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Abstract

We extend the results of a previous analysis of ours showing that, when both heavy

and light flavour effects are taken into account, successful minimal (type I + ther-

mal) leptogenesis with SO(10)-inspired relations is possible. Barring fine tuned

choices of the parameters, these relations enforce a hierarchical RH neutrino mass

spectrum that results into a final asymmetry dominantly produced by the next-

to-lightest RH neutrino decays (N2 dominated leptogenesis). We present the con-

straints on the whole set of low energy neutrino parameters. Allowing a small

misalignment between the Dirac basis and the charged lepton basis as in the quark

sector, the allowed regions enlarge and the lower bound on the reheating tempera-

ture gets relaxed to values as low as ∼ 1010 GeV. It is confirmed that for normal

ordering (NO) there are two allowed ranges of values for the lightest neutrino mass:

m1 ≃ (1 − 5) × 10−3 eV and m1 ≃ (0.03 − 0.1) eV. For m1 . 0.01 eV the allowed

region in the plane θ13-θ23 is approximately given by θ23 . 49◦ + 0.65 (θ13 − 5◦),

while the neutrinoless double beta decay effective neutrino mass falls in the range

mee = (1 − 3) × 10−3 eV for θ13 = (6◦ − 11.5◦). For m1 & 0.01 eV, one has quite

sharply mee ≃ m1 and an upper bound θ23 . 46◦. These constraints will be tested

by low energy neutrino experiments during next years. We also find that inverted

ordering (IO), though quite strongly constrained, is not completely ruled out. In

particular, we find approximately θ23 ≃ 43◦ +12◦ log(0.2 eV/m1), that will be fully

tested by future experiments.

http://arxiv.org/abs/1012.2343v2


1 Introduction

With the discovery of neutrino masses and mixing in neutrino oscillation experiments,

leptogenesis [1, 2] has become the most attractive model of baryogenesis to explain the

observed matter-antimatter asymmetry of the Universe. This can be expressed for exam-

ple in terms of the baryon-to-photon number ratio and is very well measured by CMB

observations [3] to be

ηCMB
B = (6.2± 0.15)× 10−10 . (1)

Leptogenesis originates from the see-saw mechanism [4] that is based on a simple extension

of the Standard Model where right-handed (RH) neutrinos with a Majorana mass matrix

M and Yukawa couplings h to leptons and Higgs are added. Within SO(10) models, three

RH neutrinos Ni (i = 1, 2, 3) are nicely predicted and for this reason they are traditionally

regarded as the most appealing theoretical framework to embed the seesaw mechanism.

However, within the simplest set of assumptions inspired by SO(10) models [5], barring

strong fine-tuned degeneracies in the RH neutrino mass spectrum and using the experi-

mental information from neutrino oscillation experiments, the traditional N1-dominated

leptogenesis scenario predicts an asymmetry that falls many orders of magnitudes below

the observed one [6, 7]. This is because, within N1-dominated leptogenesis, where the

spectrum of RH neutrinos is hierarchical and the asymmetry is produced from the decays

of the lightest ones, successful leptogenesis implies a stringent lower bound on their mass

[8], M1 > O(109)GeV. On the other hand, SO(10) grand-unified theories typically yield,

in their simplest version and for the measured values of the neutrino mixing parameters,

a hierarchical spectrum with the RH neutrino masses proportional to the squares of the

up-quark masses, leading to M1 = O(105)GeV and therefore to a final asymmetry much

below the observed one.

However, it has been shown [9] that, when the production from the next-to-lightest RH

neutrinos [10] and lepton flavour effects [11] are simultaneously taken into account [12],

the final asymmetry can be generated by the decays of the next-to-lightest RH neutrinos

and allowed regions in the low energy neutrino parameter space open up.

In this paper we proceed with the analysis of [9] and present the resulting constraints

on all low energy neutrino parameters. The paper is organized as follows. In Section 2

we discuss the current experimental status on low energy neutrino parameters, we set up

the notation and describe the general procedure to calculate the the asymmetry and find

the constraints. In Section 3 we first consider the case already studied in [9], when the

Dirac basis and the charged lepton basis coincide and then, in Section 4, we allow for

a misalignment between the two bases not larger than that one described by the CKM
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matrix in the quark sector. Finally, in Section 5 we present a global scan in the space of

parameters where all possible cases between the case of no misalignment and the case of a

misalignment at the level of the CKM matrix are taken into account. We also discuss two

scenarios, one at small m1 and one at large m1, and show how, within SO(10)-inspired

models, minimal leptogenesis could be tested in future low energy neutrino experiments.

