the case
of a known, well-established signal process, the dominant technique by far is to use a binned likelihood
assuming a Poisson distribution in each bin [1], and find the parameters which maximize the likelihood.

In the case of a search for a new particle or effect resulting in either a discovery or null result,
binned likelihoods have also been employed successfully toquote statistical significance or exclusion
bounds, respectively. From a certain point of view there is adesirable consistency in utilizing the same
basic statistical method for searches, discoveries, and measurements.

A key requirement here, however, is that the likelihood somehow incorporate the effects of all
systematic uncertainties present in the analysis. In frequentist methods this is almost always achieved by
generating distributions of many pseudoexperiments, where from one pseudoexperiment to the next the
values of all parameters are varied within their assumed distributions. In a formal Bayesian treatment,
the nuisance parameters are removed by marginalization: integrating them out, assuming some prior pdf.
Both of these approaches are computationally very expensive.

In measuring parameters using binned Poisson likelihoods,as mentioned above, one simply max-
imizes the likelihood (in practice one minimizes the negative log of the likelihood) with respect to allm
free parameters, and then constructs the standard error ellipsoid inm-dimensional space. The fit values
of the nuisance parameters are typically of no interest, leaving one to interpret the intervals for just the
parameters of interest in a straightforward way [2].

We define in this paper three main types of nuisance parameters representing systematic uncertain-
ties on the source distributions, and describe how to incorporate them into a binned Poisson likelihood.

We further argue in this paper that this maximum likelihood method, also called the profile likeli-
hood, can be applied to searches and discoveries as well, either by a pseudo-Bayesian interpretation of
the profile likelihood as representing a posterior density in the parameter(s) of interest, or by likelihood
ratio methods. The profile likelihood requires significantly less computer time, often a much as two
orders of magnitude less, than frequentist or frequentist-inspired methods such as CLs [3]. That in turn
allows much more detailed study of the properties of the fit results.

2 Core of the Poisson Likelihood

Suppose we observe in a set ofN events an observable or in general a set of observablesx̄. If we define
a set ofnbin bins (which can be of literally any shape we choose) in the space of the observables, then
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the number of eventsni in each bini, is assumed to be Poisson-distributed according to

P(ni|µi) =
µni

i e−µi

ni!
(1)

whereµi is the number of expected events in the bin. Typically we can write

µi =

nsource
∑

j=1

Lσjǫji (2)

for integrated luminosity L, cross sectionσj for sourcej, and efficiencyǫji for sourcej in bin i, often
obtained from MC simulation of the process. The sources hereinclude the signal process of interest
and all background processes. Again, since we are dealing with a possibly multidimensional space of
observables, the indexi can actually label the bins in multiple dimensions.

The Poisson likelihood for the full observed spectrum is simply the product of the Poisson proba-
bilities:

L =

N
∏

i=1

P(ni|µi) . (3)

In the absence of any systematic uncertainties one can simply minimize− lnL with respect to all un-
known parameters in the problem and interpret the resultingstandard error ellipsoid in the normal way
to obtain estimates of the unknown parameters and associated confidence intervals.

3 Multiplicative Uncertainties

Multiplicative uncertainties provide the simplest example of systematic uncertainties that can be repre-
sented by nuisance parameters in profile likelihoods. As an example, let us assume that the integrated
luminosity is measured in some auxiliary study, and resultsin a 2% uncertainty. We would rewrite the
likelihood as

L =

N
∏

i=1

P(ni|µi)G(L|L̃, σL) (4)

for the measured valuẽL±σL. The functionG is a normalized Gaussian of meanL̃ and widthσL, which
serves to constrain the value of the new nuisance parameterL to its measured value. Note that it isL and
not L̃ that is used to calculate theµi. The negative log likelihood is thus

− lnL =
∑

i

[−ni lnµi + µi] +
(L− L̃)2

2σ2
L

(5)

and thus the remnant of the Gaussian term can be regarded as a penalty on the negative log likelihood.
It is in principle possible to use functions other than Gaussians to constrain the values of the nuisance
parameters. In Bayesian terms the constraint functions aresimply the prior probability densities of the
nuisance parameters.

