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Abstract

This Letter reports on a first measurement of the inclusive W+jets cross section in proton-proton collisions at a centre-of-
mass energy of 7 TeV at the LHC, with the ATLAS detector. Cross sections, in both the electron and muon decay modes
of the W boson, are presented as a function of jet multiplicity and of the transverse momentum of the leading and next-
to-leading jets in the event. Measurements are also presented of the ratio of cross sections σ(W+ ≥ n)/σ(W+ ≥ n− 1)
for inclusive jet multiplicities n = 1−4. The results, based on an integrated luminosity of 1.3 pb−1, have been corrected
for all known detector effects and are quoted in a limited and well-defined range of jet and lepton kinematics. The
measured cross sections are compared to particle-level predictions based on perturbative QCD. Next-to-leading order
calculations, studied here for n ≤ 2, are found in good agreement with the data. Leading-order multiparton event
generators, normalized to the NNLO total cross section, describe the data well for all measured jet multiplicities.

1. Introduction

The study of massive vector boson (V , where V = W
or Z) production in association with one or more jets
(V +jets) is an important test of quantum chromodynam-
ics (QCD). In addition, V+jets processes are a significant
background to studies of Standard Model processes such
as tt̄ or single-top production, as well as searches for the
Higgs boson and for physics beyond the Standard Model.
Measurements of the cross section and kinematic prop-
erties of V+jets processes and comparisons to theoretical
predictions are therefore of significant interest. This Letter
reports on a first measurement at the Large Hadron Col-
lider (LHC) of the W+jets cross section in proton-proton
(pp) collisions at a centre-of-mass energy (

√
s) of 7 TeV,

in both electron and muon decay modes of the W -boson,
with the ATLAS detector. The measurement is based on
an integrated luminosity of approximately 1.3 pb−1.

The cross section measurements are presented as a func-
tion of jet multiplicity and of the transverse momentum
(pT) of the leading and next-to-leading jets in each event.
Measurements are also presented of the ratio of cross sec-
tions σ(W+ ≥ n)/σ(W+ ≥ n − 1) for inclusive jet mul-

tiplicities n = 1−4. The results have been corrected for
all known detector effects and are quoted in a limited and
well-defined range of jet and lepton kinematics, fully cov-
ered by the detector acceptance, so as to avoid model-
dependent extrapolations and to facilitate comparisons with
theoretical predictions. Previous measurements ofW+jets
production in proton-antiproton collisions at

√
s = 1.96

TeV were published by the CDF Collaboration [1]. Theo-
retical calculations at next-to-leading-order (NLO) in per-
turbative QCD (pQCD) have been computed for up to four
jets for W production [2, 3]. Comparisons are made in this
Letter with NLO pQCD calculations for n ≤ 2; higher jet
multiplicities are compared only to leading-order (LO) cal-
culations.

2. The ATLAS Detector

The ATLAS detector [4, 5] consists of an inner tracking
system (inner detector, or ID) surrounded by a thin super-
conducting solenoid providing a 2T magnetic field, electro-
magnetic and hadronic calorimeters and a muon spectrom-
eter (MS). The ID consists of pixel and silicon microstrip
(SCT) detectors, surrounded by the transition radiation
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tracker (TRT). The electromagnetic calorimeter is a lead
liquid-argon (LAr) detector. Hadron calorimetry is based
on two different detector technologies, with scintillator-
tiles or LAr as active media, and with either steel, copper,
or tungsten as the absorber material. The MS is based
on three large superconducting toroids arranged with an
eight-fold azimuthal coil symmetry around the calorime-
ters, and a system of three stations of chambers for the
trigger and for precise measurements. The nominal pp in-
teraction point at the centre of the detector is defined as
the origin of a right-handed coordinate system. The posi-
tive x-axis is defined by the direction from the interaction
point to the centre of the LHC ring, with the positive y-
axis pointing upwards, while the beam direction defines
the z-axis. The azimuthal angle φ is measured around
the beam axis and the polar angle θ is the angle from the
z-axis. The pseudorapidity is defined as η = − ln tan(θ/2).

