CERN - EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Submitted to - CERN/EP/PHYS 78-13
Nuclear Physics B 91 June 1978

DENSITY, CHARGE AND TRANSVERSE MOMENTUM CORRELATIONS OF

PARTICLES IN NON-DIFFRACTIVE PROTON-PROTON COLLISIONS AT Vs = 52,5 GeV

CERN-Collége de France-Heidelberg-Karlsruhe Collaboration

* *%k
D. DRIJARD, H.G. FISCHER, R. GOKIELI( ), P.G. INNOCENTI, V. KORBEL( ),

A. MINTEN, A. NORTON, R. SOSNOWSKI(*), s. sTEIN(***), 0. ULLALAND and
H.D. WAHL _
CERN, European Organization for Nuclear Research, Geneva, Switzerland
+

P. BURLAUD, M. DELLA NEGRA( ), G. FONTAINE, P. FRENKIEL, C. GHESQUIERE,
D. LINGLIN(*) and G. SAJOT |
Collége de France, Paris, France

()
H. FREHSE , E.E. KLUGE, A. PUTZER and J. STIEWE
Institut fur Hochenergiephysik der Universitat, Heidelberg, Germany

++ + 4+
P. HANKE ), W. HOFMANN' ++), W. ISENBECK, J. spENCLER T ana

D. WEGENER(+H+)
Institut fir Experimentelle Kernphysik der Universitat (TH) Karlsruhe,
Germany

(*) Now at Institute for Nuclear Research, Warsaw, Poland
(*%) Now at DESY, Hamburg, Germany
(#%%} Now at SLAC, Stanford, USA

{(+) Now at LAPP, Annecy, France
(++) Now at CERN, Geneva, Switzerland

(+++) Now at Institut fir Physik der Universitat Dortmund, Germany

HW/mk



ABSTRACT

Inelastic events with an observed charged multiplicity LI > 7 have
been studied at the CERN Intersecting Storage Rings using the Split Field
Magnet detector. Correlations of particle demnsities, charges and
transverse momenta have been determined and a phenomenological analysis
in the framework of cluster models has been performed. A good description
of all results is obtained if one aliows for charged clusters,
produced in a mechanism with limited charge exchange. The mean trénsverse
momentum of clusters is (0.65 * 0.10) GeV/ec. Short range correlations of
particles of like charge due to the Bose-Einstein effect can be described

as a second order interference phenomenon with a radius R = (1.34 + 0.31) fm

and a lifetime of er = (1.38 = 0.60) fm for the pion source.



INTRODUCTION

The prominent feature of non-diffractive multiparticle events at high
energies is the presence of short range correlations.in rapidity, which
have been explained in the framework of cluster models [1,2]. The observed
short range correlations depend on the charge and the transverse momenta

of the secondaries [3].

It has been pointed out [3,4] that a stringent check of the models
for multiparticle production-and in particular of the different versions
of the cluster model is only possible in an analysis which describes all
experimentally accessible correlation data with a single parameter set.
Since phase-space effects dominate the measured correlations at medium
energies, it is important to take data at the highest energies in order
to isolate the dynamical features of multiparticle production processés.

It is the aim of the present paper to meet these two conditions.

Data were taken at a centre of mass energy of Vs = 52.5 GeV with
the Split Field Magnet spectrometer. In order to minimize contributions
from diffractive reactions, only events with a reconstructed charged

o)

multiplicity n > were taken into account in the present analysgis.
o]

bs
The measured correlations of the particle densities, charge densities and
transverse momenta of the produced particles are compared to the predictions

of cluster models.

The outline of the paper is as follows: in sect. 2 we give a short
description of the detector and the acceptance corrections applied to the
raw data. Sect. 3 contains the definitions of the experimental distributions
studied, as well as a summary of the basic assumptions of the different
cluster model versions and their physical meaning. The experimental data
and their comparison with the predictions of the cluster models are

presented in sect. 4, and sect. 5 gives a summary of the results and our

(#) This value corresponds to the average number of reconstructed tracks
in inelastic events.
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conclusions. Appendix A contains additional information about the
definition of and the relations between the distributions studied in this
paper. The technical details of the medel calculations are summarized

in Appendix B.

A more detailed account of the experimental procedures and the data

analysis can be found in ref. [5].

DETECTOR AND EXPERIMENTAL PROCEDURE

2.1 Detector

The experiment was performed at the CERN Intersecting Storage Rings
(ISR) with the Split Field Magnet (SFM) detector, which allows to measure
the momenta of charged particles in nearly the full solid angle. The
detector consists of a magnet with a maximum field strength of 1 Tesla
surrounding the interaction region I4 of the ISR. The magnetic volume
is filled with Multiwire Proportional Chambers (MWPC) divided into three
telescopes: two forward telescopes [6], each consisting of 14 MWPC and
a vertex detector,described in [7]. Information about the performance

of the detector can be found in previous publications [8].