Notice that our discussion is made within a non-supersymmetric framework. Recently

a study of SO(10)-inspired models within a supersymmetric framework has also enlight-

ened interesting potential connections with lepton flavour violating decays and Dark Mat-

ter [13]. An analysis of leptogenesis within left-right symmetric models, where a type II

seesaw contribution to the neutrino mass matrix is also present, has been performed

in [14]. Within these models, the minimal type I scenario considered here represents a

particular case recovered under specific conditions.

2 Experimental information and general setup

After spontaneous symmetry breaking, a Dirac mass term mD = h v, is generated by the

vacuum expectation value (VEV) v = 174 GeV of the Higgs boson. In the see-saw limit,

M ≫ mD, the spectrum of neutrino mass eigenstates splits in two sets: three very heavy

neutrinos, N1, N2 and N3 respectively with masses M1 ≤ M2 ≤ M3 almost coinciding

with the eigenvalues of M , and three light neutrinos with masses m1 ≤ m2 ≤ m3, the

eigenvalues of the light neutrino mass matrix given by the see-saw formula [4],

mν = −mD
1

DM

mT
D , (2)

that we wrote in a basis where the Majorana mass matrix is diagonal defining DM ≡
diag(M1,M2,M3). The symmetric light neutrino mass matrix mν is diagonalized by a

unitary matrix U ,

U † mν U
⋆ = −Dm (3)

with Dm ≡ diag(m1, m2, m3), that, in the basis where the charged lepton mass matrix is

diagonal, can be identified with the lepton mixing matrix.

Neutrino oscillation experiments measure two neutrino mass-squared differences. For

NO one has m 2
3 −m 2

2 = ∆m2
atm and m 2

2 −m 2
1 = ∆m2

sol. The two heavier neutrino masses

can therefore be expressed in terms of the lightest neutrino mass m1 as

m2 =
√

m2
1 +m2

sol , and m3 =
√

m2
1 +m2

atm , (4)

where we defined matm ≡
√
∆m2

atm +∆m2
sol = (0.050± 0.001) eV and msol ≡

√
∆m2

sol =

(0.00875±0.00012) eV [15]. Recently, a conservative upper bound on the sum of neutrino
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masses,
∑

i mi ≤ 0.58 eV (95%CL), has been obtained by the WMAP collaboration [3]

combining WMAP 7 years data plus baryon acoustic oscillations observations and the

latest HST measurement of H0. Considering that it falls in the quasi-degenerate regime,

it straightforwardly translates into

m1 < 0.19 eV (95%CL) . (5)

We will adopt the following parametrization for the matrix U in terms of the mixing

angles, the Dirac phase δ and the Majorana phases ρ and σ [16]

U =




c12 c13 s12 c13 s13 e
−i δ

−s12 c23 − c12 s23 s13 e
i δ c12 c23 − s12 s23 s13 e

i δ s23 c13

s12 s23 − c12 c23 s13 e
i δ −c12 s23 − s12 c23 s13 e

i δ c23 c13


 · diag

(
ei ρ, 1, ei σ

)

(6)

and the following 2 σ ranges for the three mixing angles [15]

θ12 = (31.3◦ − 36.3◦) , θ23 = (38.5◦ − 52.5◦) , θ13 = (0◦ − 11.5◦) . (7)

In the case of IO the expression of m2 in terms of m1 becomes

m2 =
√

m2
1 +m2

atm −m2
sol , (8)

while the expression for m3 does not change. With the adopted convention for the light

neutrino masses, m1 < m2 < m3, the case of IO corresponds to relabel the column of the

leptonic mixing matrix performing a column cyclic permutation, explicitly

U =




s13 e
−i δ c12 c13 s12 c13

s23 c13 −s12 c23 − c12 s23 s13 e
i δ c12 c23 − s12 s23 s13 e

i δ

c23 c13 s12 s23 − c12 c23 s13 e
i δ −c12 s23 − s12 c23 s13 e

i δ


 · diag

(
ei σ, ei ρ, 1

)
.

(9)

The predicted baryon-to-photon ratio ηB is related to the value of the final (B − L)

asymmetry N f
B−L by [2]

ηB ≃ 0.96× 10−2N f
B−L , (10)

where NB−L is the B − L number in a co-moving volume that contains on average one

RH neutrino Ni in thermal ultra-relativistic equilibrium abundance (T ≫ Mi).

