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Abstract
We describe here the general mathematical approach to constructing likeli-
hoods for fitting observed spectra in one or more dimensions with multiple
sources, including the effects of systematic uncertainties represented as nui-
sance parameters, when the likelihood is to be maximized with respect to
these parameters. We consider three types of nuisance parameters: simple
multiplicative factors, source spectra “morphing” parameters, and parameters
representing statistical uncertainties in the predicted source spectra.

1 Overview

In particle physics one often encounters the general problem of estimating physical parameters such as
particle masses or cross sections from the spectra of observables calculated in each event. In the case
of a known, well-established signal process, the dominant technique by far is to use a binned likelihood
assuming a Poisson distribution in each bin [1], and find the parameters which maximize the likelihood.

In the case of a search for a new particle or effect resulting in either a discovery or null result,
binned likelihoods have also been employed successfully to quote statistical significance or exclusion
bounds, respectively. From a certain point of view there is a desirable consistency in utilizing the same
basic statistical method for searches, discoveries, and measurements.

A key requirement here, however, is that the likelihood somehow incorporate the effects of all
systematic uncertainties present in the analysis. In frequentist inspired methods, the effect of systemtic
uncertainties is very often incorporated by the non-frequentist procedure of generating distributions of
many pseudoexperiments, where from one pseudoexperiment to the next the values of all parameters are
varied within their assumed distributions. In a formal Bayesian treatment, the nuisance parameters are
removed by marginalization: integrating them out, assuming some prior pdf. Both of these approaches
are computationally very expensive.

In measuring parameters using binned Poisson likelihoods, as mentioned above, one simply max-
imizes the likelihood (in practice one minimizes the negative log of the likelihood) with respect to all m
free parameters, and then constructs the standard error ellipsoid in m-dimensional space. The fit values
of the nuisance parameters are typically of no interest, leaving one to interpret the intervals for just the
parameters of interest in a straightforward way [2].

We define in this paper three main types of nuisance parameters representing systematic uncertain-
ties on the source distributions, and describe how to incorporate them into a binned Poisson likelihood.

We further argue in this paper that this maximum likelihood method, also called the profile like-
lihood, can be applied to searches and discoveries as well, either by a pseudo-Bayesian interpretation
of the profile likelihood as leading to a posterior density in the parameter(s) of interest (after suitable
inclusion of a prior), or by likelihood ratio methods. The profile likelihood requires significantly less
computer time, often as much as two orders of magnitude less, than frequentist or frequentist-inspired
methods such as CLs [3]. That in turn allows much more detailed study of the properties of the fit results.

2 Core of the Poisson Likelihood

Suppose we observe in a set of N events an observable or in general a set of observables x̄. If we define
a set of nbin bins (which can be of literally any shape we choose) in the space of the observables, then
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the number of events ni in each bin i, is assumed to be Poisson-distributed according to

P(ni|µi) =
µni

i e
−µi

ni!
(1)

where µi is the number of expected events in the bin. Typically we can write

µi =

nsource∑

j=1

Lσjǫji (2)

for integrated luminosity L, cross section σj for source j, and efficiency ǫji for source j in bin i, often
obtained from MC simulation of the process. The sources here include the signal process of interest
and all background processes. Again, since we are dealing with a possibly multidimensional space of
observables, the index i can actually label the bins in multiple dimensions.

The Poisson likelihood for the full observed spectrum is simply the product of the Poisson proba-
bilities:

L =
N∏

i=1

P(ni|µi) . (3)

In the absence of any systematic uncertainties one can simply minimize − lnL with respect to all un-
known parameters in the problem and interpret the resulting standard error ellipsoid in the normal way
to obtain estimates of the unknown parameters and associated confidence intervals.

