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INTRODUCTION

It is now well known that the nuclear forces in the nucleon-antinucleon System
are strong enough to generate a family of quasi-nuclear bound states!™*). Such
states are unstable against annihilation and they might therefore only manifest them-
selves as broad structures, if at all. However, more detailed investigationsl’s)
have led to the prediction that the quasi-nuclear levels will imn fact remain rather
narrow, with widths in the range 0.1-100 MeV (depending on their orbital angular
momentum, the short-range behaviour of the NN force, etc.). This stability of the
spectrum comes from the short-range character of the annihilation process: if,
following Martine), this range is taken equal to half the Compton wavelength of the
nucleon, = 0.1 fm, and the radius of the NN state is =~ 1 fm, only a small fraction

of the NN wave function is in the annihilation region.

On the contrary, and on the basis of a calculation using a simple imaginary
potential to represent annihilation, it has been claimedT’a) that only very few

NN states have a chance to remain narrow (see, however, also Ref. 5).

Experimentally, there has been considerable progress during the last fewyears,

and there are mow about 10 candidates for narrow quasi-nuclear states®).

In general, a multichannel model would be expected to be able to represent
the annihilation in the NN system (or any other BB system) in a better way than
an ad hoc optical petential. 1In this note we will show that already a very simple
multichannel model gives results which are very different from those obtained in
Refs. 7 and 8. In particular, we find that a strong coupling tc an annihilation
channel does not necessarily lead to a drastic broadening of the quasi-nuclear BE
state. The model we will use 1s a generalized and more detailed version of the

two-channel model recently discussed for the same physical problem in Ref. 10.

In the following we will apply this model to the BB system, but the results
are in most cases general and should apply to any physical system with a bound

state affected by decay.

A COUPLED CHANNEL MODEL FOR ANNIHILATION

In order to expose the essential features of the model, we will make several

simplifying assumptions, namely:

i} particles in all channels are non-relativistic, spinless, and in relative

s—states;

ii) all decay channels are of quasi-two-body type, and coupled only to the BB

channel (i.e. not to each other);

iii) the particles in the decay channels are non-interacting.



The Hamiltonian corresponding to this model has the matrix form H + V, where

(index 1 is used for the BB channel)

] be
Hy=a *U s Ra=o - 2(u-m), E=2,3,. N (1)
] L3

and Hij =0, i# j. Here U is the BB potential which creates the bound state to

be investigated. To simplify the notation we have taken the masses w, of the two

T
particles in channel i to be equal, with all mj < m3; m; is the B particle mass.
The matrix V describes the coupling to the amnihilation channels. According to
(iii), its only non-vanishing matrix elements are V,j and Vj; = th, i=2,3, ..., N,
and we choose these in a simple separable form:
. o= . »<q. 2
Vi = A L <pyl (2)
where the Aj's should be real. The form factors are taken as
-1
€; ->=“ ¥ Qepl-pevy A poo= ' .
The Schrodinger equation corresponding to this Hamiltonian can easily be solved
(algebraically), and we find the following eigenvalue equation for the energy E
| Y
- 3 E > Z . « - [E - — O ),
a)i
in terms of the channel Green's functions Gi(E) = (Hii—E—io)_l. [Equation (4) is
more precisely the condition for the vanishing of the denominator function in an
N/D representation for the multichannel Tﬂmatrixll):!.
Recalling assumption (iii), the matrix elements in (4) corresponding to j £ 1
can be calculated explicitly: '
\vf

-3
(B3l G EdIp, >= mé(pé-{&i3 _ (5)

[

_ L
The momentum kj ={j3|_2(m1 - mj) + E]} in channel j is related to k; = (m,E)*

through the kinematical condition
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k. = e | 2, (V- »)+Pe] (6)
3 T 5 3 5i b
where p. = m./m_ < 1,
i it

The general structure of the matrix element { B,[G:(E)!8;) in Eq. (4) as a
function of E, or k;, is that of the inverse of the Jost function in chamnel. 1,
£ ~'(k,;), with some additional singularities coming from the form factors |Ri) .