2.2 Trigger

The MWPC's were used in a self-triggering mode [9]. Wires of the.MWPC
were associated in groups of 256 to deliver fast signals. These signals
were combined to define the time of the event by an OR of all wires of
the detector. A geometrical pattern for the "minimum bias" trigger was
defined by a fast majority coincidence of at least three chambers in any
of the three telescopes. This trigger essentially required the presence
of at least one reconstructable track. After the exclusion of elastic
events, the cross section seen by this trigger amounts to = 957 of the
inelastic cross section. The total number of triggers taken was

4.5 105.



2.3 Data processing and corrections

The raw data were processed with the SFM off-line program chain [10].
Approximately 90% of the "good" triggers (i.e. those not rejectéd for
purely technical reasons).gave at least one reconstructed track, yielding
W 370 000 useful events. The present analyéis is based on ™ 60% of the
total data sample (v 120 000 events with more than seven reconstructed

tracks).

After track reconstructiomn, the data were corrected for geometrical
acceptance losses in the detector, losses due to decay and secondary
interactions and inefficiencies of the analysis chain. In previous
analyses [8], Monte;Carlo tracks were used to establish acceptance
tables by an integration technique. 1In the present analysis, the
acceptance corrections were determined fromra Subset of the data, using
the fact that the particle density p of the produced particles in the
proton-proton centre of mass system is independent of the azimuthal
angle ¢ and symmetric in the rapidity y, i.e. ply,d) = p(\yl).- From
previous studies [8] it is known that for every region in y and transverse
m.omentumpT > 0.1 GeV/c, an interval in ¢ can be found in which the full
acceptance of the detector (v 957) is reached and in which inefficlencies
of the program chain are small (i.e. at the level of a few percent). Thus
a suitable binning in y, Pr and ¢ was chosen for tabulation of the
acceptance weights. Only tracks with a momentum error Ap/p < 40%
were considered and the correction for losses due to this selectiom is
included in the weight factor. The average correction factor applied
to the data is ~ 1.5. The distributions obtained by correcting with this
method agree in the overlapping phase-space regions with those obtained

by different techniques [8].

Since the acceptance of the detector is poor for particles with
low transverse momenta, the experimental distributions were determined
for Py > 0.1 GeV/e (in some cases > 0.175 GeV/c) and extrapolated to
Pp = 0 (when necessary). After corrections (and extrapolation to Pr = 03,

the average charged multiplicity at Vs = 52.5 GeV found in this experiment
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is <nch> = 10.8 *+ 1.1, to be compared with the recently published wvalue
of 11.8 = 0.1 [11]. The total charge of the detected secondaries is

Qdet = 1.95 = 0.10, in good agreement with the expected value of 2.

For all calculations, the pion mass was assigned to the particles,
except for positive particles with |x| > 0.5, which were assumed to be

protons (x = reduced longitudinal momentum in the c.m. system).

PHENOMENOLOGICAL ANALYSIS

3.1 General definitions

A major aim of this analysis is the study of correlations between

two hadrons in the reaction

pp > h, + h, + X, (1)
1 2
as far as number, charge and transverse momentum of particles are concerned.

The particles h., h, are characterized by their charge Q. and their
1

1?72

kinematic variables ;i = {yi, pTi’ ¢i} (i1 =1, 2) (see table 1 for
definitions). Most of the experimental distributions are presented as
functions of rapidity y, in which case integration over the other
variables is implicit. In addition to the standard single-particle and
two-particle densities and correlation functions (table 1), we use
"associated" (conditional) demsities [12] of particle number, charge and
transverse momentum. These associated quantities are obtained by
selecting events with a particle h, (the "selected" or "software trigger"
particle) in a phase-space interval around ;2, and then evaluating the
quantity in question (particle density, charge density, etc.) for the

particles hy (at ;1) of the rest of the event (excluding the selected

particle),



(a) Particle and charge densities:

The associated particle density leQZCyllyz) is the density of.
particles of charge Ql at rapidity y1» under the condition that there is
a particle of charge Q2 at rapidity Yoe It is related to the inclusive

two-particle density by, e.g.
+- +— -
| = .
o yglyy) =0 (v v) /0 (vy)

The associated charge density q(y1|Q ) 1s the net charge density at

2*72
rapidity 1 under the condition that there is a particle of charge Q2

at rapidity Yo Instead of using this quantity, we prefer to study the
associated charge density balance Aq(yl|y2), defined by

dalyylvy) = aly;l=wy,) - aly 1y, (2)

i.e. it is the change in the associated charge density at Y1 when the

selected particle h, of negative charge is replaced by one with positive

2
charge. TFrom the definition it is clear that

qu(yllyz) dy, = 2,

independent of Y, and the charge of the initial particles (Appendix A).
The quantity (2) can be expressed in terms of two-particle correlation

functions and is related to the charge transfer cerrelation function [13]

(Appendix A}.