3 Normalization Uncertainties

Normalization uncertainties provide the simplest example of systematic uncertainties that can be repre-
sented by nuisance parameters in profile likelihoods. As an example, let us assume that the integrated
luminosity is measured in some auxiliary study, and results in a 2% uncertainty. We would rewrite the
likelihood as

L =
N∏

i=1

P(ni|µi)G(L|L̃, σL) (4)

for the measured value L̃±σL. The function G is a normalized Gaussian of mean L̃ and width σL, which
serves to constrain the value of the new nuisance parameter L to its measured value. Note that it is L and
not L̃ that is used to calculate the µi. The negative log likelihood is thus

−lnL =
∑

i

[−ni lnµi + µi] +
(L− L̃)2

2σ2
L

(5)

and thus the remnant of the Gaussian term can be regarded as a penalty on the negative log likelihood.
It is in principle possible to use functions other than Gaussians to constrain the values of the nuisance
parameters. In Bayesian terms the constraint functions are simply the prior probability densities of the
nuisance parameters.

Any normalization uncertainty can be represented in the likelihood this way, including uncertain-
ties on cross sections, overall efficiencies, and the like, simply by introducing multiplicative nuisance
parameters into Eq. 2 as needed, for any or all sources.

In many cases, however, the allowed physical bound on a multiplicative nuisance parameter is that
it remain positive. If we are representing the constraint by a Gaussian, then when the uncertainty in the
nuisance parameter is large the Gaussian is truncated and an appropriate normalization factor should be
included. It must also be realized that any such truncation shifts the mean of the distribution and tends
to introduce a bias away from the most probable value of the parameter. In such cases one might also
consider constraining the parameter with a log normal or other probability density which does not allow
the parameter to become negative.
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4 Shape Uncertainties and Morphing

Many systematic uncertainties result in an overall distortion in the shape of the observed spectrum.
A good example is an energy scale uncertainty which affects all jet energies in an event in the same
direction. If there are energy thresholds in the event selection, changes in not only the shape but the
overall normalization of the efficiency (represented here by the ǫji for source j in bin i) as a function of
the observables can result.

Such spectral distortions can be modeled by altering parameters (like the energy scale) in the
MC simulation and recalculating the “shifted” set of efficiencies. If we were, for example, to raise and
lower the energy scale by one standard deviation, recalculating the efficiencies, we would then have three
measures of the shape (and normalization) of the bin efficiency distribution, which we can call ǫ−ji, ǫ

0
ji,

and ǫ+ji. Clearly one can obtain more measures from other alterations of the energy scale, though this can
often be computationally very expensive.

We then face the question of how to turn our three measures of the spectral shape into a continuous
estimate in each bin as a function of the energy scale factor. To do this we introduce a “morphing”
parameter which we will call f , and which is nominally zero (in the case of no scale shift), and which
has some uncertainty (usually Gaussian) σf =1.

In this general technique, usually called “vertical morphing”, we interpolate quadratically between
the three efficiencies in a bin for |f | < 1 and extrapolate linearly beyond that range. This does result in
the exact measured behavior of the spectrum at f = ±1 but avoids large deviations from linear behavior
outside the range. The value of the efficiency at any |f | < 1 can be determined by Lagrange interpolation:

ǫji =
f(f − 1)

2
ǫ−ji − (f − 1)(f + 1)ǫ0ji +

f(f + 1)

2
ǫ+ji (6)

Calculation of the linear extrapolation beyond this range is a straightforward exercise for the reader.

Clearly if a more accurate representation of the morphing behavior is required, one can, at the ex-
pense of computation and bookkeeping time, obtain additional shifted efficiency spectra and interpolate
using a higher order polynomial. A good measure of whether this is a worthwhile exercise is to examine
the behavior of one’s morphing parameters as a function of the parameter of interest; if they tend to go
far from the sampled region (corresponding to one standard deviation in the uncertainty) then it may be
desirable to obtain more measurements there, and parametrize the measured region with a higher order
polynomial.

We also note that there are somewhat more sophisticated methods such as Alex Read’s “horizontal
morphing” [4] method. These are more computationally intensive, but could be advantageous. However
they are not straightforwardly defined in more than one dimension.

The morphing method presented here can be extended to several morphing parameters for different
independent systematic effects simply by adding linearly the deviations from the nominal efficiency due
to each effect.