This can be seen using the representationlz)

Gykye,m) =y ()" §, (k) cpllg me) L7 )

for G, (E), where d(k,r), and f+(k,r) are the regular and the Jost solutions to the
Schridinger equation, respectively. In particular, abound state in channel 1 with
energy —|E0| = —x%/m, is associated with a pole at k; = ikg. The residue of
{B1|G1(E)|B;} at this pole is equal to imy/2kg) | (81|¢)[2, as is easily seen using
the bound-state part \¢ )(—|E0|—E)'1 (¢| of the spectral representation of G, *),

Using the Hultén form for the bound state wave function

20 Ro (X+Xe)
(M=) *

{r l(e) = eep(-Het) - u,,o(-o(r)] /T', )

we can also get an explicit expression for |( 61|¢ )l?.

It is not sufficient for our purposes to approximate (81|G1(E)[81) by this
pele term alone, but a contribution from the continuous spectrum must also be
included. A consistent way of doing this is to replace the true potential U by a
separable potential -n|a)(u\ with the form factor |u) = (H11"U+|Eo})|¢). Such a
potential reproduces not only the bound state energy but also the bound state wave
function. For the Hulthénwave function, the form factor (r|w) has the form (3)
with Bj substituted by a. The resulting expression for (B:|Gy(E)|8: } is given

in the Appendix. In the neighbourhood of the pole it can be reduced to

wy B +£ -2.0((.3(.*'0‘) (8)
(P!ﬂ(o)?-(pﬁo() (fé'.'i*o)([’s.‘* o) .

<F\IG[(e)lfsl >

%)} The spectral representation suggests that there i1s also a pole at k; = —-ikg.
This is however not the case, since £~!(k,) has no singularity at this point.
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Equation (A.1) is expected to give a good representation of (B;|G;(E)|B1) to the
extent that other dynamical singularities (e.g. other bound states or resonance

poles) are far away from the pole under investigation.

To conclude the generél description of our model, let us make some comments
on the parameters that have been introduced. In the NN case, m; is the nucleon
mass. The assumption of nom-relativistic motion requires the masses m, to be
chosen in such a way that 0.5 « mi/ml <1, and |Eg| to be less than a few hundred
MeV, i.e. ko = vmy|{Eq| £ 500 MeV/c. The parameter o can be used to vary the size
of the BB system (unless the binding is small), or the value of the wave function
at the origin (i.e. in the anmihilation region}. If the R.'s, which determine the
size of the amnihilation region, are taken equal to 2m;, then a/Bj will be typically
of the order of 1/10. The coupling constants }\j will be treated as free parameters, For
a given physical system they can be constrained, e.g. by the annihilation cross-
section in the BB channel. In the two-channel version of our model (with A, = &

and B; = B2 = B) the T-matrix for annihilation is given by
2] Ty 11> = <BIp> 2 <plY;>
B (€)

where D(E) = 1-A% (B|G1(E}{B ) ( RlG,(E) |R) and where ]wi ) are eigenchannel
scattering wave functions. The matrix element |{2|T,1|1)| vanishes when X - 0

or A + « and has its maximum value when X = 1(B|GI(E)EB> (B]GZ(E)XB)\_%. For

E ~ 0 and with BVv2m, a/f <1 and a/Kp < 1 we find approximatively A/vmim; ~ 4.

For A-values beyond the maximum, a bound state initially in channel 1 is so strongly
coupled to the other chamnel that the model (e.g. with no interactionm in channel 2)
is no longer realistic. Another natural bound on the magnitude of A comes from the
observation that large enough A will create poles near the physical region that are
due to the off-diagonal interaction alone (compare footnote in Section4). When this
happens, the coupling to the amnmihilation channel is again so strong that the system

is no longer predominantly of the BB type.

To conclude this section, we recall some general properties of the multi-
channel $-matrix!2) that are of some relevance for the description of decay channel
effects on a bound-state pole. As a function of energy, S has a branch point at
every threshold E = ~2(m;-m;), i = 1, 2, ..., N. All these branch points are pre-
sent on each sheet so that the Riemann surface of § has ZN sheets. The physical
sheet is characterized by having all momenta ki, ki, ..., kN in their upper half
planes. S has no poles in the physical sheet, except for bound-state poles on the
real axis. A single narrow resonance is characterized by one pair of poles on each
non-physical sheet, in all 2N poles. If the parameters of the theory (coupling
constants, etc,) are varied, a resonance peak will sometimes be associated with

one, sometimes with another of these poles (see, for example, Ref, 13),
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If S is considered as a function of the kj's, the Riemann surface has 2N

sheets, as can be seen from cur Eq. (6).