Any multiplicative uncertainty can be represented in the likelihood this way, including uncertain-
ties on cross sections, overall efficiencies, and the like. One can also introduce multiplicative nuisance
parameters into Eq. 2 as needed, for any or all sources.

In many cases, however, the allowed physical bound on a multiplicative nuisance parameter is that
it remain positive. If we are representing the constraint bya Gaussian, then when the uncertainty in the
nuisance parameter is large the Gaussian is truncated and anappropriate normalization factor should be
included. In such cases one might also consider constraining the parameter with a log normal or other
probability density which does not allow the parameter to vbecome negative.
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4 Shape Uncertainties and Morphing

Many systematic uncertainties result in an overall distortion in the shape of the observed spectrum.
A good example is an energy scale uncertainty which affects all jet energies in an event in the same
direction. If there are energy thresholds in the event selection, changes in not only the shape but the
overall normalization of the efficiency (represented here by theǫji for source j in bin i) as a function of
the observables can result.

Such spectral distortions can be modeled by altering parameters (like the energy scale) in the
MC simulation and recalculating the “shifted” set of efficiencies. If we were, for example, to raise and
lower the energy scale by one standard deviation, recalculating the efficiencies, we would then have three
measures of the shape (and normalization) of the bin efficiency distribution, which we can callǫ−ji, ǫ

0
ji,

andǫ+ji. Clearly one can obtain more measures from other alterations of the energy scale, though this can
often be computationally very expensive.

We then face the question of how to turn our three measures of the spectral shape into a continuous
estimate in each bin as a function of the energy scale factor.To do this we introduce a “morphing”
parameter which we will callf , and which is nominally zero (in the case of no scale shift), and which
has some uncertainty (usually Gaussian)σf=1.

In this general technique, usually called “vertical morphing”, we might write the efficiency in a
bin as a function of the morphing parameter as

ǫji = ǫ0ji + f
ǫ+ji − ǫ−ji

2
. (6)

In this expression we see that we are treating the differencein the shifted efficiencies in the bin as if they
represent a measurement of the first-order Taylor expansionaround the nominal value. This may or may
not be a reliable indicator of how the efficiency spectrum changes with energy scale. Also note that for
f = ±1 the above expression does not actually yieldǫ±ji!

To provide a better estimate of the true behavior of the spectral distortions we have introduced a
technique whereby we interpolate quadratically for|f | < 1 and extrapolate linearly beyond that range.
This does result in the exact measured behavior of the spectrum atf = ±1 but avoids large deviations
from linear behavior outside the range. The value of the efficiency at any|f | < 1 can be determined by
Lagrange interpolation:

ǫji =
f(f − 1)

2
ǫ−ji − (f − 1)(f + 1)ǫ0ji +

f(f + 1)

2
ǫ+ji (7)

Calculation of the linear extrapolation beyond this range is a straightforward exercise for the reader.

Clearly if a more accurate representation of the morphing behavior is required, one can, at the
expense of computation and bookkeeping time obtain additional shifted efficiency spectra and interpolate
using a higher order polynomial. A good measure of whether this is a worthwhile exercise is to examine
the behavior of one’s morphing parameters as a function of the parameter of interest; if they tend to go
far from the sampled region (corresponding to one standard deviation in the uncertainty) then it may be
desirable to obtain more measurements there, and parametrize the measured region with a higher order
polynomial.

We also note that there are somewhat more sophisticated methods such as Alex Read’s “horizontal
morphing” [4] method. These are more computationally intensive, but could be advantageous. However
they are not straightforwardly defined in more than one dimension.