The Dirac mass matrix can be diagonalized by a bi-unitary transformation

mD = V †
L DmD

UR , (11)
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where DmD
= diag(λ1, λ2, λ3). The matrix UR can be obtained from VL, U and mi,

considering that it provides a Takagi factorization [17] of [18, 5]

M−1 ≡ D−1
mD

VL U Dm UT V T
L D−1

mD
, (12)

explicitly

M−1 = UR D−1
M UT

R . (13)

For non degenerate Mi, the matrix UR can be determined noticing that it diagonalizes

M−1 (M−1) †, i.e.

M−1 (M−1) † = UR D−2
M U †

R . (14)

This relation determines UR unless a diagonal unitary transformation, since any ŨR =

UR D−1
φ is also a solution. However, given a ŨR, one can fix Dφ from the eq. (13),

Dφ =

√
DM Ũ †

R M−1 Ũ⋆
R (15)

and in doing so UR is unambiguously determined. Inspired by SO(10) relations, we can

parameterize the eigenvalues of mD in terms of the up quark masses as

λ1 = α1mu, λ2 = α2mc, λ3 = α3 mt . (16)

Within SO(10) models one can expect αi = O(1) and we will refer to this case. The reader

is invited to read Ref. [9] for a more comprehensive discussion about these SO(10)-inspired

relations. Notice however that our results will be valid for a much broader range of values,

since, quite importantly, it turns out that they are independent of α1 and α3 provided

M3 ≫ M2 and M1 . 109GeV. With the parametrization eq. (16) and barring very special

choices of parameters where the RH neutrino masses can become degenerate [7] 1, the RH

neutrino mass spectrum is hierarchical and of the form (for generic expressions in terms

of the low energy parameters, see Ref. [7])

M1 : M2 : M3 = (α1mu)
2 : (α2mc)

2 : (α3 mt)
2 . (17)

As we said, the values of α1 and α3 are actually irrelevant for the determination of the

final asymmetry (unless α1 is unrealistically large to push M1 from ∼ 105GeV above the

lower bound ∼ 109 GeV to achieve successful N1 leptogenesis). On the other hand, the

1As in [9], we consider only solutions where M3/M2 and M2/M1 > 10. This is clearly a conservative

condition, since the asymmetry gets enhanced when M2 ≃ M3 or M2 ≃ M1. However, in this way,

we only neglect very special points in the parameter space yielding M3/M2 and M2/M1 < 10. We will

comment again later on this point.
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value of α2 is relevant to set the scale of the mass M2 ≃ 2(α2mc)
2/m3 (valid for θ13 ≃ 0)

of the next-to-lightest RH neutrino mass, but it does not alter other quantities crucial for

thermal leptogenesis, such as the amount of wash-out from the lightest RH neutrinos.

Defining the flavoured CP asymmetries as

ε2α ≡ −Γ2α − Γ2α

Γ2 + Γ2

, (18)

these can be calculated using [19]

ε2α ≃ 3

16π(h†h)22

{
Im

[
h⋆
α2hα3(h

†h)23
] ξ(x3/x2)√

x3/x2

+
2

3(x3/x2 − 1)
Im

[
h⋆
α2hα3(h

†h)32
]
}

,

(19)

where

ξ(x) =
2

3
x

[
(1 + x) ln

(
1 + x

x

)
− 2− x

1− x

]
(20)

and Γ2α is the decay rate of the RH neutrino N2 into the flavor α with couplings given

by the Yukawa’s matrix h. We will assume an initial vanishing N2-abundance instead of

an initial thermal abundance as in [9]. In this way, a comparison of the results in the two

analyses gives a useful information about the dependence of the final asymmetry on the

initial N2 abundance when successful leptogenesis is imposed.

Let us now define the flavored decay parameters as

Kiα =
Γiα + Γiα

H(T = Mi)
=

|(mD)αi|2
m⋆Mi

, (21)

where H is the Hubble rate,

m⋆ =
16 π5/2√g∗

3
√
5

v2

MPl

≃ 1.08× 10−3 eV , (22)

g∗ is the number of the effective relativistic degrees of freedom and MPl is the Planck

mass. The total decay parameters are then just simply given by Ki =
∑

α Kiα. It is also

convenient to introduce the quantities P 0
2α = K2α/K2.