3. Simulated Event Samples

Simulated event samples were used for most of the
background estimates, for the correction of the signal yield
for detector effects and for comparisons of the results to
theoretical expectations. The detector simulation [6] was
performed using GEANT4 [7]. The simulated event sam-
ples are summarised in Table 1. The ALPGEN samples
were generated with the MLM matching scheme [8] and
interfaced to HERWIG v6.510 [9] for parton shower and
fragmentation processes and to JIMMY v4.31 [10] for un-
derlying event simulation. Parton density functions (PDF)
were: CTEQ6L1 [11] for the ALPGEN and SHERPA sam-
ples, MRST 2007 LO∗ [12] for PYTHIA, and MSTW2008
[13] for FEWZ [14]. For the POWHEG samples, the PDF
set was CTEQ6.6M [15] for the NLO matrix element cal-
culations, while CTEQ6L1 was used for the parton show-
ering and underlying event via the POWHEG interface to
PYTHIA. The radiation of photons from charged leptons
was treated in HERWIG and PYTHIA using PHOTOS
v2.15.4 [16]. TAUOLA v1.0.2 [17] was used for tau decays.
The underlying event tune was the ATLAS MC09 tune [18]
for the ALPGEN samples, PYTHIA inclusive vector boson
production, and PYTHIA QCD samples. The POWHEG
sample used the ATLAS MC09 tune with one parame-
ter adjusted.1 The AMBT1 [19] tune was used for the
PYTHIA W+jets samples. The samples generated with
SHERPA used the default underlying event tune. Samples
were generated with minimum bias interactions overlaid on
top of the hard-scattering event in order to account for the
multiple pp interactions in the same beam crossing (pile-
up) experienced in the data. The number of minimum bias
interactions followed a Poisson distribution with a mean
of two [20]. These samples were then reweighted such that
the distribution of the number of primary vertices matched
that of the data.

1The cutoff for multiple parton interactions, PARP(82), was ad-
justed from 2.3 to 2.1 GeV, suitable for the CTEQ6L1 PDF.

4. Data and Event Selection

The data used in this analysis were collected fromMarch
to August 2010. Application of beam, detector, and data-
quality requirements resulted in a total integrated lumi-
nosity of 1.3 pb−1. The uncertainty on the luminosity
determination is estimated to be 11% [26]. Criteria for
electron and muon identification, as well as for event se-
lection, followed closely those for the W boson inclusive
cross section analysis [27].

In the electron channel, a hardware-based level-one
trigger system selected events containing one or more elec-
tron candidates, based on the presence of a cluster in the
electromagnetic calorimeter with a transverse energy (ET)
greater than 14 GeV; this is the only difference in the elec-
tron channel with respect to the W inclusive cross sec-
tion analysis, and was motivated by the fact that, for this
larger dataset, this trigger was the lowest-threshold, useful
electromagnetic trigger without any additional higher-level
trigger requirements. The impact of the trigger efficiency
was negligible for electrons with ET > 20 GeV. In the
offline analysis, electrons were required to pass the stan-
dard “tight” electron selection criteria [27] with ET > 20
GeV and |η| < 2.47; electrons in the transition region be-
tween the barrel and endcap calorimeter (1.37 < |η| <
1.52) were rejected. Events were also rejected if there was
a second electron passing the “medium” electron selection
criteria [27] and the same kinematic selections as above.

In the muon channel, the hardware-based trigger se-
lected events containing one or more muon candidates,
based on hit patterns in the MS, corresponding to pT > 10
GeV. Offline, the muons were required to be identified in
both ID and MS subsystems and to have pT > 20 GeV and
|η| < 2.4. The ID track was required to have ≥ 2 hits in
the pixel detector, ≥ 6 hits in the SCT and, for tracks
with |η| < 2.0, ≥ 1 hit in the TRT. The muon impact
parameter with respect to the primary vertex [20] was re-
quired to be < 0.1 mm and < 10 mm in the r − φ and
r − z planes, respectively. The first of these requirements
was added to further reduce non-prompt muons from de-
cays of hadrons, and muons from cosmic rays. The differ-
ence between the ID and MS pT, corrected for the mean
energy loss in upstream material, was required to satisfy
|pIDT − pMS

T | < 0.5× pIDT . Compared to the criteria used in
Ref. [27], this scaled requirement reduced the background
from decays-in-flight of hadrons and improved the signal
efficiency at high pT. As in Ref. [27], the muons were
required to be isolated, following a track-based isolation,
but the cone size was reduced from ∆R = 0.4 to ∆R = 0.2
(where ∆R =

√

(∆η)2 + (∆φ)2 of the muon) and the iso-
lation requirement was changed from ΣpIDT /pT < 0.2 to
ΣpIDT < 1.8 GeV to improve the QCD background rejec-
tion. With these optimised cuts, the QCD background was
reduced by a factor of 1.7 for the inclusive 1-jet sample.
In addition, a number of requirements were added on the
tracks inside the isolation cone: the difference between the
z position of the track extrapolated to the beam line and
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Physics process Generator σ · BR (nb)

W → ℓν inclusive (ℓ = e, µ, τ) PYTHIA 6.4.21 [21] 10.46 NNLO [14]
W+ → ℓ+ν 6.16 NNLO [14]
W− → ℓ−ν 4.30 NNLO [14]