The morphing method presented here can be extended to several morphing parameters for different
systematic effects simply by adding linearly the deviations from the nominal efficiency due to each effect.
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5 Statistical Uncertainties in Efficiencies

Typically one estimates the efficiency of each source in eachbin using a Monte Carlo simulation, and
hence the statistical accuracy of the estimate of the efficiency in each bin depends on the number of MC
events falling there. Likewise, in other, possibly data-driven methods for estimating the expected number
of events from some source in some bin, there may be some knownstatistical uncertainty in each bin.

Barlow and Beeston [5] proposed a method for representing such systematic uncertainties wherein
one introduces a separate nuisance parameter multiplying the expected number of events from each
source in each bin. Nominally the value of these parameters is 1, and one can then constrain the parame-
ters, which we callβji, according to the prior pdf assumed for the number of MC events in the efficiency
calculation. Barlow and Beeston assumed a Poisson distribution (though one might argue a binomial is
the most correct form to assume); other choices such as log normal avoid the parameters possibly tending
to zero.

Though this method introduces a very large number of new freeparameters in the likelihood,
the problem can be seen to be tractable in the profile likelihood case since the values of theβji which
maximize the likelihood within a bin can be found independently of those in all the other bins.

Assuming a Gaussian constraint on theβji, we can write the contribution to the negative log
likelihood in a particular bin as

− lnLi = −ni ln(
∑

j

βjiµji) +
∑

j

βjiµji +
∑

j

(βji − 1)2

2σ2
ji

. (8)

This contribution can be extremized with respect to theβji by setting the derivative with respect to each
to zero. Dropping the bin indexi for clarity we write

∂(− lnL)

∂βj
= µj

[

1−
n

∑

k βkµk

]

+
βj − 1

σ2
j

= 0 . (9)

We thus arrive at a set of nonlinear equations for theβj in a bin. These can be approximately solved by
iterative Newton-type methods, or by more sophisticated methods.

In the context of performing the profile likelihood using MINUIT minimization, one can im-
plement this Barlow-Beeston type method by solving for theβji within the “objective” function which
provides to MINUIT the value of− lnL given the values of all the parameters in the fit, and include the
contribution of the deviations of theβji from unity to− lnL.

However, a problem arises in this approach. Any minimization algorithm can only approximate
the values of the parameters and, hence, the true minimum of afunction. There is always some last step
which meets the convergence criterion, and somewhere in thespace of the inputµji to the minimization
for the βji, one will find the place where that last step is not taken. Nearsuch points the values of
the resultingβji and their associated contribution to− lnL undergo a small discontinuous jump. Such
jumps can (and do) dramatically confuse MINUIT’s MIGRAD minimizer, which attempts to measure
the Hessian matrix by finite differences. These jumps cause the resulting parameter covariance matrix
to become non-positive-definite. When MINUIT detects such asituation it attempts to circumvent it
by adding to the offending diagonal element of the matrix an amount necessary to restore positive-
definiteness. Sometimes this works but in many cases all is lost: MINUIT is now dealing with a false
measure of the Hessian matrix and it tends to send the free parameters in the fit to wild values. We have
found no solution to this behavior short of rewriting MINUIT.

The full-blown Barlow-Beeston method for dealing with bin statistical uncertainties is not ab-
solutely required to represent them properly in the likelihood. What matters, in a bin, is theoverall
statistical uncertainty of the predicted number of events from all sources. The statistical uncertainties for
each source in each bin are independent, and can be readily combined, particularly if they are Gaussian
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or Poisson in nature. Thus, a single Barlow-Beeston type parameter is sufficient to represent the statisti-
cal uncertainty. The value of this parameter, and its contribution to− lnL, can be calculated exactly by
solving a quadratic equation. Using a simplified notation for a single bin, we write

− lnL = −n lnβµ+ βµ+
(β − 1)2

2σ2
β

(10)

where hereµ is the total number of expected events in the bin, given the values of all the other parameters,
andσβ is the relative (statistical) uncertainty in the prediction. Setting the derivative to zero we find the
quadratic equation

β2 + (µσ2
β − 1)β − nσ2

β = 0 (11)

which can be solved readily and the correct root taken. The extension to other constraint functions is
straightforward though may result in transcendental equations to solve.