One advantage of choosing Aq is that the influence of acceptance
corrections for this quantity is smaller than for the charge density
itself [5]. Moreover, it allows a clearer separation between contributions
to charge compensation arising from central production and fragmentation,

which seem to have a different dynamical origin [14].
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(b) Transverse momentum compensation:

For the purpose of investigating the locality of transverse momentum

conservation, we study the associated compensating transverse momentum

density HT(y[y'), defined by
. _ _ -+ IS
I.(yly")dy ¢ ? pp; * (p/lppD)Y, (3

where ;& and y' specify the selected particle. The sum is taken over all
(charged) particles with rapidities i in an interval around y, and the
average is taken over the sample of events which have a particle at
rapidity y'. Thus, HT(y]y‘) is the total net component of transverse
momentum (per unit of rapidity) at rapidity y opposite to the direction

of the transverse momentum of the selected particle at y',

From momentum conservation follows that

fHT(ﬂy')dy = €(p (y") 7,
T

where (pT(y')> is the average transverse momentum of particles at
rapidity y'; € = 1 if the sum in (3) is extended over all particles
(neutrals included); if only charged particles are included, € is

expected to be v 2/3,

This problem of unseen neutrals (and remaining acceptance losses)

is avoided by using a different quantity, the associated average

compensating transverse momentum‘ﬁT(y1|y2), defined by
1 = . 4
ne(r [y = Iy, 2 /oGy lyy) (4)

This quantity is independent of the density of particles and therefore

also better suited to study global effects in the central region (sect. 4.4).



3.2 Cluster models

3.2.1 General features

In cluster models, non-diffractive multiparticle production
is assumed to proceed via two independent steps, namely the production
of clusters and their subsequent decay into the particles observed in the
final state. In all model versions considered in this paper, production
of both leading and central clusters is taken into account, in much the
same way as in the analysis of ref. [4]. The central clusters are assumed
to be uﬁiformly distributed in rapidity with a density p > Over a rapidity
range which depends on the missing mass with respect to the two leading

clusters (Appendix B and ref. [4]).

The model calculations have been performed using the Monte-Carlo
method. Details about model and Monte-Carlo program are given in
Appendix B, and the determination of the free parameters is described

in sects 4.1 and 4.4,

As far as the transverse momentum dependence of cluster

production is concerned, we consider three different moedels [3]
- the uncorrelated jet model (UIM) [15];

- ghe uncorrelated link model (ULM) [16];

- the correlated link model (CLM) [17].

In the UJM, the transition matrix element Tn for the production of n
-+
clusters is given by a factorized form in the transverse momenta k%i of

the clusters (fig. 1)

n
|T 12«» 1 f(kz.).
n . T1i
i=1

The only correlation between cluster transverse momenta is then due to

transverse momentum conservation.
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In the ULM, the matrix element factorizes in functions of the
.
transverse momenta qTi exchanged between two clusters adjacent in
rapidity (i.e. the transverse momentum transfer at each link)
-1
T2 T ek
n . Ti7?
i=1
while in the CLM, the matrix element factorizes in functions of the
transverse momentum transfers at two neighbouring links
n—2

vel) T 6., 4.l sa ).
T1 (=1 Ti? “Ti+l Tn-1

1 |?
n

i

Both UJM and ULM can be considered as special cases of the CLM [17].

The functions f, g, G are fast decreasing functions of their arguments

(in our calculation, gaussian dependences on kT and 4y have been used).

In the UJM, the transverse momenta of the clusters are compensated
globallyf In the ULM, the transverse momentum correlation length KT
for clusters, i.e. the distance in rapidity over which the cluster
transverse momenta are compensated, is of the order of 1 unit of rapidity.

In the CLM, the correlation length is KT w3

3.2.3 Charge dependence

For the charge dependence of cluster production, three

different assumptions have been considered:

- Independent emission of neutral clusters (IENC) [18].

- Independent emission of charged clusters (IECC) [4], where the
charge of a cluster is only constrained by the overall charge
conservation. In this analysis we specialize to the case that the
produced clusters occur only in the three charge states *1, 0. The
charge correlation length AQ for the compensation of the charge of
a cluster by that of another cluster is expected to be kQ & 3 at

the present emergy vs = 52.5 GeV.
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- Emission of charged clusters with limited charge exchange (LCEX) [17,19]
between clusters neighboured in rapidity. In our analysis we limit
this exchange of charges to #1, 0. The correlation length for this

type of model is expected to be of the order AQ = 1.5,

It should bg noted that the correlation lengths AT and KQ given
above refer to the compensation of transverse momentum and charge of
clusters and not of particles. The corresponding lengths observed for
particles are expected to be increased due to the spread § in rapidity

of particles originating from the decay of one cluster, which is of the

order § v 0.7 (sect. 4),

EXPERIMENTAL RESULTS AND COMPARISON WITH CLUSTER MODEL

4.1 One and two-particle densities

As mentioned earlier, for all distributionms given in this paper, only
events with a seen multiplicity of charged particles n e 2 7 are used.
The single particle and charge densities are shown in fig. 2. Fig. 3
shows the conditional two-particle correlation C'(yl!yz) as a function of
Y3 for three different values of Yye As suggested by the cluster model

