LHCB STATUS

Introduction Detector Performan Running conditions First physics Outlook

LHCb Status

18 January 2010, Veldhoven [1/13]

rick Koppenburg

18 Janua

Physics@FOM

INDIRECT SEARCHES

Sensitive to New Physics effects

- When was the Z discovered?
 - 1973 from $N\nu \rightarrow N\nu$?
 - 1983 at SpS collider?
- c quark postulated by GIM, third family by Kobayashi & Maskawa

LHCb Status

18 January 2010, Veldhoven [2/13]

INDIRECT SEARCHES

Sensitive to New Physics effects

- When was the Z discovered?
 - 1973 from $N\nu \rightarrow N\nu$?
 - 1983 at SpS collider?
- c quark postulated by GIM, third family by Kobayashi & Maskawa
- ✓ Estimate masses
 - t quark from $B\overline{B}$ mixing
 - ✓ Much larger mass coverage than \sqrt{s}
- ✔ Get phases of couplings
 - Half of new parameters
 - Needed for a full understanding
 - Look in lepton and flavour sectors
 - \rightarrow CP asymmetry in the Universe

LHCb Status

18 January 2010, Veldhoven [2/13]

The *b* quark is the best laboratory for this programme (see Fleischer's talk) **Hot channels for the near future:** $B_s \rightarrow \mu\mu$: Is there susy? $\mathcal{B} \propto \frac{\tan^6 \beta}{m_A^4}$. $B_s \rightarrow J/\psi\phi$: Beyond-SM CPV? $B_d \rightarrow \mu\mu K^*$: Right-handed currents? γ (ϕ_3): Is the CKM matrix sufficient? y_{cp} IN D^0 : Beyond-SM CPV?

Patrick Koppenburg

The LHC beauty experiment for precise measurements of CP violation and rare decays

LHCb Status

LHCB DETECTOR

Forward detector (*b*-hadrons produced forward at LHC)

- Warm dipole magnet. Polarity can be reversed.
- ✓ >99% of channels working
- Good momentum and position resolution
 - Vertex detector gets 8mm to the beam

Tracker

Magnet

LHCb Status

Patrick Koppenburg

LHCB DETECTOR PERFORMANCE

LHCB DETECTOR PERFORMANCE

Forward detector (*b*-hadrons produced forward at LHC)

- Warm dipole magnet. Polarity can be reversed.
- ✓ >99% of channels working
- Good momentum and position resolution

✔ Good Particle Identification

Patrick Koppenburg

LHCb Status

LHCB DETECTOR PERFORMANCE

Forward detector (*b*-hadrons produced forward at LHC)

- Warm dipole magnet. Polarity can be reversed.
- ✓ >99% of channels working
- Good momentum and position resolution
- Good Particle Identification

Patrick Koppenburg

↑ resonances are there →
 ECAL and Muon works well

LHCb Status

Muon

ECAL

LHCB TRIGGER

Forward detector (*b*-hadrons produced forward at LHC)

- Warm dipole magnet. Polarity can be reversed.
- ✓ >99% of channels working
- Good momentum and position resolution
- Good Particle Identification
- Versatile two stage trigger
 - Hardware-based L0 trigger: moderate p_T cuts → 1 MHz,
 - The whole data sent to $\mathcal{O}(2000)$ servers
 - 2 kHz output rate

Patrick Koppenburg

➔ fully operational. Last batch of CPUs being installed.

LHCb Status

RICH1

ΤТ

VeLo

HCAL

Muon

ECAL

Tracker

Magnet

RICH2

Instantaneous Luminosity at 3.5 TeV

LHCb Status

18 January 2010, Veldhoven [4/13]

Instantaneous Luminosity at 3.5 TeV

Integrated Luminosity at 3.5 TeV

Earlier data has less biasing trigger → better for cross sections

Patrick Koppenburg

IHCh

LHCb Status

PHYSICS

- LHCb is the forward detector at the LHC
 - Unique rapidity coverage
- *K*⁰_S cross section (PLB 693 (2010) 69-80)
- $\Lambda/\overline{\Lambda}$ and p/\overline{p}
- Open charm (see next talk)
- J/ψ
- B
- Z, W ...

This is the tracking acceptance. For composites we get even higher.