W → ℓν + jets (ℓ = e, µ, τ) PYTHIA 6.4.21 [21]
W → ℓν + jets (ℓ = e, µ, τ , 0 ≤ Nparton ≤ 5) ALPGEN 2.13 [22]
W → ℓν + jets (ℓ = e, µ, τ , 0 ≤ Nparton ≤ 4) SHERPA 1.1.3 [23]
Z → ℓℓ + jets (mℓℓ > 40 GeV, 0 ≤ Nparton ≤ 5) ALPGEN 2.13 [22] 1.07 NNLO [14]
tt̄ POWHEG-HVQ

v1.01 patch 4 [24] 0.16 NLO+NNLL [25]
Dijet (e channel, p̂T > 15 GeV) PYTHIA 6.4.21 [21] 1.2×106 LO [21]
Dijet (µ channel, p̂T > 8 GeV, pµT > 8 GeV) PYTHIA 6.4.21 [21] 10.6×106 LO [21]

Table 1: Signal and background simulated event samples used in this analysis, including the production cross section (multiplied by the relevant
branching ratio, BR). The variable p̂T is the average pT of the two outgoing partons involved in the hard-scattering process, evaluated before
modifications from initial- and final-state radiation and from the underlying event. The W inclusive cross section is given at next-to-next-
to-leading-order (NNLO), the tt̄ cross section is given at next-to-leading-order (plus next-to-next-to-leading-log, NNLL), and the dijet cross
sections are given at leading-order (LO) in pQCD. The W+jets and Z+jets samples were normalised using the inclusive cross sections. For
PYTHIA, the inclusive W sample is based on a 2 → 1 matrix element merged with a 2 → 2 matrix element and a leading-logarithmic parton
shower; the W+jets samples are based on 2 → 2 matrix elements. Details of PDF sets, final-state photon radiation, and underlying event
tunes are given in the text.

the z coordinate of the primary vertex was required to be
< 1 cm, and the total number of hits in the pixel and SCT
detectors was required to be≥ 4. These additional require-
ments further improved the rejection of QCD background.
Events were rejected if there was a second muon passing
the same kinematic selections and isolation requirements
as above.

The calculation of missing transverse energy (Emiss
T )

and transverse mass (MT) followed the prescription in
Ref. [27]. MT was defined by the lepton and neutrino

pT as MT =
√

2pℓTp
ν
T(1− cos(φℓ − φν)), where the (x, y)

components of the neutrino momentum were inferred from
the corresponding Emiss

T components. Emiss
T was calcu-

lated from the energy deposits of calorimeter cells inside
three-dimensional clusters [28]. These clusters were then
corrected to take into account the different response to
hadrons compared to electrons or photons, as well as dead
material and out-of-cluster energy losses [29]. In the muon
channel, Emiss

T was corrected for the muon momentum.
Events were required to have Emiss

T > 25 GeV and MT >
40 GeV. After requiring ≥ 1 primary vertex with ≥ 3 asso-
ciated tracks in the event, the primary vertex was required
to be within 150 mm along the beam direction relative to
the centre of the detector. In events with multiple vertices
along the beam axis, the vertex with the largest Σp2T of
associated tracks was taken as the primary event vertex.
Starting from approximately 9.6× 106 triggered events in
each of the electron and muon channels, these selection
criteria reduced the sample to 4216 and 4911 events, re-
spectively.

Jets were reconstructed using the anti-kt algorithm [30]
with a radius parameter R = 0.4 [31]. The efficiency for
reconstructing jets was found to be approximately 98% in
simulation for jet pT of 20 GeV, rising to close to 100%

efficiency for 30 GeV jets. Jets arising from detector noise
or cosmic rays were rejected [32]. To take into account
the differences in calorimeter response to electrons and
hadrons, a pT- and η-dependent factor, derived from sim-
ulated events, was applied to each jet to provide an aver-
age energy scale correction [31] back to particle-level. Jets
were required to have |η| < 2.8 and pT > 20 GeV. All jets
within ∆R < 0.5 of an electron or muon (that passed the
lepton identification requirements) were removed, regard-
less of the jet pT or η.

Jets from pile-up interactions were removed by a cut
on the jet-vertex fraction (JV F ) which was computed for
each jet in the event. After associating tracks to jets with
a simple matching in ∆R(track, jet), requiring ∆R < 0.4,
the JV F was computed for each jet as the scalar sum
pT of all matched tracks from the primary vertex divided
by the total jet-matched track pT from all vertices. Jets
which fell outside of the fiducial tracking region (|η| < 2.5)
or which had no matching tracks were not considered for
the JV F cut. Jets for which JV F < 0.75 were rejected.
The application of the JV F cut reduced the sensitivity
of the measured jet multiplicity distribution to additional
jets from pile-up.