From the decay parameters one can then calculate the efficiency factors that are the

second needed ingredient, together with the CP asymmetries, for the calculation of the

final asymmetry. These can be well approximated by the following analytical expression

[20] 2

κ(K2, K2α) = κf
−(K2, K2α) + κf

+(K2, K2α) , (23)

2It is in quite a good agreement with the numerical results shown in [21]. The maximum difference is

∼ 30% at the peak for K2α ∼ 1. For K2α ≫ 1, the difference is below 10%.
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where the negative and the positive contributions are respectively approximately given

by

κf
−(K2, K2α) ≃ − 2

P 0
2α

e−
3 πK2α

8

(
e

P0
2α
2

NN2
(zeq) − 1

)
, (24)

NN2(z
eq
2 ) ≃ N(K) ≡ N(K2)(

1 +
√

N(K2)
)2 , (25)

and

κf
+(K2, K2α) ≃

2

zB(K2α)K2α

(
1− e−

K2α zB(K2α)NN2
(zeq)

2

)
, (26)

where

zB(K2α) ≃ 2 + 4K0.13
2α e

− 2.5
K2α = O(1÷ 10) . (27)

The SO(10)-inspired conditions αi = O(1), yield a RH neutrino mass spectrum with

M1 ≪ 109GeV . M2 . 1012GeV ≪ M3, though, as we already noticed, this spectrum is

obtained for a broader range of αi values. In this situation, the asymmetry is dominantly

produced from N2 decays at T ∼ M2 in a two flavour regime, i.e. when final lepton

states can be described as an incoherent mixture of a tauon component and of coherent

superposition of a an electron and a muon component. Therefore, at the freeze-out of

the N2 wash-out processes, the produced asymmetry can be calculated as the sum of two

contributions,

NT∼M2
B−L ≃ ε2τ κ(K2, K2τ ) + ε2e+µ κ(K2, K2e+µ) , (28)

where ε2e+µ stands for ε2e+µ = ε2e + ε2µ and K2e+µ = K2e +K2µ.

More precisely, notice that each flavour contribution to the asymmetry is produced

in an interval of temperatures between M2/[zB(K2α) − 2] and M2/[zB(K2α) + 2], with

α = τ, e+ µ.

At T . 109GeV the coherence of the e + µ quantum states breaks down and a three

flavour regime holds, with the lepton quantum states given by an incoherent mixture of

e, µ and τ flavours. The asymmetry has then to be calculated at the N1 wash-out stage

as a sum of three flavoured contributions.

The assumption of an initial vanishing N2-abundance allows to neglect the phantom

terms in the muon and in the electron components [22] so that the final asymmetry can

be calculated using the expression

N f
B−L ≃ P 0

2e

P 0
2e+µ

ε2e+µ κ(K2e+µ) e
− 3π

8
K1e+

P 0
2µ

P 0
2e+µ

ε2e+µ κ(K2e+µ) e
− 3π

8
K1µ+ε2τ κ(K2τ ) e

− 3π
8

K1τ .

(29)
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Notice that successful leptogenesis relies on points in the parameter space where one

out of the three K1α . 1. From this point of view the constraints on low energy neutrino

experiments that we will obtain should be quite stable against effects that could enhance

the asymmetry such as a resonant enhancement for special points where (M3−M2)/M2 ≪
1. Such effects are however still able to relax the lower bound on M2 and on the TRH,

since the K1α’s do not depend on M2.

3 The case VL = I

We start from the case VL = I that has been studied already in [9] deriving constraints in

the planem1−θ13 for NO. Here we show constraints on all low energy neutrino parameters,

including the case of IO.

3.1 Normal ordering

Let us first discuss the case of NO. In Fig. 1 we plotted the final asymmetry ηB for the

same three sets of values of the involved parameters as in the Fig. 4 of Ref. [9], where

these three choices were corresponding to three different kinds of solutions for successful

leptogenesis. This time the third solution (right panel), is suppressed and successful

leptogenesis is not attained. In [9], this was the only solution corresponding to a final

asymmetry dominantly in the muon flavour instead than in the tauon flavour (as for the

first two). The suppression that we find now is explained partly because we are adopting

a correct determination of the phases in the UR matrix (cf. eq. (15)) and partly because

we are now assuming an initial vanishing N2-abundance instead than an initial thermal

one. We will see however that, allowing for VL 6= I, this kind of solution will again yield

successful leptogenesis in some allowed regions of the parameter space, characterized in

particular by large values of m1 ∼ 0.1 eV.