[2], this correlation function can be parametrized by
C (v |y, = 0) = (F/ . = expl-y2/48%) + ap(y,)
172 28¥T) 1 17’

where the first term corresponds to the short range ceontribution to the
correlation (two particles from the same cluster) and the second term
represents the long range part. The parameter F, the "strength" of the
short range correlation, is related to moments of the charged multiplicity

distribution of cluster decay

<K (k=1)>

F= <> ’

where K is the nmumber of charged particles from the decay of one cluster.
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The width §+v2 of the short range correlation is related to the spread
in rapidity of particles originating from the decay of the same cluster

(table 2).

From a fit to C'(y1|0) of fig. 3 we obtain the following values for

these two parameters:

+0.20
= = +
F=1.240,']; and 6= 0.67 0,05 (5)

in good agreement with the results of previous analyses [20,21].

From the measured value of F, an estimate of the mean charged
multiplicity <k> of the cluster decay can be derived. For a 8-distribution,
one gets <k> = 2,24, while for a Poisson-distribution, a value <k> = 1.24

is obtained. The best estimate is found to be [5]
<k> " 1.8 - (6)

(Appendix B). Since the density DC of central clusters and the single

particle density p(y = 0) are related by

<k>-p, = p(y = 0), ' (7)

o= 1. (8)

In order not to be biased by the selection of events with n . > 7, the
obs
full inclusive density p was used in (7). The values of the parameters

obtained are in good agreement with those found in [4].

The parameters describing the leading clusters can be determined
from the charge density shown in fig. 2. A good fit to the charge
density is obtained with an:average charge of the leading cluster

of <Q/> % 0.65 and an average mass of <M, >~ 1.5 Gev.
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Thus, apart from the cluster transverse momentum, all free
parameters of the cluster model are determined from three experimental
distributions, namely the inclusive single particle density p(y), the
inclusive charge density q(y) and the two-particle correlation function
C'(yl[O). A summary of the free parameters, their determination and the

values obtained are given in table 3.

The curves shown in figs 2 and 3 are the results of the calculation
with the IECC model, using the values of the parameters given above. It
should be noted that an equally good description of these distributions
is also possible with the IENC and LCEX versions of the model (and the
same parameters}, i.e. more detailed experimental information is neéded

to discriminate between these models.

4.2 Charge correlations

To investigate the question of locality of charge conservation and,
related to this, the charge dependence of cluster production, we study
the associated charge density balance Aq(yl]yz) as defined by eq: (2)
(sect. 3.1). This quantity is shown in fig. 4 as a function of ¥qs for
four different values of rapidity Yo of the selected particle., For |
comparison, also the associated particle density p(yl[yz) is shown in
the figure. The fact that Aq(yllyz) has a maximum at v, Y Yo for all
four values of Yoo is a clear indication of local charge conservation.
To show this more clearly, the charge density balance associated with a
central particle ([yz[ € 1) is presented in fig. 5 as a function of the’
rapidity difference Ay = [yl - yzf. The width (FWHM) of this distribution
is v 2.8 units in rapidity and thus significantly larger than the value

(*)

* L
of v 2 expected from the IENC model Indeed, the IENC model calculation

(*¥) Since clusters are neutral in the IENC model, the charge of a
particle has to be compensated by other particles from the same
cluster; therefore, Aq should have approximately the same width
as the two-particle correlation (fig. 3).
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shown in fig. 5 is in strong disagreement with the data, while both
versions of the charged cluster model give a good description of the

experimental results.

Since the TECC and LCEX models should differ for large rapidity
differences Ay = |yl - y2|, we show in fig. 6 the model predictions for
Aq(yllyz) associated with a particle at the edge of the central region,
Yy = -2. This is sufficiently far from the kinematical boundary that
the influence of the charge transfer from leading particles should still
be small in the region Y1 > -2, Comparison of the predictions with the
data shows that the best description is obtained with the limited charge
exchange model (LCEX), while the IECC model predicts too high a long
range component of the charge compensation. From a study of charge
transfers across rapidify gaps, as proposed in [19], one arrives at the
same conclusions [5]. However, even though the LCEX model is favoured

by the data, the IECC model cannot be ruled out definitely.