5. Signal and Background Yields

The major background processes in the electron chan-
nel are QCD and leptonic backgrounds. The latter con-
sist of W → τν where the tau decays to an electron,
Z → ee where one electron is not identified and hadronic
energy in the event is mismeasured, and semileptonic tt̄ de-
cays (tt̄ → bbqq′eν). The QCD background in the electron
channel has two components, one where a hadronic jet
passes the electron selection and additional energy mis-

3



measurement in the event results in large Emiss
T , and the

other where a bottom- or charm-hadron decays to an elec-
tron. For the muon channel, the main backgrounds arise
from semileptonic heavy flavour decays in multijet events
and from the leptonic background from the following sources:
W → τν where the tau decays to a muon, Z → µµ where
one muon is not identified, and semileptonic tt̄ decays in
the muon channel. The contributions of single-top and di-
boson production to the measured cross section have been
estimated to be slightly smaller than the W → τν back-
ground, and are not subtracted from the data.

The number of leptonic background events surviving
the above selection cuts was estimated with simulated event
samples: ALPGEN for vector boson samples (PYTHIA
was used for W → τν + jets) and POWHEG for tt̄ back-
ground. The simulated leptonic background samples were
normalised to the integrated luminosity of the data using
the predicted NNLO or NLO+NNLL cross sections. The
number of QCD background events was estimated by fit-
ting, in each jet multiplicity bin, the Emiss

T distribution
in the data (without the Emiss

T and MT cuts) to a sum
of two templates: one for the QCD background and an-
other which included signal and the leptonic backgrounds.
In both muon and electron channels, the shapes for the
second template were obtained from simulation. In the
electron channel, the template for the QCD background
was obtained from the data because the mechanisms by
which a jet fakes an electron are difficult to simulate. This
template was derived from a data sample where looser
electron identification criteria were applied on the shower
shapes and the track-cluster matching requirements were
inverted. The QCD background was computed from the
results of the template fit. In the electron channel, the fit
was performed in the region Emiss

T > 10 GeV due to the
poor understanding of the background below 10 GeV. The
fit to the Emiss

T distribution was used only to determine
the QCD background normalisation, taking into account
contributions from leptonic background and signal in the
low Emiss

T region. The W+jet signal yield for the cross
section calculation was derived as the difference between
the observed number of events in the signal region and
the sum of background components. Figure 1 shows the
Emiss

T distribution for events with one jet, with the fitted
contributions from all background sources in the electron
and muon channels respectively, after all the other selec-
tion requirements (except for the MT cut) have been ap-
plied. The residual difference in Emiss

T between the data
and the QCD template in the control region is covered
by the systematic uncertainties. The number of observed
events and the estimated number of background events are
summarised in Table 2.

The yield of signal events was corrected back to the par-
ticle level, taking into account detector and reconstruction
efficiency. The dominant corrections in the electron chan-
nel come from electron reconstruction efficiency (≈ 20%
correction). In the muon channel, the dominant correc-
tions come from trigger and reconstruction efficiency (cor-

rections of ≈ 10 − 20% and ≈ 10% respectively). The
corrections were computed using the ALPGEN W+jets
event generator plus full detector simulation, restricting
the events to the same phase space as the data analysis.
The phase space requirements were applied to generated
quantities. In this analysis, particle-level jets were con-
structed in simulated events by applying the jet finder to
all final state particles (excluding muons and neutrinos)
with a lifetime longer than 10 ps, whether produced di-
rectly in the pp collision or from the decay of particles
with shorter lifetimes. Correction factors were computed
as one-dimensional functions of jet multiplicity and pT of
the leading and next-to-leading jets, and were treated as
independent. Migration of events across bins of jet pT was
made small compared to the statistical uncertainty by se-
lecting the bin widths to be at least a factor of two larger
than the jet pT resolution [31]. Tests with simulated data
showed that these correction factors were sufficient to re-
cover particle-level distributions. To treat the effect of
final state QED radiation, the energy of the generated lep-
ton was defined as the energy of the lepton after radiation
plus the energy of all radiated photons within ∆R = 0.1
around the lepton.

The correction factor for the trigger efficiency was ob-
tained directly from the data as follows. In the electron
channel, events were triggered either by an independent
Emiss

T trigger or a loose electron trigger with an approx-
imately 5 GeV threshold. The full W+jets selection was
carried out in essentially the same way as described above
in order to isolate a pure electron sample. The main differ-
ence was in the QCD background estimation, which was
done with templates for the shape of the electron isola-
tion distribution, where the isolation variable was defined
as the sum of transverse energy in a cone of ∆R = 0.4
around the electron divided by the transverse energy of the
electron. These templates were obtained by inverting one
or more of the electron shower shape requirements. The
electron trigger efficiency was found to be close to 100%
in both data and simulation. In the muon channel, the
trigger efficiency was computed with a sample of unbiased
offline reconstructed muons from Z → µµ decays. Average
trigger efficiencies of 82.0± 1.4% and 86.9± 0.1% were ob-
tained in data and simulation, respectively; the difference
between data and simulation comes from a mismodelling
of both the efficiency of the forward muon chambers and
of the programming of the muon trigger electronics. The
trigger efficiency (and its uncertainty) from the data was
used for the correction factor.