The solution in the central panel is also partly suppressed and successful leptogenesis

is not attained. However, in a parameter scan, we find that this kind of solution can

still give successful leptogenesis for slightly different values of the parameters than those

indicated in the figure caption. In this case the difference with respect to the results in

[9] is explained just in terms of the different assumption on the initial abundance. This

dependence on the initial conditions is due to the fact that K2τ ∼ 1, i.e. the solution falls

in the weak wash-out regime at the production.

Finally, the first solution (left panel) is fully unchanged. It therefore exhibits a full

independence of the initial conditions and this is in agreement with the fact that it respects

8
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Figure 1: Case VL = I, NO. Plots of the relevant quantities for three choices of the involved

parameters as in Fig. 4 of Ref. [9]: θ13 = 5◦, θ23 = 40◦ θ12 = 33.5◦ in all three cases. The

values of the phases are different in the three panels (radiants): δ = σ = 0, ρ = 1.5 (left);

δ = 5.86, ρ = σ = 3 (center); δ = π/3, ρ = 0.02, σ = π/2 (right). The long-dashed red

lines correspond to α = τ , the dashed blue lines to α = µ and the short-dashed dark

yellow lines to α = e. In the bottom panels the horizontal dotted line is the 2σ lowest

value ηCMB
B = 5.9× 10−10 (cf. (1)), the solid line is ηfB while the dashed line is ηT∼M2

B .
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all the necessary conditions for the independence on the initial conditions found in [23].

Notice that these conditions also enforce an efficient wash-out of a possible pre-existing

asymmetry.

A scan in the space of parameters confirms that these three solutions obtained for

special sets of values are actually representative of the three general kinds of solutions

that come out and, therefore, the drawn conclusions apply in general.

In the panels of Figure 2 we show the results of such a scan that highlight the allowed

regions in the parameter space projected on different two-parameter planes. The scatter

plots have been obtained scanning the three mixing angles θ12, θ23 and θ13 over the 2σ

ranges eqs.(7), the three phases δ, ρ, σ over the ranges [0, 2π] and the absolute neutrino

mass scale for m1 < 1 eV. These ranges also coincide with those shown in the plots,

except for m1 where the plots are for m1 > 10−4 eV simply because no allowed solutions

have been found for lower values. The shown results have been obtained in two steps. A

first scan of O(106) points has yielded a first determination of the allowed regions. With

a second scan of additional O(5× 106) points, restricted to the excluded regions, we have

then more robustly and sharply determined the contours of the allowed regions. Notice

that these regions have no statistical significance and the random values of the parameters

have been generated uniformly.

In the top left panel the three RH neutrino masses are plotted versus m1. We have

also plotted the lower bound on the reheating temperature calculated as

Tmin
RH ≃ M2

zB(K2τ )− 2
. (30)

This calculation relies on the fact that in the case VL = I the solutions, as we commented,

always fall in a tauon N2-dominated scenario. It can be seen that the lowest bound is

given by Tmin
RH ≃ 2 × 1010GeV that in a supersymmetric version, if unchanged, would be

marginally reconcilable with the upper bound from the gravitino problem [24]. This is

another reason to extend our investigation to cases with VL 6= I in next sections.

In the top central panel we have then plotted the allowed region in the m1− θ13 plane

that can be compared with an analogous figure in [9]. Here, however, we show only those

points that respect the condition ηB > 5.9 × 10−10 but for 2 different values of α2 = 4, 5

(in [9] we were only showing points for α2 = 5). The (red) star represents a point found

for a minimum value α2 = 3.4. This point basically roughly indicates where the maximum

of the asymmetry occurs in the parameter space for a fixed value of α2. We will continue

to use this convention (yellow circles for α2 = 5, green squares for α2 = 4 and red stars

for minimum found α2 value) throughout the next figures. The structure of the allowed

region in the m1 − θ13 plane can be understood as follows. Since ε2τ ∝ (M2/M3) and

10
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Figure 2: Case VL = I, NO. Scatter plot of points in the parameter space that satisfy the

condition ηB > 5.9 × 10−9 for three values of the crucial parameter α2: α2 = 5 (yellow

circles); α2 = 4 (green circles); α2 = 3.4 (red stars). In the top left panel the lower bound

on TRH (cf. eq. (30)) is also indicated for the same values of α2 but with different symbols:

α2 = 5 (grey squares), α2 = 4 (black squares), α2 = 3.4 (blue star). The three mixing

angles are in degrees, the three phases in radiants. The dashed line in the left central

panel is the eq. (34).
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M3 ∝ m−1
1 , we immediately deduce that a large lepton asymmetry in the tau flavor may

be produced only for sufficiently large values of m1. This is rather easy to understand.