6 Practical Considerations

Care must be taken in using the approach described in this paper to avoid a number of potential pitfalls
which we discuss here.

Sparsely Populated Bins

In multi-bin spectra (particularly multi-dimensional spectra) one can encounter situations where
the number of events per bin varies by orders of magnitude. This can sometimes lead to situations where

– there can be regions of zero-content bins, surrounded by bins populated by single MC events;

– such single MC-event-bins can migrate under the influence of the morphing systematic effects,
spoiling the vertical morphing method;

– single data events can appear in bins where there is no predicted rate.

All of these situations must be avoided. The most straightforward is to generate sufficient Monte Carlo in
all bins, but this may not be practical or even possible. The best alternative is to combine bins according
to some algorithm (which does not use the observed data distribution!) which ensures some minimum
statistical threshold in every bin in the fit.

Bins Entering/Leaving the Likelihood

It is also necessary to ensure that no bin enters or leaves thelikelihood as the parameters change.
It is not impossible for MINUIT to drive parameters to regions where the contribution from a source, or
even all sources, vanishes in a bin. For example, when studying the profile likelihood as a function of
some new particle signal, also, one in general wants to evaluate the likelihood for the case of zero signal.
But if there are bins populated by signal only, this can causethe contribution to go to zero, the logarithm
of which is of course−∞.

Simply excluding bins from the likelihood when there are no expected events is not a sufficient
solution to this problem, as a moment’s reflection will make clear. To avoid bins entering/leaving the fit,
therefore, the bins to be used or not used must be establisheda priori by finding all bins where some
contribution is expected, and making sure there are no bins with data but no expected contribution. Once
determined, this set must remain fixed for the duration of thecalculation.

One way to ensure that no bin leaves the calculation is to always have it contribute at least some
tiny amount. For example to circumvent the zero-signal issue, we always ensure that the signal cross
section is no less than10−10 pb, and that no source in any bin used in the fit ever contributes less
than10−10 expected events. Though this is a somewhat inelegant solution to a nevertheless important
problem, we note that our final results do not depend on these minimum values in practice.
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7 Pseudo-Bayesian Posterior Densities

For measuring physical parameters, the profile likelihood can be directly interpreted using the usual
∆(lnL) approach to derive confidence intervals in multi-dimensional parameter space.

To extend this treatment to setting exclusion bounds on parameters such as a hypothetical new
particle’s cross sectionσX , we can simply derive a posterior density by treating the profile likelihood,
which we shall denoteLmax as one would any likelihood using Bayes’ Theorem:

P(σX) =
Lmax(σX)P(σX )

∫

∞

0
Lmax(σX)P(σX )dσX

(12)

where hereP(σX) is the assumed prior pdf inσX .1

But does the profile method really result in a posterior density that can be interpreted in this way?
The most proper Bayesian treatment would not maximize the likelihood with respect to the parameters
not of interest, but marginalize instead, resulting in whatwe might denote as̄L(σX) to highlight the fact
that the marginalized likelihood is in a sense averaged overthe prior-weighted values of the nuisance
parameters.

We have performed both calculations, profiling and marginalization, in a variety of complex spec-
trum fits, and it is our experience that the posterior densityderived either way is nearly identical, though
the marginalized one takes orders of magnitude more computetime. Due to this practical consideration
alone we employ the profile method and consider it to be a near-perfect representation of a full and proper
Bayesian marginalization treatment.

8 Conclusions

We present in this paper the basic mathematical and numerical approach to fitting multi-source spectra
using a profile likelihood in which various types of systematic uncertainties are incorporated by rep-
resenting them by nuisance parameters. This method, we believe, offers a unified approach to setting
exclusion bounds, making discoveries, and ultimately performing measurements on a wide range of par-
ticle physics data analyses.
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