Fig. 7 shows the charge density b§1ance Aq(yl,¢l}y2,¢2) associa;ed
with a central particle (|y2| < 1.5), for two different intervals of the
transverse momentum pTZ of the selected particle, For small transverse
momenta p.., (fig. 7(a)), the charge is compensated ma@nly by particles
opposite in ¢ with respect to the selected particle (strong concentration
for Ay ~ 0, Ad 1800). For larger transverse momentum of the selected

particle h > 0.5 GeV/c (fig. 7(b)}, a relative increase of Agq near

2> P
Ab = 0 is seen. These observations are in qualitative agreement with a
behaviour expected for clusters with non—negligible transverse momentum
(sect. 4.4). The strong depletion observed in fig. 7(a) for Ay,

Ad v 0 1s due to the Bose-Einstein effect,

4.3 Bose Einstein effect and second order interference

In figs 8(a), 8(b) the normalized correlation function R'(;l,gz)
(as defined in table 1) is plotted as function of Ay = !yl“yzl and
Ap = |¢1-¢2[ for particle pairs of like and unlike charge. For small Ay
and AP significant differences bhetween the two correlation functions are

observed. For equal charge pairs the correlaticn function shows a
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maximum when the two particles are close in phase space, which is inter-

preted as a Bose-Einstein condensation of the two-pion system.

For a quantitative study of this effect it is convenient to use the

variables 47 and q defined by (fig. 9)

+_“'|'—> ﬁ.| o
q =8 - L(Pl Py 8 q = lq, |
> > > > >
q; = (p;7P,) ~ 4ps a4 tagls

where § is a unit vector im the directiom of the sum of the two particle

momenta, § = (;1+;2)/1;1+;2 . The "longitudinal" component q; serves
as an approximation to the energy difference whose use is suggested by
Kopylov and Podgoretskii [22]. The correlation function R' is shown ip
fig. 10 as a function of these two variables. For like charge pairs, a
strong peak is observed for small values of s dps while R' for unlike

charge pairs is found to be independent of s dp and v 0.

It has been proposed [22,23] to interpret this type of correlation
as a second order interference phenomenon. According to this picture,
the correlation function R' can be parametrized by

4J$(qT-R)2 .
R'(q;, q.) = Bjl+a , (9
L T 2 2
(4 R) 1+ (gD

where R is a normalization constant, Jl is the Bessel function of first
order and R, T measure the radius and lifetime of the pion source. The
parameter a takes into account that not all detected particles are pions
and also that there may be dynamic correlations which hinder the Bose-

Einstein interference (ref. [24) for a more detailed discussion).
The distributions of fig. 10 have been fitted to the expressions

2
ﬂJl(qT - R)
1 2 2
‘ (qT - R)
and (10)

.
1 2 2
1 + (qLQ T)

i
b
+
e

R'(qT) for q < 0.1 GeV/c

[]
=
+
ws]

R'(qL) for qp < 0.2 GeV/c.
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The values of the parameters R and T obtained by the fit are

e
it

(1.34 £ 0.31) fm

cT

(1.38 + 0.60) fm,
in agreement with the results of experiments performed at lower energies [24].
The interfering fraction of all pairs of like-charged particles (parameter

a of eq. (9)) is found to be v 0.4.

4.4 Transverse momentum correlations

For the study of the locality of transverse momentum conservation,

we use the two quantities HT(yl[yz) and WT(yl[yZ), defined in sect. 3.1

(egs (3) and (4)). Fig. 11 shows the associated compensating transﬁérée
momentum density HT(yl\yz) as a function of'yl, for four different wvalues

of rapidity Y, of the selected particle. For a selected particle in the
 central region (y2 =0, =1, -2; figs 11(a), 11(b), 11i(c)), HT(ylfyz) is
rather wide in ¥y and does not change very much with Yy This shows that
most of the transverse momentum is compensated globally. When the
selected:particle h2 is nearer to the kinematical boundary, the distribution
is somewhat narrower, which indicates a local compensation mechanism. The
minimum at 4 " O observed in fig. 11(a) is due to the Bose-Einstein effect

described in the previous section.

The globality of transverse momentum conservation can be more clearly
seen in the rapidity dependence of the average compensating transverse
momen tum WT(yl]yz) associated with a central particle (iyzl < 1), shown
in fig. 12. TFor large values of Ay = lyl-y2|, WT(yl[yz) is nearly
independent of Ay. As expected, it increases with the transverse momentum

of the selected particle h The effects observed at small values of

Pro 2
Ay can be explained by a superposition of the Bose~Einstein effect and

the influence of the transverse momentum of the central cluster.
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A quantitative comparison of the predictions of the cluster model
and the experimental results shows good agreement for the UJM model and
the CLM model, if one assumes that clusters are produced with a mean

transverse momentum of
<kT> = (0.65 = 0.10) GeV/c. (11)

Using this result and the values of the other parameters obtained for the
central clusters (sect. 4.1), one can derive [25] the average mass of

central clusters as
<MC> 1.3 GeV. (12)

Similar conclusions have been obtained in a recent analysis of the
transverse momentum behaviour of clusters [26], using published data on

longitudinal and transverse correlations.