In the two-channel case, the cut between the two branch-points *im1vV2(1-pz)
in the k;-plane is normally taken along the imaginary axis as in Fig. 1. Corres-
pondingly, in the ky-plane there are two cuts along the real axis from the points
+m,v2py (L=py) to o as inFig. 4 (disregarding the cut along the imaginary axis which
in this case is generated by a third channel). The Riemann surface of the two-
channel S-matrixz as a function of energy has four sheets, usually labelled accord-
ing to Peierlslz): Im ki > 0 on sheets I (physical) and II, and Im ky; > O on

sheets I and IV, see Fig. 1.

THE INFLUENCE OF DISTANT THRESHOLDS
ON A BOUND STATE

Using the framework outlined in the preceding section we now proceed to investi-

gate the motion of the bound-state pole away from E = -ngi as the coupling to the
annihilation channels is gradually switched on. Explicitly, we want to solve

Eq. {4) for E as a function of the kj's. We first consider the case of only one
decay channel with the corresponding threshold far from the initial position of the

bound state (we take B; = B, = B and Ay = A). More precisely, we assume that
-t 2 .1
2(y-auy )5 87 (04 92) maw (((Eo ku') (9)

Under this condition, far away singularities in Eq. (4) can be considered as fixed
(k > ixy). Combining Eqs. (4), (5), and (8) we therefore find for the pole posi-

tion as a function of A?

4. wy My 3 o o (#o +o0)
A (F*xo)L([S-il’%)l(F**) [“l(-t‘-.‘x.)(p-fx) ) (10}

where k3, = pz[Zm%(l—pz) - K%]. Equation (10) can be thought of as the conformal

mapping of the half-line A e EO,w) onto a circular arch in the k;—-plane. The

i¢

equation for the circle is obtained by putting k; - ikg = iR e”" and taking the

imaginary part of Eq. (10):

R dx (#, + o

B (pre) Adu % A (%#/); (n



- 6 -

where siny = 28k, (B% + k3¢)”'. The interval A? € [0,®), corresponds to ¢ e [x,m),
and this part of the circle lies in sheet II and possibly sheet IV (Fig. 1), with
the end points on the imaginary ki—axis. The corresponding trajectory in the energy

plane follows from the equaticn
AE= €-€_ =~ wm] R uf(ié)[zko-ﬁ R exp (ﬁ‘:)_}} (12)

where ¢ & EX,W), and ¢ = 0 1s 2 ray antiparallel to the real axis (see Fig. 2).
The maximum value of the energy displacement can easily be evaluated by combining
Egs. (11) and (12). If, for instance, B is large as compared to k,, and ¢, and

IEQ] is not too small, we find to a geood approximation

M, 2 Ro(Hot o)
AE o2 (____ . ° (13)
| ,"‘“ kzg) M&,?‘

From formula (9),

2482 [
l- — M, 0(
m‘/*“ Cz 8, (1-%2) N / )

where in the NN case the upper limit is typically ~ 5. 1In terms of the Hulthén wave

function at the origin [See formula (7):}, Eq. (13) can be written

2
| aE), . = agn . Koﬂi(g_:»l )

Qur estimate for the maximum energy displacement is therefore similar to that

obtained in Ref. 5 from different considerations.

As may be seen from Eq. (12) or Fig. 2, it can happen that Re E > (0 with Im E
small. Such pole positions in sheets II and IV do not give rise to a resonance in
the BB channel: for this to happen, we need a pole in sheet III close to the real

axis.

The pele trajectory described in Fig. 2, left case, has previously been found
in a numerical investigation of essentially the same model as that considered in
this section'®). In this connection it was also pointed out that Re AE is
negative for small A% provided 82 > k%,. In our notatiom, small 3’ corresponds
to ¢ just above ¥, and small R, so that [from Eq. (12):iRe AE = —2RKgmy’ cos ¢.
This expression is negative for ¢ 2 y provided y < 7n/2 i.e. again if 3% > k3.
Recalling the definition of k,y we can easily verify that

T .;L 2
R o< 5 (- ) < B
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The condition ¥ < m/2 is therefore always satisfied if B* > mi/2, in particular

if B 3 2m; as in the NN case.