5 Statistical Uncertainties in Efficiencies

Typically one estimates the efficiency of each source in each bin using a Monte Carlo simulation, and
hence the statistical accuracy of the estimate of the efficiency in each bin depends on the number of MC
events falling there. Likewise, in other, possibly data-driven methods for estimating the expected number
of events from some source in some bin, there may be some known statistical uncertainty in each bin.

Barlow and Beeston [5] proposed a method for representing such systematic uncertainties wherein
one introduces a separate nuisance parameter multiplying the expected number of events from each
source in each bin. Nominally the value of these parameters is 1, and one can then constrain the parame-
ters, which we call βji, according to the prior pdf assumed for the number of MC events in the efficiency
calculation. Barlow and Beeston assumed a Poisson distribution (though one might argue a binomial is
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the most correct form to assume); other choices such as log normal avoid the parameters possibly tending
to negative values.

Though this method introduces a very large number of new free parameters in the likelihood,
the problem can be seen to be tractable in the profile likelihood case since the values of the βji which
maximize the likelihood within a bin can be found independently of those in all the other bins.

Assuming a Gaussian constraint on the βji, we can write the contribution to the negative log
likelihood in a particular bin as

−lnLi = −ni ln(
∑

j

βjiµji) +
∑

j

βjiµji +
∑

j

(βji − 1)2

2σ2
ji

. (7)

This contribution can be minimized with respect to the βji by setting the derivative with respect to each
to zero. Dropping the bin index i for clarity we write

∂(− lnL)

∂βj
= µj

[
1 − n∑

k βkµk

]
+
βj − 1

σ2
j

= 0 . (8)

We thus arrive at a set of nonlinear equations for the βj in a bin. These can be approximately solved by
iterative Newton-type methods, or by more sophisticated methods.

In the context of performing the profile likelihood using MINUIT minimization, one can im-
plement this Barlow-Beeston type method by solving for the βji within the “objective” function which
provides to MINUIT the value of − lnL given the values of all the parameters in the fit, and includes
the contribution of the deviations of the βji from unity to − lnL.

However, a problem arises in this approach. Any minimization algorithm can only approximate
the values of the parameters and, hence, the true minimum of a function. There is always some last step
which meets the convergence criterion, and somewhere in the space of the input µji to the minimization
for the βji, one will find the place where that last step is not taken. Near such points the values of
the resulting βji and their associated contribution to − lnL undergo a small discontinuous jump. Such
jumps can (and do) dramatically confuse MINUIT’s MIGRAD minimizer, which attempts to measure
the Hessian matrix by finite differences. These jumps cause the resulting parameter covariance matrix
to become non-positive-definite. When MINUIT detects such a situation it attempts to circumvent it
by adding to the offending diagonal element of the matrix an amount necessary to restore positive-
definiteness. Sometimes this works but in many cases all is lost: MINUIT is now dealing with a false
measure of the Hessian matrix and it tends to send the free parameters in the fit to wild values. We have
found no solution to this behavior short of rewriting MINUIT.

The full-blown Barlow-Beeston method for dealing with bin statistical uncertainties is not ab-
solutely required to represent them properly in the likelihood. What matters, in a bin, is the overall

statistical uncertainty of the predicted number of events from all sources. The statistical uncertainties for
each source in each bin are independent, and can be readily combined, particularly if they are Gaussian or
Poisson in nature. Thus, a single Barlow-Beeston type parameter is sufficient to represent the statistical
uncertainty.

If we make the approximation that the overall uncertainty in the bin can be approximated by a
Gaussian of some width, then the value of this parameter, and its contribution to − lnL, can be calculated
exactly by solving a quadratic equation. Using a simplified notation for a single bin, we write

− lnL = −n lnβµ+ βµ+
(β − 1)2

2σ2
β

(9)

where here µ is the total number of expected events in the bin, given the values of all the other parameters,
and σβ is the relative (statistical) uncertainty in the prediction. Setting the derivative to zero we find the
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quadratic equation

β2 + (µσ2
β − 1)β − nσ2

β = 0 (10)

which can be solved readily and the correct root taken. The extension to other constraint functions is
straightforward though it may result in transcendental equations to solve.