6. Systematic Uncertainties

The primary sources of systematic uncertainty in the
cross section for both electron and muon channels are un-
certainties in the integrated luminosity and in the jet en-
ergy scale [31]. In the electron channel, the uncertainty
due to the QCD background shape is also important. Both
electron and muon channels are affected by uncertainties
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Figure 1: Results of fitting the signal and background templates to the Emiss
T

distribution in the electron (left) and muon (right) channels for

the 1-jet bin. In the electron channel, the fit was performed for Emiss
T

> 10 GeV. All templates were from simulated events, except for the
QCD background template in the electron channel which was obtained from the data.

in the lepton reconstruction efficiency. The luminosity un-
certainty enters primarily through the signal normalisa-
tion but also has an effect on the estimation of the lep-
tonic backgrounds; the luminosity uncertainty is therefore
larger in the muon channel.

Uncertainties in the jet energy scale (JES) and jet en-
ergy resolution (JER) were determined primarily from sim-
ulations [31]. The JES uncertainty varies as a function of
jet pT and η, and ranges from around 10% at 20 GeV to
about 8% at 100 GeV. The JER uncertainty is 14% of the
jet energy resolution. To take into account the differences
in calorimeter response to quark- and gluon-initiated jets,
an additional uncertainty of 5% was added in quadrature
to the JES uncertainty, based on the average difference in
simulation of the calorimeter response between jets in the
W+jets samples compared to those in the dijet samples
(on which the JES calibration is based). Uncertainties in
the JES due to nearby jets in W+jets events were also
studied but found to be small. To estimate the impact of
the JES uncertainty, jet energies in the simulated events
were shifted by the JES uncertainty, and the Emiss

T vec-
tor was recomputed. In addition, calorimeter clusters not
associated to a jet or electron, such as those coming from
the underlying event, were scaled using a pT-dependent
uncertainty [27], ranging from ±20% for pT ≃ 500 MeV to
±5% at high pT. Similarly the jet energies were smeared
with a Gaussian representing the JER uncertainty and the
Emiss

T vector was recomputed. The full analysis was re-
peated with these variations, and the cross sections were
recomputed; the change in the cross section was taken as
the systematic uncertainty. The impact of the JES and
Emiss

T uncertainties on the cross section uncertainty was

approximately 10%.
A significant source of uncertainty in the electron chan-

nel is the potential bias in the sample selection for building
the template shape of the QCD background; with the cur-
rent selection requirements, the contribution from semilep-
tonic heavy flavour decays is underestimated. The size of
the effect was determined with simulated events by com-
paring the background estimates from two templates: one
based on the electron selection used for this cross section
measurement and the other based on the selection used for
the QCD background estimation in the electron channel.
The resulting uncertainty on the QCD background esti-
mate, including significant contributions from the limited
statistics of the simulated event samples, was as high as
50%, but the effect on the cross section for the inclusive
1-jet bin was about 5%. The fit region for the QCD back-
ground was varied by ±5 GeV to account for shape differ-
ences in the low Emiss

T region; the resulting uncertainty on
the cross section was 1− 2%.

The uncertainty in the electron identification efficiency
was taken from the inclusive cross section measurement
[27]. By examining the reconstruction efficiency in simu-
lated events as a function of the ∆R separation between
the jet and the electron, the reconstruction efficiency was
found to be consistent with the value in Ref. [27]. Further-
more, in the region ∆R > 0.5, the efficiency was found to
be constant as a function of ∆R and as a function of jet
multiplicity. The uncertainty in the muon reconstruction
efficiency was estimated by comparing the efficiency mea-
sured with simulated events to that measured in the data
with muons from Z → µµ decays, following a method
similar to that described in Ref. [27]. The resulting uncer-
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Electron channel
process Njet ≥ 0 Njet ≥ 1 Njet ≥ 2 Njet ≥ 3 Njet ≥ 4

QCD 130 +20
−60 100 +20

−40 45 +7
−20 18 +3

−8 -
W → τν 113± 11 25± 5 4± 2 0.5± 0.4 -
Z → ee 10± 8 7± 6 3± 2 1± 1 -
tt̄ 17± 2 17± 2 17± 2 14± 2 -
Observed in Data 4216 987 276 83 -

Muon channel
process Njet ≥ 0 Njet ≥ 1 Njet ≥ 2 Njet ≥ 3 Njet ≥ 4

QCD 30± 20 20± 13 4 +10
−4 2± 2 1± 1

W → τν 133± 12 24± 6 5± 2 0.9± 0.5 0.4± 0.3
Z → µµ 170± 14 30± 4 8± 1 2± 0.5 0.6± 0.2
tt̄ 18± 2 18± 2 18± 2 16± 2 11± 1
Observed in Data 4911 1049 292 95 36

Table 2: Summary of background yields and observed number of events for the electron and muon channels with systematic uncertainties,
excluding the luminosity uncertainty. Statistical uncertainties are negligible compared to systematic uncertainties. The uncertainty in the
backgrounds due to the luminosity uncertainty is 11% for all backgrounds except for the QCD background, since it was normalised to the
data. The measurement was not performed in the inclusive 4-jet bin in the electron channel because of the poor signal-to-background ratio.

tainties in the cross section were approximately 5.5% in
both electron and muon channels.