If m1 tends to zero, we go into the so-called decoupling limit, M2/M3 ≃ 0. As the CP

asymmetry needs (at least) two heavy states to be generated at the one-loop level, and

disregarding the contribution from the N1, ε2τ must vanish. The wash-out parameter K2τ

is O(25) [9] and therefore the final baryon asymmetry may be estimated to be

ηB ≃ 5× 10−3 ε2τ ≃ 5

(
α2
2m1

m3

)
· 10−10 , (31)

which requires

m1 &

(
5

α2

)2

10−3 eV , (32)

for NO. This estimate holds if the wash-out from the interaction with N1 is negligible, i.e.

K1τ
<
∼ 1. Of course, the smaller is m1, the smaller K1τ needs to be. For m1 = O (10−3)

eV, the only possibility is that K1τ is significantly below unity. Extending the analysis of

Ref. [9], one finds

s13 cos (δ − 2σ) >
m2tanθ23

3
√
2m3

≃ 0.04 . (33)

To get the feeling of the figures involved, we may set δ ≃ 2σ and find that the wash-out

mediated by the N1’s vanishes for an experimentally allowed value of the mixing between

the first and the third generation of LH neutrinos, θ13 > 2.3◦ in agreement with our

numerical results. If m1 is larger than O (10−3) eV, then K1τ = O(1) is allowed and θ13

can be taken to be vanishing. Notice also that the lower bound eq. (33) on θ13 increases

with tanθ23. This nicely reproduces the linear dependence emerging from the numerical

results in the left column middle panel for the plane θ13−θ23 and that is described, roughly

for α2 = 5 and more accurately for α2 = 4, by

θ23 ≃ 44◦ + 4 (θ13 − 7◦) , (34)

represented with a dashed line in the panel. In the top right panel we show the allowed

region in the plane m1 − θ23.

The CP non conserving terms in neutrino oscillation probabilities can be expressed in

terms of the Jarlskog invariant JCP given by [25]

JCP = Im[Uµ3 Ue2 U
⋆
µ2 U

⋆
e3] (35)

= c12 s12 c23 s23 c
2
13 s13 sin δ, (36)

such that

Pνα→νβ − Pν̄α→ν̄β = 4 JCP

∑

k>j

sαβ;kj sin

(
∆m2

kj L

2E

)
, (37)
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Figure 3: Case VL = I, NO, α2 = 4. Constraints on the mixing angles obtained without

imposing the current experimental information from neutrino oscillation experiments (blue

points) compared to those previously obtained (green points). Notice that the regions

exhibit a π periodicity and they are specular around π/2 so that all mixing angles can be

limited to the physical range [0, π/2]. This can be proven to hold on very general grounds

[25] and therefore this plot can be regarded as a consistency check as well.

where sαβ;kj = ±1. In the bottom left panel we show the allowed points in the plane

JCP − θ13. It can be noticed that a non zero value of JCP is not crucial. Looking at the

bottom-central panel, it is interesting to notice that the allowed regions for the Majorana

phases are centered approximately around σ = nπ and ρ = (n+ 1/2)π.

These play a role in the determination of the effective Majorana mass of νe in ββ0ν

decays that is given by

mee =

∣∣∣∣∣
∑

i

mi U
2
ei

∣∣∣∣∣ (38)

=
∣∣m1 c

2
12 c

2
13 e

2 i ρ +m2 s
2
12 c

2
13 +m3 s

2
13 e

2 i (σ−δ)
∣∣ . (39)

In the bottom-right panel one can see how there is a precise relation between mee and m1,

given approximately by mee ≃ m1. It can be also noticed that there is quite a strict lower

bound mee & 1.5 × 10−3 eV. Lowest values mee & 2×10−3 eV are the most favoured ones

in this case. Though current planned experiments will not be able to test the full allowed

range, it is still interesting that they will test it partially, tightening the constraints on

the other parameters as well.