It should be noted that the value of <kT> obtained in this analysis
is comparable with the experimental value of the average transverse
momentum of meson resonances of similar mass as the cluster mass (12) [27].
Hayot et al. [25] have derived a relation between the imaginary part of
the elastic scattering amplitude and the multiparticle production amplitude.
They have shown that for a UJM model this relation can only be fulfilled
if the transverse momenta of the produced clusters are small,<ki> = 0.1 GeVZ/cz.
Such a small value can be excluded by the present analysis. In the frame=-
work of the CLM model, Le Bellac 11 has derived a relation between the
cluster transverse momenta and the slope of the Pomeron trajectory uﬁ(O).

Using the result (11) of this experiment one gets

’

aI'P(O) N 0.26 Gev 2

which is in good agreement with the value obtained by other methods [28].
This consistency check favours the description of the cluster production

by the correlated cluster link model (CLM).



(a)

(b)

(c)
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CONCLUSIONS

The data presented in this paper show:

The charge compensation in non-diffractive events is due to a strong

local and a weak global component.

Particles of equal charge tend to be produced at small distances in

phase space (Bose-Einstein effect).

The transverse momenta of the produced particles are compeﬁéatéd over
a range in rapidity which is comparable to the total rapidity range

available.

For a quantitative description of these results, the full set of

correlation data has been analyzed in the framework of cluster models

with one set of parameters, which has been derived from the observed

single and two-particle densities and the measured charge density. From

the comparison of the model predictions with the data follows:

(a)

(b)

(c)

The charge correlation data are best described by a cluster model
with local charge exchange (LCEX). A model with independent
emmision of neutral clusters (IENC) can be ruled out definitely,
wﬁile a model assuming independent emission of charged clusters
(IECC) shows small but significant deviations from the data only

for the long range component.

The predictions of the uncorrelated cluster jet model (UJM) and the
correlated cluster link model (CLM) for the correlations of the
transverse momenta are in good agreement with the data. The observed
long range correlations are in disagreement with the predictions of

the uncorrelated cluster link model (ULM).

The mean transverse momentum of the produced cluster is

<kT> = (0.65 * 0.1) GeV/c. Using this result and the comnection
between the imaginary part of the elastic and the inelastic scattering
amplitude as given by the cluster models, only the correlated cluster
link model (CLM) is able to give an overall consistent description.

In this framework the slope of the Pomeron trajectory is found to be

01,(0) = 0.26 cev 2
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(d) The Bose-Einstein correlations between particles of equal charge
can be described as a second order interference phenomenon. A
radius R = (1.34 = 0.31) fm and a lifetime of ¢T = (1.38 * 0.6) fm

for the pion source are obtained.
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APPENDIX A

RELATIONS BETWEEN PARTICLE AND CHARGE DENSITIES

For convenience, we collect here some relations between the particle
and charge densities used in the present paper and those used in other

analyses.

. . . ab . c e
The associated particle density Py (yl|y2) for a fixed multiplicity
n=mn_+ n_,i.e. the density of particles of charge a at rapidity yl under
the condition that a particle of charge b was found at Vg in an event of
total charged multiplicity n, is related to the semi-inclusive two-particle
. ab :
density Qn (yl,yz)

ab _ .ab b
o (7y5y)) =0 (v lyy) -0 ,).

Using the relation
7 ab _
Jpn (y1|y2) dy1 R Sab

and averaging over all multiplicities one derives the sum rules

[

J{o++(y1,y2) - p“+(y1,y2)} dyl

@1o (v,
(A.1)

J{p+_(yl,y2) - p_'(yl,yz)} dyl = (Q+1)o_(72),

where Q = n -n_ is the total initial charge.

The associated charge density balance Aq(ylyyz), as defined in

sect. 3.1, can then be expressed in terms of two-particle densities as
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follows:

bq(y |y =~ (aly |+,y,) = aly; =y, =

{o++(yl,y2) - p_+(yl,y2) p+_(y1,Y2) - D—-(yl,yz)}
D+(y2) p_(yz)
(A.2)
- _ ++ -+
¢’ (yps9,) =€ Gpyy) © (y575) = C (yyy,)

- +

0 (y,) o (y,)

From this expression and the sum rule (A.1) one obtains the normalization
Jﬁq(yliyz)dyl = 2,

independent of Yq and the initial charge Q.

In a very naive model of independent emission of positive and
negative particles, taking only into account correlations due to charge

conservation (as expressed by (A.l)), i.e. setting

(n (n ~1)>
o++(y1,y2) = "—i“—"7;-— p (yl) p+(y2), etc.,
{n >

+

which is independent of Y, (a+ and o_ are constants).