Other uncertainties which were considered include the
trigger efficiency, jet reconstruction efficiency, lepton mo-
mentum scale and resolution, pile-up, and biases in the
procedure for correcting for detector effects (for example,
by comparing correction factors obtained with ALPGEN
to those obtained with SHERPA). Their effect on the cross
section was found to be smaller than the uncertainties de-
scribed above. For example, the uncertainty on the elec-
tron energy resolution was based on extrapolations from
test-beam measurements [27] and had a < 0.1% effect on
the cross section. All of the above systematic uncertain-
ties (except for the bias in the template shape for the QCD
background in the electron channel) were also applied to
the estimates of the QCD and leptonic backgrounds in
both electron and muon channels. In addition, for the
leptonic backgrounds the uncertainty in the NNLO cross
sections was taken to be 5% for W/Z production as in
Ref. [27]. The tt̄ cross section uncertainty was taken to be
approximately 7%, amounting to the sum in quadrature
of PDF uncertainties (3%) and uncertainties estimated
by varying renormalisation and factorisation scales (6%)
[33, 34].

The systematic uncertainties in the cross section mea-
surement are summarised in Table 3 for Njet ≥ 1; most
of the uncertainties are approximately independent of jet
multiplicity, except for the uncertainty due to the jet en-
ergy scale and resolution, and the QCD background in the
electron channel. The dominant systematic uncertainties
are shown as a function of jet multiplicity and leading jet
pT in Figure 2. Both distributions are similar for electron

and muon channels; the uncertainty is therefore shown as
a function of jet multiplicity for the electron channel and
as a function of leading jet pT for the muon channel. The
main contribution to the other uncertainties in the elec-
tron channel comes from the QCD background (especially
at high jet multiplicities), the electron identification effi-
ciency and the electron energy scale. For the muon chan-
nel, the main contribution is from the muon reconstruction
efficiency.

In the cross section ratio measurement, the uncertainty
due to the jet energy scale uncertainty remains the domi-
nant effect, amounting to approximately 10% on the ratio.
The luminosity uncertainty does not completely cancel in
the ratio because the background estimates are affected by
the luminosity uncertainty and the background levels vary
as a function of jet multiplicity.

7. Results and Conclusions

The measured W+jets cross section (multiplied by the
leptonic branching ratio) and the cross section ratios are
shown as a function of corrected jet multiplicity in Ta-
bles 4 and 5 respectively, as well as in Figures 3 and 4.
The measurement was not performed in the inclusive 4-jet
bin in the electron channel because of the poor signal-to-
background ratio. The cross sections are quoted in the lim-
ited kinematic region: Ej

T > 20 GeV, |ηj| < 2.8, Eℓ
T > 20

GeV, |ηe| < 2.47 (excluding 1.37 < |ηe| < 1.52), |ηµ| < 2.4,
pνT > 25 GeV, MT > 40 GeV, ∆Rlj > 0.5, where ℓ, j and
ν denote lepton, jet and neutrino, respectively. The quan-
tities pℓT, |ηℓ|, and MT include the energy of all radiated
photons within ∆R = 0.1 around the lepton. The W+jets

6



e channel
Cross Section

Effect Range Uncertainty (%)
Jet energy scale and Emiss

T ±10% (dependent on jet η and pT) ⊕ 5% +11, -9
Jet energy resolution 14% on each jet ±1.0
Electron trigger ±0.5% ∓0.7
Electron identification ±5.2% ∓5.5
Electron energy scale ±3% +3.9, -4.7
Pile–up removal cut 4− 7% in lowest jet pT bin ±1.9
Residual pile-up effects from simulation ±2.2
QCD background shape from template variation -1.5, +5.2
Luminosity ±11% -10, +13

µ channel
Cross Section

Effect Range Uncertainty (%)
Jet energy scale and Emiss

T ±10% (dependent on jet η and pT) ⊕ 5% +11, -9
Jet energy resolution 14% on each jet ±1.8
Muon trigger ±2.5% in barrel, ±2.0% in endcap ∓1.6
Muon reconstruction ±5.6% -5.4, +5.9
Muon momentum scale ±1% +2, -0.9
Muon momentum resolution ±5% in barrel, ±9% in endcap ±1.4
Pile–up removal cut 4− 7% in lowest jet pT bin ±1.7
Residual pile-up effects from simulation ±1.4
Luminosity ±11% -11, +13

Table 3: Summary of the systematic uncertainties in the cross section. The uncertainties are shown only for Njet ≥ 1. The sign convention
for the JES and lepton energy scale uncertainties is such that a positive change in the energy scale results in an increase in the jet or lepton
energy observed in the data.

cross section (times leptonic branching ratio) is shown as a
function of the pT of the leading and next-to-leading jets in
the event in Figure 5; the leading jet is shown for Njet ≥ 1
and the next-to-leading jet is shown for Njet ≥ 2.