LHCb Status

18 January 2010, Veldhoven [6/13]

B Cross Section (14 NB⁻¹)

This time keep only the non-prompt part

- Start from non-prompt $D^0 o K^- \pi^+$
- Add a non-prompt muon : $B^-
 ightarrow D^0 \mu^-
 u$
- Get $b\bar{b}$ cross section from $\mathcal{B}(b{\rightarrow}D^0X) = (6.82\pm0.35)\%$
- $\sigma_{b\bar{b}} = (75.3 \pm 5.4 \pm 13.0) \ \mu b$ (in acc.) using LEP fragmentation
 - 89.6 with Tevatron fragmentation
 - $\sigma_{b\bar{b}}(4\pi) = (284 \pm 20 \pm 49) \ \mu b$

LHCb Status

Charm → See next talk

[PLB 694 (2010) 209]

Patrick Koppenburg

B Fragmentation (3 pb^{-1})

- This time separate between D_s , D^0 and D^+ (and also Λ_c)
- ➔ Get hadronisation fractions

$$rac{f_s}{f_d + f_u} = 0.130 \pm 0.004 \pm 0.013$$
 (Preliminary)

- $\bullet~\text{LEP}$: 0.129 \pm 0.012
- Tevatron: 0.18 ± 0.03 : different p_T spectrum
- → LHCb more like LEP than CDF
- This ratio is very important to normalise branching fractions, like ${\cal B}_{\rm s} \to \mu \mu$
- Other methods might be more precise, as using $B \rightarrow Dh$ decays [Fleischer et. al, 1012.2784]

CHARMLESS B DECAYS : DIRECT CPV IS SEEN!

Patrick Koppenburg LHCb Status

18 January 2010, Veldhoven [9/13]

First observations ($\mathcal{O}(30) \text{ pb}^{-1}$)

- ✓ First observation of B_s → $J/\psi f_0(980)$ ($f_0(980) \rightarrow \pi\pi$)
- ✓ First observation of $B_s \rightarrow D_{s2}^*(2573)^+ \mu^- \nu$ (first time seen in a decay)

WE SEE PENGUIN DECAYS

→ Looking for $B \rightarrow \mu \mu K^*$

• Will soon have the best measurement of the forward-backward-asymmetry

✓ And $B \to K^* \gamma$

Patrick Koppenburg

→ Waiting for $B_s \rightarrow \phi \gamma$ to constrain right-handed currents

WILL THERE THE FIRST SIGNS OF NEW PHYSICS?

- Detector works very well
- We are far above our nominal conditions, but we cope
- With 37 pb^{-1} we are already competing with the Tevatron!
 - Measured cross sections and made first observations
 - We are ready for the flagship analyses $B_s \rightarrow \mu\mu$ and $B_s \rightarrow J/\psi\phi$
 - Waiting for more luminosity : we are getting our nominal luminosity already now

We can find new physics with 2011 data!

18 January 2010, Veldhoven [13/13]

Backup

LHCb Status

18 January 2010, Veldhoven [14/13]

Beyond the B (16 pb⁻¹)

- We see forward Z (µµ and ee) and W
- → Shown in unorthodox z-φ view
 - Will measure cross section and asymmetries

Why "Only" 37 pb^{-1} ?

```
    ATLAS 45.0 of 48.2 (94%)
    CMS 43.2 of 47.0 (92%)
    LHCB 37.7 of 42.1 (90%)
```

Dipole magnet

crossing angle

- added or subtracted from external angle
- Most data taken with polarity that gives the highest angle
 → lower L

Will not be an issue any more in 2011, when we won't follow in $\ensuremath{\mathcal{L}}$

J/ψ at $\sqrt{s} = 7 \text{ TeV} (5 \text{ pb}^{-1})$

- $0.56 \cdot 10^6$ candidates in 5 pb⁻¹
- Separate prompt and non-prompt components

IHCh

Patrick Koppenburg

Events / (0.2 ps)

J/ψ at $\sqrt{s} = 7 \,\mathrm{TeV}~(5 \,\mathrm{PB}^{-1})$

- $0.56 \cdot 10^6$ candidates in 5 pb⁻¹
- Separate prompt and non-prompt components
- Get σ_{J/ψ} in bins of p_T and y for prompt and from b

$$\sigma_{b\overline{b}} = 2.95 \pm 4 \pm 48 \ \mu \mathrm{b}$$

Patrick Koppenburg

LHCb Status

18 January 2010, Veldhoven [17/13]

J/ψ at $\sqrt{s} = 7 \,\mathrm{TeV}~(5 \,\mathrm{PB}^{-1})$

- $0.56 \cdot 10^6$ candidates in 5 pb⁻¹
- Separate prompt and non-prompt components
- Get σ_{J/ψ} in bins of p_T and y for prompt and from b

 $\sigma_{b\bar{b}} = 2.95 \pm 4 \pm 48 \ \mu \mathrm{b}$

- Compare with theory
- Compare with CMS

Patrick Koppenburg

K_S^0 Cross Section at $\sqrt{s} = 900 \ { m GeV}$

- Two independent analyses (one with and one without VeLo)
 - Large overlap → no attempt to average. We take best bin of each.
- Errors:
 - 10% statistical
 - 13% luminosity
 - 10% tracking
- Data seems to favour higher p_T than MC
- ➔ First LHCb paper

 p_T spectrum in bins of y.

OSCILLATIONS

- Tagging is working
 - We see oscillations in $B_d
 ightarrow J/\psi K^*$
 - and $d
 ightarrow D^* \mu
 u$
- Retuning to $\mu\sim$ 2 ongoing.