Another quantity which can be used to study charge correlations is

the charge transfer correlation function [13,19]

D(ylsyz) = (U(yl)U(y2)> - <U(y1)><U(y2)>, (A.3)
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where U(y) is the charge transfer at rapidity y, defined for every event
U(y) = ? Q. 8(y-y;) - Q80my,) - Q8 (yyy )3

a, b characterize the initial particles (beam and target) and Qi is the
charge of particle i at rapidity s The average in (A,3) is taken over

all events. D(yl,yz) can be expressed by particle density-correlation

functions
bAY .
++ +-
D(yl,yz) = ~‘[dy de‘ {C (voy") - C (y,¥")
o0 -y?_

— —
-C (Yay‘) + C (Y,Y')}--
With the help of the sum rules (A.1) one finds

dzD(yl,yz) . _
—W = {D (Yl) + p (yl)} 5(Y1‘Y2) +
++ +- -+ -
+ C (Yl,yz) -C (yl,yz) -C (yl,yz) + G (yl,yz)

More information can be found in refs [1! (paper by Bopp), [3] and [13].
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APPENDIX B

DETAILS OF MODEL CALCULATION

B.1 Free parameters of the cluster model

As described.in sect. 4.1, the width § of cluster decay and the
strength F of the short-range correlation are obtained from a fit to the
correlation function C'(y|0). From the analysis of semi-inclusive
correlations [1,3,4] it is known that the charged multiplicity distribution
of cluster decay is narrower than a Poisson-distribution. Therefore the

average charged multiplicity {x) of cluster decay fulfills the inequality
1.24 g (k) € 2.24,

where the lower limit corresponds to a Poisson and the upper limit to a
6-1like multiplicity distribution(*). For a Poisson-distribution with
5_= 1.24, the probability p(n) for n > 4 is small (p(4) ~ 0.03, p(5)
N7 - 10_3). Therefore cluster decays into more than four-charged

particles are negleéted. Since we limit ourselves to neutral éﬁd éiﬁgiy-
charged clusters (isospin = 1), the following numbers of charged decay

products are possible: 0, 2, 4 for neutral clusters and 1, 3 for charged
clusters. If we denote by WQ(K) the probability for a cluster of charge

Q(Q = 0, * 1) to decay into kK charged particles (plus any number of neutrals),

we are left with five unknowns which are constrained by the relations

Wl(l) + w1(3) =1
Wb(O) + W6(2) + ws(4) = 1.
Following ref. [4], we set WB(O) = 0.1. Assuming the strength F of the

short range correlation to be the same for neutral and charged clusters

one obtains the parameters of the cluster decay multiplicity distribution

(*) Note that F + 1 = (k) + ({k2) = (x)2)/ (k)
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from the relation

_ Sk(r=1)) _ DH(Kk(k-1)

¥ (k) IW{K) K

The resulting values are

0.05

WO(Z) 0.85 wo(a)

W (1) = 0.65 W (3) = 0.35,

corresponding to (k) = 1.9 for neutral and (k) = 1.7 for charged clusters.
Since there are indications [4] that the number of neutral clusters is
sbout the same as that of charged clusters, and since the two values

agree within the uncertainties of their determinations, we use (k) v 1.8
for all clusters, independent of their charge. From this and the measured

value of the fully inclusive (i.e. without the restriction n (n))

particle density, p(0) ~ 1.8, we obtain Pe ~oT.

B.2 Model calculation and Monte-Carlo program

To calculate the predictions of the different cluster models described
in sect. 3.2, a Monte—Carlo program was used, which agrees in its basic
features with that of Arneodo and Plaut [4]. The relevant formulae of the
model are collected in table 2, and table 3 contains the values of the
free parameters of the model. Their determination is discussed in sect. &
in connection with the presentation znd interpretation of the data, and

some additional information is given in the previous sect. (B.1).

For completeness, we present here a short summary of the model

calculation. For details, refs [4] and [5] should be consulted.

The two leading clusters are generated with a uniform x-distribution
(x = ZPL/VE), with masses ML derived from the mass distribution in table 2.
Their charges QL are drawn in the set {0,1} with probabilities P, T P(QL = 0)
and Py = P(QL =1) = 1—po. Different values of the mean charge have been
tried in the range (QL> =Py € 70.65,11; the model predictions are not

very sensitive to the precise values.
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The central clusters follow a uniform y-distribution, with density

pc, in a rapidity interval y € [y -1 Y Yeff] (table 2), and

y +s

C 2 “eff, 'C 2

their masses follow a distribution analogous to that of leading clusters.
Energy and momentum conservation (to within % 1%) is achieved by a boost

of the central cluster system and an overall scaling of the energies

of the central clusters. The charges QC of the central clusters are
selected from the set {-1,0,+1} with equal probabilities 1/3, subject
to overall charge conservation. In the case of the LCEX, the charges
are further constrained by the requirement that the charge exchange AQ
between clusters adjacent in y (including leading clusters) is limited

to the values -1,0,+1 [4,17,29].