We finally note that our two-chamnnel model corresponds to an optical potential

in channel 1, of the form

Vopt =~ N 1p<plG, @) p><pt = - X Pkﬁ*k;fl%(iﬂ(ﬁl{a

This potential is purely imaginary if y = n/2, 1.e. if B2 = k¥,. In view of the
above estimates onm Kzg, this can only happen if 8% < m?/2. Therefore, inthemulti-
channel model with the condition (9) we can never obtain a purely imaginary optical
potential with an annihilation range " B=! smaller than v2/m; (v 0.3 fm in the N
case). An imaginary potential similar to (15) was investigated numerically in

Ref. 8, and the pole motion described in this reference corresponds in fact to a

L), However, since p-wave form

fairly cireular trajectery in the momentum plane
factors were used, and the o/B ratio was not small, the results of this reference
cannot be directly compared to ours. In particular, it is not clear whether the
parameters chosen are consistent with the assumption of an underlying {(p-wave)
multichannel model, e.g. of the type considered in this paper; or if so, that

they correspond to reasonable values for, for example, the mi's.

The picture cutlined in this section remains the same also in the more general
case of several annihilation channels provided the basic condition (9) applies to
each ome of them and the ratios between the coupling constants lj are kept con-
stant. 1In such a case the only change is that the factor

(B - ikzo)—z = (R? + k%g)—l exp (iyx) in formula (10) must be replaced by

2 - . ) .M
ZocilpekY () = ¢ e GF)
with ¢ = A;/kz = const, and ¥ by X in the subsequent formulae. In particular we
note that ¥ is larger than the smallest of the Xj's. Thereforg, if all Bj's are
the same, the maximm energy shift in the case of several channels is less than

the shift produced by the most nearby chanmnel alone.

THE INFLUENCE OF NEARBY THRESHOLDS
ON A BOUND STATE

As the next case we consider a bound—state pole in the immediate vicinity of
the last open threshold. We again use the two-channel model, but instead of con-

dition (9) we now assume that the BB threshold is far away. The motion of the
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pole is then most simply followed in terms of the momentum k. of the light part-
icles. Introducing this variable into Eq. (4}, and putting k; = ikg in slowly

varying factors, we obtain the equation

O ey rpram. 150
AT (i k) (e (pred) (Pro (R - )

for k, as a function of A?. If we also neglect the small momentum k, as compared
to B in the factor (B - ik,), the poles initially at #k,, will with increasing A*
approach each other along the real axis, collide at the origin, and turn into a
pair of poles moving away from each other along the imaginary axis, the upper one
being in the physical sheet and corresponding to a bound state. If ky is kept in
(B — iks), the poles will instead approach each other along curves in sheet ITI,
then collide on the imaginary axis and continue to move along this axis in opposite
directions., The upper pole is of course again the physically more interesting*).
This picture of pole motion is already familiar from one-channel potential
theory: a pair of resonance poles move with increasing strength of the potential
towards the imaginary k-axis, collide, and turn into two poles moving aleng this
axis, one of them eventually becoming a .bound-state pole. In Fig. 3 we indicate

the energy plane trajectory of the more interesting pole motion found in this case.

Let us finally consider a three-channel model with the initial bound state
just above the intermediate threshold (we put Az = Azcj, j =2, 3, and
By = B, = B3 = B). Expressing Eq. (&) in terms of the variable k; we find (with

k) = iKy in slowly varying factors)

4o Mp r Y™y, (K + o) g& e
(e ({Ud) % fw)(!kzﬁk,o ] [ 2

(¢ akau)]

(17}

This equation has the same structure as Eq. (10): the pole trajectory as a func-
tion of A% is circular, but this time in the k3 -plane, i.e. in the energy plane.
In the k; -~ plane there are therefore two poles, corresponding to k; = #/k3, one

in sheet IIL' and the other in II' (Fig. 4) (the-labelling of sheets is similar

*) The pole going downwards will in this model collide with one of the poles
coming from the (B - ik;)? factor roughly at k, = -iB/2. After the collision
the resulting two poles eventually (when A% + ) return to the real k; - axis
along extended curves in the second sheet. These poles cannot mainly be
associated with the forces in the BB channel but are rather induced by transi-
tions between closed and open channels.