Also shown in Figures 3, 4, and 5 are particle-level ex-
pectations from PYTHIA, ALPGEN and SHERPA sim-
ulations as well as a calculation using MCFM v5.8 [35].
PYTHIA is LO, while ALPGEN and SHERPAmatch higher-
multiplicity matrix elements to a leading-logarithmic par-
ton shower; these predictions have been normalised to the
NNLO inclusive W production cross section. The version
of MCFM used here provides NLO predictions at parton
level for W boson production with Njet ≤ 2; only leading-
order predictions are available for W + three jets. No
additional normalisation was applied to the MCFM pre-
dictions.

The MCFM results were obtained with the same jet
algorithm and same kinematic selection requirements as
applied to the data. Renormalisation and factorisation
scales were set to HT/2, where HT is the scalar sum of the
pT of the unclustered partons and of the lepton and neu-
trino from the W decay. The PDFs were CTEQ6L1 [11]
and CTEQ6.6M [15] for the LO and NLO calculations,
respectively. Corrections for hadronisation and underly-
ing event were computed with PYTHIA as a function of

leading and next-to-leading jet pT. Hadronisation and un-
derlying event corrections ranged from −10% to −4% and
+10% to +4%, respectively, for jet pT ≃ 20 GeV to jet
pT > 80 GeV. The partial cancellation of hadronisation
and underlying event corrections [5] results in an overall
correction of approximately 4%. The effect of final state
QED radiation from the electron or muon was computed
with PYTHIA and ALPGEN (both using PHOTOS) and
with SHERPA, comparing the acceptance before radiation
with the acceptance after radiation, but summing up the
photons within ∆R = 0.1 around the lepton. This fac-
tor (≃ 1− 2%) was applied as a correction to the MCFM
prediction.

The systematic uncertainty in the MCFM cross sec-
tions due to fragmentation was estimated by comparing
PYTHIA with HERWIG. Underlying event uncertainties
were estimated by comparing the AMBT1 [19] event gen-
erator tune with the tune from JIMMY [10] as well as by
varying the AMBT1 tune to increase the underlying event
activity by approximately 10%. Renormalisation and fac-
torisation scale uncertainties were estimated by varying
the scales, in all combinations, up and down, by factors
of two. PDF uncertainties were computed by summing in
quadrature the dependence on each of the 22 eigenvectors
characterising the CTEQ6.6 PDF set; the uncertanty in
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Figure 2: Summary of the systematic uncertainties on the cross section measurement shown as a function of jet multiplicity in the electron
channel (left) and leading-jet pT in the muon channel (right). The jet energy scale uncertainty includes the uncertainty on Emiss

T
. The

main contribution to the “sum of other uncertainties” in the electron channel comes from the QCD background (especially at high jet
multiplicities), the electron identification efficiency and the electron energy scale. For the muon channel, the main contribution is from the
muon reconstruction efficiency.
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Jet MCFM MCFM
multiplicity W → eν (nb) W → eν (nb) W → µν (nb) W → µν (nb)

≥ 0 4.53± 0.07 +0.35
−0.30

+0.58
−0.47 5.08+0.11

−0.30 4.58± 0.07 +0.38
−0.32

+0.61
−0.48 5.27+0.11

−0.32

≥ 1 0.84± 0.03+0.13
−0.10

+0.11
−0.09 0.81+0.02

−0.04 0.84± 0.03 +0.11
−0.09

+0.11
−0.09 0.84+0.02

−0.04

≥ 2 0.21± 0.01 +0.04
−0.03

+0.03
−0.02 0.21+0.01

−0.02 0.23± 0.02 +0.04
−0.03

+0.03
−0.02 0.21+0.01

−0.02

≥ 3 0.047± 0.007+0.014
−0.011

+0.008
−0.006 0.05± 0.02 0.064± 0.008 +0.016

−0.014
+0.010
−0.008 0.05± 0.02

≥ 4 - - 0.019± 0.005± 0.006 +0.004
−0.003 -

Table 4: The measured cross section times leptonic branching ratio for W+jets in the electron and muon channels as a function of corrected
jet multiplicity with (in order) statistical, systematic, and luminosity uncertainties. The cross sections are quoted in a limited and well-defined
kinematic region, described in the text. The measurement was not performed in the inclusive 4-jet bin in the electron channel because of the
poor signal-to-background ratio. Theoretical predictions from MCFM are also shown, with all uncertainties combined. MCFM provides NLO
predictions for Njet ≤ 2 and a LO prediction for Njet = 3.