6 Practical Considerations

Care must be taken in using the approach described in this paper to avoid a number of potential pitfalls
which we discuss here.

Sparsely Populated Bins

In multi-bin spectra (particularly multi-dimensional spectra) one can encounter situations where
the number of events per bin varies by orders of magnitude. This can sometimes lead to situations where

– there can be regions of zero-content bins, surrounded by bins populated by single MC events;

– such single MC-event-bins can migrate under the influence of the morphing systematic effects,
spoiling the vertical morphing method;

– single data events can appear in bins where there is no predicted rate.

All of these situations must be avoided. The most straightforward is to generate sufficient Monte Carlo in
all bins, but this may not be practical or even possible. The best alternative is to combine bins according
to some algorithm (which does not use the observed data distribution!) which ensures some minimum
statistical threshold in every bin in the fit.

Bins Entering/Leaving the Likelihood

It is also necessary to ensure that no bin enters or leaves the likelihood as the parameters change.
It is not impossible for MINUIT to drive parameters to regions where the contribution from a source, or
even all sources, vanishes in a bin. For example, when studying the profile likelihood as a function of
some new particle signal, in general one wants to evaluate the likelihood for the case of zero signal. But
if there are bins populated by signal only, this can cause the contribution to go to zero, the logarithm of
which is of course −∞.

Simply excluding bins from the likelihood when there are no expected events is not a sufficient
solution to this problem, as a moment’s reflection will make clear. To avoid bins entering/leaving the fit,
therefore, the bins to be used or not used must be established a priori by finding all bins where some
contribution is expected, and making sure there are no bins with data but no expected contribution. Once
determined, this set must remain fixed for the duration of the calculation.

One way to ensure that no bin leaves the calculation is to always have it contribute at least some
tiny amount. For example to circumvent the zero-signal issue, we always ensure that the signal cross
section is no less than 10−10 pb, and that no source in any bin used in the fit ever contributes less
than 10−10 expected events. Though this is a somewhat inelegant solution to a nevertheless important
problem, we note that our final results do not depend on these minimum values in practice.

7 Pseudo-Bayesian Posterior Densities

For measuring physical parameters, the profile likelihood can be directly interpreted using the usual
∆(lnL) approach to derive confidence intervals in multi-dimensional parameter space.

To extend this treatment to setting exclusion bounds on parameters such as a hypothetical new
particle’s cross section σX , we can simply derive a posterior density by treating the profile likelihood,
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which we shall denote Lprof as one would any likelihood using Bayes’ Theorem:

P(σX) =
Lprof (σX)π(σX)∫∞

0 Lprof (σX)π(σX)dσX
(11)

where here π(σX) is the assumed prior pdf in σX .1

But does the profile method really result in a posterior density that can be interpreted in this way?
The most proper Bayesian treatment would not maximize the likelihood with respect to the nuisance
parameters, but marginalize instead, resulting in what we might denote as L̄(σX) to highlight the fact
that the marginalized likelihood is in a sense the core likelihood averaged over the prior-weighted values
of the nuisance parameters.

We have performed both calculations, profiling and marginalization, in a variety of complex spec-
trum fits, and it is our experience that the posterior densities derived both ways are nearly identical,
though the marginalized one takes orders of magnitude more compute time. Due to this practical consid-
eration alone we employ the profile method and consider it to be a near-perfect representation of a full
and proper Bayesian marginalization treatment.

8 Conclusions

We present in this paper the basic mathematical and numerical approach to fitting multi-source spectra
using a profile likelihood in which various types of systematic uncertainties are incorporated by rep-
resenting them by nuisance parameters. This method, we believe, offers a unified approach to setting
exclusion bounds, making discoveries, and ultimately performing measurements on a wide range of par-
ticle physics data analyses.
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