I e T B e I L LT TR e R R T S R T T TS PR
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to that in Fig. 1, with k; = k; and ks + k3). We note that for small A% the pole
in sheet ITT' is closest to the physical region, while for large A* the other pole

takes over this role*).

Also. the energy plane trajectory (Fig. 5) corresponds to the motion of two
poles on different sheets. The one starting from the upper rim of the k, cut and
going down through this cut into sheet III' is for small A2 the physically more
interesting. For larger A%, however, the pole starting on the lower rim of the

k, cut and moving in sheet II' becomes the physically relevant one, as before.

In a better approximation, the term comp /B2 in Eq. (17) should be kept in the
form comy/ (B 7 ik;)}?2, where the upper (lower) sign corresponds to the solution in
sheet ITI' (IT'). As a result, the II’'-sheet trajectory is moved towards and the

III'~sheet trajectory is moved away from the real axis in the energy plane.

RESULTS OF A NUMERICAL CALCULATION

In Fig. 6 we show the results of a few numerical solutioms of the three-
channel model using Eq. (4) together with Eqs. (5) and (A.1). All curves corres—
pond to the same set of parameters m; = 940 MeV, my = 820 MeV, m; = 770 MeV,

o = 200 MeV/e v1fm~! and B = 1880 MeV/c ~ 10 fm~!, and only the initial position
of the bound state has been varied. The |Eq| = 1 MeV curve corresponds to an
almost perfeet circle in the k;, —plane, while the 30 MeV curve is slightly

distorted.

The 200 MeV trajectory has been chosen to illustrate a particularly interest-
ing effect. 1In the second threshold region there are (in accord with the general
discussion in Section 4) two trajectories of interest, both essentially circular.
Since the third threshold is mot very far away, the effective angle between these
trajectories and the real axis is small, and the radii of the circles are large;
in fact, the trajectories almost look like straight lines. As a consequence, the

(upper trajectory) pole escapes the second threshold region well before it has a

chance to get very far from the real axis. But once in the third threshold

region, its behaviour is as foreseen (Fig. 3) for a pole in the neighbourhood
of the last open threshold. Therefore, we have in this case an energy level with

a small width for all values of the coupling to the annihilation channels.

%) This phenomenon is familiar in particular from a discussion of resonance pole
motion as a function of SU(3) symmetry-breaking in the 1960's; see, for
example, Ref. 13.
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Intuitively, the pole behaviour seen in this example reflects the fact that
when a level goes below a threshold, the corresponding decay channel does not
increase the width any further. The description given above will therefore also
be valid in the multichannel case, with the second theshold picture repeated at
each open threshold. If in particular the initial pole position is not toc far
from the region of dominating decay channel thresholds, the sequence of pole tra-

jectories will also in this case remain close to the real axis in the energy plane.

SUMMARY AND CONCLUSIONS

The simple multichannel model presented above has displayed some features of
BB bound-state annihilation that have not been given much attention before. We
have in particular seen that the widths of the levels are not only determined by
the range of annihilation and the BB wave function at small distances, but that
also the positions of the decay thresholds play an important role. For a single
bound state well above all decay thresholds the displacement of the S—matrix pole
due to annihilation (and therefore also the width of the level) has been explicitly
found in terms of the parameters of the model. The trajectory of the pole as a
function of the coupling to the annihilation channels is circular in the complex
momentum plane and in qualitative agreement with the results of earlier numerical
calculationslo). There is a maximum value for the width of the level (as a func-
tion of the coupling), which is simply related to the bound-state wave function

at the origin and to the distance to the next annihilation threshold.

The picture is different for a bound state in the vicinity of an annihilation
threshold. When the coupling to the decay channels is gradually increased, the
state is mainly shifted towards lower energy (larger binding) with only a small
increase in the width. Several successive thresholds can therefore give such a
state a chance to remain narrow even when the coupling to the annihilation chan-
nels gets strong. We think that this is a promising mechanism for narrow quasi-
nuclear NN states, which should be further investigated using more specific infor-

mation on the NN forces, the threshold positions, etc.

It might finally be recalled that the above results have been obtained for
9 =0 bound states, i.e. without the help of angular momentum barriers to reduce

the magnitude of the annihilation effects.