Jet MCFM MCFM
multiplicity W → eν W → eν W → µν W → µν

≥ 1/ ≥ 0 0.185± 0.007+0.025
−0.019 0.159+0.006

−0.005 0.183± 0.007+0.023
−0.020 0.160+0.006

−0.005

≥ 2/ ≥ 1 0.250± 0.019+0.019
−0.010 0.255+0.017

−0.022 0.274± 0.020+0.018
−0.011 0.255+0.017

−0.021

≥ 3/ ≥ 2 0.224± 0.037± 0.022 0.241+0.108
−0.061 0.278± 0.041+0.024

−0.020 0.242+0.104
−0.061

≥ 4/ ≥ 3 - - 0.297± 0.088+0.037
−0.026 -

Table 5: The measured cross section ratio for W+jets in the electron and muon channels as a function of corrected jet multiplicity with (in
order) statistical and systematic uncertainties. The cross section ratios are quoted in a limited and well-defined kinematic region, described
in the text. The measurement was not performed in the inclusive 4-jet bin in the electron channel because of the poor signal-to-background
ratio. Theoretical predictions from MCFM are also shown, with all uncertainties combined. MCFM provides NLO predictions for Njet ≤ 2
and a LO prediction for Njet = 3.

αs was also taken into account. An alternative PDF set,
MSTW2008 [13], with its set of 68% C.L. eigenvectors was
also examined, and the envelope of the uncertainties from
CTEQ6.6 and MSTW2008 was taken as the final PDF
uncertainty. The total resulting uncertainties are given in
Tables 4 and 5.

In conclusion, this Letter presents a measurement of
the W+jets cross section as a function of jet multiplic-
ity in pp collisions at

√
s = 7 TeV in both electron and

muon decay modes of the W boson, based on an inte-
grated luminosity of 1.3 pb−1 recorded with the ATLAS
detector. Measurements are also presented of the ratio of
cross sections σ(W+ ≥ n)/σ(W+ ≥ n − 1) for inclusive
jet multiplicities n = 1 − 4, and of the pT distribution
of the leading and next-to-leading jets in the event. The
results have been corrected for all known detector effects
and are quoted in a limited and well-defined range of jet

and lepton kinematics. This range is fully covered by the
detector acceptance, so as to avoid model-dependent ex-
trapolations and to facilitate comparisons with theoretical
predictions. As expected, the PYTHIA samples consid-
ered, which contain a 2 → 1 matrix element merged with
a 2 → 2 matrix element and a leading-logarithmic parton
shower, dies not provide a good description of the data
for jet multiplicities greater than one. Good agreement is
observed with the predictions of the multi-parton matrix
element generators ALPGEN and SHERPA. Calculations
based on O(α2

s ) matrix elements in MCFM (available for
jet multiplicities n ≤ 2) are also in good agreement with
the data.
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R. Coura Torres23a, L. Courneyea169, G. Cowan76,
C. Cowden27, B.E. Cox82, K. Cranmer108,
M. Cristinziani20, G. Crosetti36a,36b, R. Crupi72a,72b,
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T. Göpfert43, C. Goeringer81, C. Gössling42,
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S. Schaetzel58b, A.C. Schaffer115, D. Schaile98,
R.D. Schamberger148, A.G. Schamov107, V. Scharf58a,
V.A. Schegelsky121, D. Scheirich87, M.I. Scherzer14,
C. Schiavi50a,50b, J. Schieck98, M. Schioppa36a,36b,
S. Schlenker29, J.L. Schlereth5, E. Schmidt48,
M.P. Schmidt175,∗, K. Schmieden20, C. Schmitt81,
M. Schmitz20, A. Schöning58b, M. Schott29,
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Z. Zenonos122a,122b, S. Zenz14, D. Zerwas115,
G. Zevi della Porta57, Z. Zhan32d, D. Zhang32b,av,
H. Zhang88, J. Zhang5, X. Zhang32d, Z. Zhang115,
L. Zhao108, T. Zhao138, Z. Zhao32b, A. Zhemchugov65,
S. Zheng32a, J. Zhong151,aw, B. Zhou87, N. Zhou163,
Y. Zhou151, C.G. Zhu32d, H. Zhu41, Y. Zhu172,
X. Zhuang98, V. Zhuravlov99, D. Zieminska61,
B. Zilka144a, R. Zimmermann20, S. Zimmermann20,
S. Zimmermann48, M. Ziolkowski141, R. Zitoun4,
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