Only for the study of transverse momentum correlations is the
transverse momentum of clusters taken into account. In this case, the
decay products of the clusters are generated according to phase-space
(constant matrix element), in particular they are isotropic in the cluster

rest frame,

To take into account the Bose-Einstein effect for pairs of like-charged
particles, the weight factor &g (given in table 2) is attached to each

event,

The acceptance of the detector and the efficiency of the program
chain is simulated by rejecting some of the generated tracks on the basis
of our knowledge of the track acceptance, and events are accepted when
they fulfill the selection criterion.nobs 2 7. When relevant, the same
cuts are applied to simulated and real data (e.g. P > 0.1 GeV/e for
transverse momentum correlations). All cuts applied, the predicted

multiplicity distribution agrees with the observed ome for the full range

of nobs .
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TABLE CAPTIONS

Table 1 Definition of kinematical variables and experimental distributions.
Table 2 Variables, parameters and formulae of the cluster model.
Table 3 Values and method of determination of the free parameters of

the cluster model.
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FIGURE CAPTIONS

.
Fig. 1 Kinematics of cluster production; ki are the momenta of the
-
clusters, qi is the momentum exchanged between clusters i and
i+l which are ordered according to their rapidity Yy > Yii1e
Fig. 2 Particle density p(y) and charge density q(y) for events with

>3
obs

is normalized to 2. The full lines are the predictions of a

an observed charged multiplicity n 7. The charge density
cluster model with independent emission of charged clusters

(IECC).

Fig. 3 Two-particle correlation function C'(yliyz) = C(yl,yz)/p(yz) =
Q(y1|y2) - p(yl) as a function of Yy for different values of
Yo (a) Y, = 0, (b) Yy = -2, (c) v, = ~4, The lines are the
predictions of a cluster model with independent emission of

charged cluster (IECC).

Fig. 4 Associated charge density balance Aq(y1|y2) as a function of
¥ for different values of Yyt (a) v, = 0, (b y, = -1,
(c) Yy = -2, (d) ¥, = -3. For comparison, alsoc the associated

particle density p(yl1y2) is shown (broken lines).

Fig. 5 Charge density balance Aq(yllyz) associated with a central particle
(lyZ[ € 1) as a function of Ay = Wyl—yzl. Also shown are the
predictions of the IENC, IECC and LCEX models.

Fig. 6 Charge density balance Aq(yl[yz) associated with a particle
at ¥y = -2, as a function of Yi¢ The curves represent the
predictions of the IENC (dotted), IECC (dashed) and LCEX (full

line) models.
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FIGURE CAPTIONS (Cont'd)

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Charge density balance Aq(y1,¢1gy2,¢2) associated with a
central particle (|y2| < 1.5) as a function of Ay = |y1—y2|
and Ap = [¢1-¢2|, for two different regions of the transverse
momentum Pry of the selected particle: (a) Py

(b) Py > 0.5 GeV/c.

5 > 0.1 GeV/ce,

Normalized two—particle correlation function R‘(yl,¢1;y2,¢2)

as a function of Ay = |y1—y2| and A¢ = |¢l—¢2|. Only particles
with Pr > 0.2 GeV/c and |y]| < 2.5 are taken into account:

(a) pairs of particles with opposite charge, (b) pairs of

particles with equal charge.

Definition of qr and qr for a pair of particles with momenta
> >

Plapz'

> >

Normalized two—particle correlation function R'(pl,pz) for like
(full circles) and unlike {open circles) charged particles. The
full lines show the results of the fit with formulae (10):

> > > >

1 < . 1

(a) R (pl,pz) Vs qp for,qL £ 0.1 GeV/e, (b) R (pl,pz) vs qp
for 9, € 0.2 GeV/c.

Associated compensating transverse momentum density HT(yl]yz)

Vs ¥y, for different values of Yyt (a) ¥, = 0, (b) y, = -1,

(c) v, = -2, (d) Yy = -3. For comparison, also the associated
particle density p(yl|y2) (dashed line) and the associated charge

density balance ﬁq(yllyz) (dashed-dotted line) are shown.

Average compensating transverse momentum WT(yllyz) vs Ay = [yl—y2|,
for [yzl €1, for different intervals in the transverse momentum
Prg of the selected particle h2: (a) the two hadrons hl,h2 have
equal charge, (b} the two hadrons hl’h2 have opposite charge.

The full line represents the prediction of the UJM with a cluster
transverse momentum (kT> = 0.65 GeV/c (Bose-Zinstein effects are

included)}.
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