_ll_

Acknowledgements

One of us (B. K.) is most grateful for the hospitality of the CERN Theory

Division.



1)

2)
3)

4)

5)
6)
7
8)

)]

10)
11)

12)

13)

14)

- 12 -
REFERENCES

L.S. Shapiro, Soviet Phys. Uspekhi 16, 173 (1973).
L.N. Bogdanova et al., Ann. Phys. (USA) 84, 261 (1974).

C.B. Dover and M. Goldhaber, Phys. Rev. D 15, 1997 (1977).

J.M. Richard et al., Phys. Letters 64B, 121 (1976).
R. Vinh Mau, IPNO/TH 77-14 (1977).

F. Myhrer, Preprint CERN TH 2348 (1977), talk at the 2nd Internat. Conf. on
Nucleon-Nucleon Interactioms, Vancouver, June 1977.

I.5. Shapiro, Preprint ITEP-88 (1977).

A, Martin, Phys. Rev. 124, 614 {1961).

F. Myhref and A. Gersten, Nuovo Cimento 37A, 21 (1977).
F. Myhrer and A.W. Thomas, Phys. Letters 64B, 59 (1976).

L. Montanet, CERN/EP/Phys. 77-22, Paper submitted to the 5th Intermat. Conf.
on Experimental Spectroscopy, Boston, 29-30 April 1977.

S. Nilsson, Narrow resonances in BB reactioms, 15th Course: The ways of sub-
nuclear Physics, "Ettore Majorana" Centre for Scientific Culture, Erice,
Sicily, 23 July-10 August 1977.

P. Pavlopoulos et al., Phys. Letters 72B, 415 (1978).

B. Kerbikov et al., Zh. Eksper. Theor. Fiz. Pis'ma 26, 505 (1977).
J.D. Bjorken, Phys. Rev. Letters 4, 473 (1960).

R.G. Newton, Scattering theory of waves and particles (McGraw-Hill, Inc., N.Y.,
1966).

R.E. Peierls, Proc. Roy. Soc. A 253, 16 (1959).

R.J. Eden and J.R. Taylor, Phys. Rev. B 133, 1575 (1964).

M. Kato, Ann. Phys. (USA) 31, 130 (1965}).

M. Ross, Phys. Rev. Letters 11, 450 and 567 (1963).
D. Amati, Phys. Letters 7, 290 (1963).

T. Kawai and N. Masuda, Nuovo Cimento 32, 243 (1964).
R.H. Dalitz and Rajasekaran, Phys. Letters 7, 373 (1963).

F. Myhrer, private communication.



- 13 -

APPENDIX

We want to calculate (BiGl(E)|B), where G, .= (Hy; + U - E - io)"!,
U

-nla){a], and where n has been chosen so as to give a bound state at

E = -[Eg| =-«k$/my. From the relation G; = ¢? - ¢%uGgy, with ¢y = (;: - E - i0)!
we easily find G; = G, - G?la)d_l(a|G?, Where.d = (a|6Y @) |a) - 1/n =

= (a|ei®y|a) = (alcl(-|Ec|)|a). Using Eq. (5) and a similar result for (8lct iy,

we obtain

[ . .2'0(0%"“’() . .‘la((’(. + )
L 1]-¢ : of [#e 272 me
(p-it) (are (¢ iRt dinc) (pre0(k,~ 1¥0)

SUHOINEE

Tn the neighbourhood of the bound-state pole the first two factors in (A.l) are
slowly varying functions of k; taking k = ixg in these factors we get the simpler

expression (8).
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Figure captions

Fig.

Fig.

Fig.

1

6a

6b

LN

Momentum plane trajectory of the BB pole as a function of A. The initial

position far from annihilation thresholds.
Same as Fig. 1, but in energy plane.

BB pole trajectory as a function of A. The initial position close to

the last open threshold,

Momentum plane trajectory of the BB pole as a function of A. The initial

position close to an ammihilation threshold (not the last open one).
Same as Fig. &, but in energy plane.

BB pole trajectories as a function of ), as obtained from the numerical
solution of a three-channel model. The different trajectories corres-—
pond to different choices of initial pole position, the arrow corres-—

ponds to A/m; = 3.

See Fig. 6a.
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