We have also made an interesting exercise. We determined the constraints without

making use of any experimental information on the mixing angles and letting them just

simply variate between 0◦ and 360◦. The results are shown in Fig. 3. First, notice that the

13



lower bound on m1 relaxes of a few orders of magnitude (see left panel). Then notice quite

interestingly that small values θ13 . 10◦ are well allowed for m1 & 10−3 eV but values

30◦ & θ13 & 10◦ would have been very marginally consistent. Therefore, the current

bound θ13 . 10◦ seems to match quite well with successful SO(10)-inspired leptogenesis

On the other hand, values θ23 . 30◦ would have been more optimal for θ13 . 10◦ than

the current experimental large atmospheric values (see the central panel in the figure).

However, they are still allowed thanks to the observed range of values of the solar neutrino

mixing angle (see the right panel). For the solar neutrino mixing angle there is no real

favourite range of values for θ13 . 10◦.

3.2 Inverted ordering

Let us now discuss the results for IO. It has been shown [26] that in grand unified models

with conventional type I seesaw mechanism one can always find, for any NO model satis-

fying the low energy neutrino experimental constraints, a corresponding IO model. There-

fore, though they exhibit some unattractive features that quite strongly disfavour them

(e.g. instability under radiative corrections), IO models within grand unified theories are

not unequivocally excluded. It is therefore legitimate to check whether the requirement of

successful leptogenesis can somehow provide some completely independent information.

We repeated the same scan performed in the case of NO and the results are shown

in figure 4, the analogous of the figure 2 for the NO case. One can see that IO is only

very marginally allowed. For α2 = 5, there is only a small region at large values of

m1 = (0.02 − 0.05) eV. Extending the analysis in Ref. [9], this is explained by the fact

that the wash-out parameter K1τ turns out to be

K1τ ≃ 1

3

(m2 −m1)
2

(2m2 +m1)
· 103 eV ∝ matm , (40)

while in the NO case K1τ was proportional to msol. This constrains ε2τ ∝ m1 to be as

large as possible, thus ruling out small values of m1.

It is interesting to notice that in this case the allowed values for θ23 lie in the sec-

ond octant and correspond to the largest ones compatible with the current experimen-

tal limits. The allowed values of the effective neutrino mass fall in a narrow range,

mee = (0.05 − 0.07) eV. Therefore, IO will be in any case fully tested from cosmology

and ββ0ν experiments during next years. We will see that this conclusion will hold also

allowing VL 6= I. As usual, in the plots the red star corresponds to the minimum value

of α2 for which we have found a solution, α2 = 4.65. The corresponding set of values

indicates approximately where the asymmetry has a maximum for a fixed α2 value.
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Figure 4: Case VL = I, IO. Scatter plot of points in the parameter space that satisfy the

condition ηB > 5.9× 10−9 for α2 = 5 (yellow circles) and α2 = 4.65 (red star). In the top

left panel the lower bound on TRH (cf. eq. (30)) is also indicated for the same values of

α2 but with different symbols: α2 = 5 (grey squares), α2 = 4.65 (blue star). The three

mixing angles are in degrees, the three phases in radiant.
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Figure 5: Case VL = I, IO. Plot of all relevant quantities versus m1 for the set of values

(θ13 = 0.32◦,θ23 = 52.03◦,θ12 = 32.16◦, ρ = 3.16,σ = 3.48,δ = 2.47) corresponding to the

red star in the previous figure (α2 = 4.65).

For this choice of values, in figure 5, we show the plots of the RH neutrino masses, of

the asymmetry ηB, of the CP asymmetries ε2, ε2α, of K1, K1α and of K2, K2α versus m1.

One can see how the heaviest RH neutrino mass M3 decreases with m1 much faster and

at m1 ≃ 0.001 eV one has M3 ≃ 1017GeV. Therefore, as one can see from the central top

panel, the CP asymmetries are this time strongly suppressed at m1 ≃ 10−3 eV. On the

other hand, in the range m1 ≃ (0.02−0.05) eV the CP asymmetries are large enough that

successful leptogenesis is still possible. Notice, that this kind of solutions are a sort of

modification of the solution obtained at largem1 values for NO, simply shifted at somehow

larger values. The asymmetry is therefore strongly depending on the initial conditions

(K2τ ≃ 1). The first kind of solution, at small m1 values, is completely absent.

Therefore, though IO is strongly disfavoured, it is not completely ruled out, a conclu-

sion somehow very similar to that one obtained from completely independent arguments

[26]. In this case, however, leptogenesis provides quite a precise quantitative test.

We can conclude this section saying that these results confirm and complete those
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shown in [9]. In particular it is confirmed that there are viable solutions corresponding

to the different points shown in the figures falling in the currently experimentally allowed

ranges of the parameters,. The model is therefore not ruled out. A further step is now

to understand whether the model is predictive, excluding regions of the parameter space

that future experiments can test. From the figures, as we have discussed, it is clear

that assuming VL = I such excluded regions exist and therefore one obtains interesting

constraints. However, it is important to go beyond the simple condition VL = I in order

to test the stability of the constraints for variations of VL. This is the main objective of

the next sections.

4 The case VL = VCKM

We now study how the constraints change when a misalignment between the physical

basis where mD is diagonal and the flavour basis, where the charged lepton mass matrix is

diagonal, is considered, corresponding to VL 6= I. Since VL is unitary, we can parameterize

it similarly to the leptonic mixing matrix introducing three mixing angles, one Dirac-like

phase and two Majorana-like phases,

VL =




cL12 c
L
13 sL12 c

L
13 sL13 e

−i δL

−sL12 c
L
23 − cL12 s

L
23 s

L
13 e

i δL cL12 c
L
23 − sL12 s

L
23 s

L
13 e

i δL sL23 c
L
13

sL12 s
L
23 − cL12 c

L
23 s

L
13 e

i δL −cL12 s
L
23 − sL12 c

L
23 s

L
13 e

i δL cL23 c
L
13


·diag

(
ei ρL , 1, ei σL

)
,

(41)

where we defined sLij ≡ sin θLij and cLij ≡ cos θLij . Therefore, we have now six additional

parameters that give much more freedom. We will not explore the full parameter space

but, in the spirit of SO(10)-inspired models, we will allow only small mixing angles θLij at

the level of the mixing angles in the CKM matrix.

As a first definite example we repeat the analysis performed for the case VL = I for

a definite case where the θLij are exactly equal to the mixing angles in the CKM matrix

and therefore we set θL13 = 0.21◦, θL23 = 2.3◦, θL12 = 13◦, where the latter is the measured

value of the Cabibbo angle.

4.1 Normal ordering

For NO the results are shown in Figure 6. There is a first result to highlight: α2 values

as low as α2 = 1 are now allowed. This is an interesting result in connection with the

study of realistic SO(10) models. At the same time this result also implies slightly lower

values of M2 and consequentially of the minimum value of Treh that can be now as low as
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Figure 6: Case VL = VCKM , NO. Scatter plot of points in the parameter space that satisfy

the condition ηB > 5.9 × 10−9 for α2 = 5 (yellow circles), α2 = 4 (green squares) and

α2 = 1 (red stars). In the top-left panel, the same convention of Fig. 2 is adopted to

indicate TRH .
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≃ 1010GeV, as it can be noticed in the top-left panel in Fig. 6. In this case we have more

generally calculated the minimum reheat temperature as

Tmin
RH ≃ min

[
M2

zB(K2τ )− 2
,

M2

zB(K2e+µ)− 2

]
, (42)

considering that in the case the asymmetry at the production can be either tauon dom-

inated or e + µ dominated. This is because the third kind of solution that was highly

suppressed in the case VL = I, the right panel in Fig. 1, becomes now viable and is e+ µ

dominated, as we will discuss soon in more detail.

Notice that if we compare the allowed points for α2 = 4 with those found for VL = I,

the constraints on the low energy neutrino parameters are now less stringent. In particular

an allowed region for values m1 ≃ 0.003 eV is also found for very small values of θ13.

Indeed, in the case VL = I, and for small values of m1, the suppression of the wash

out value K1τ imposed a lower bound on θ13. By choosing VL = VCKM introduces the

possibility of getting vanishing K1τ even for zero θ13 angles. Extending the analysis of Ref.

[9], one finds indeed that one configuration where K1τ is smaller than unity is attained if

ρ = 0 (mod 2π) and cosσ = −[1/(12 θL12)] [m
4
sol/(m

3
2m3)] ∼ −(5/12)(msol/matm) ∼ −10−1.

This implies σ ≃ π/2 (mod 2π), as confirmed by our numerical results. Including in the

analysis the atmospheric neutrino mixing angle, as one can see from the panel with the

constraints in the θ13−θ23 plane, only values θ23 . 48◦ for θ13 . 10◦ are allowed for α2 . 4.

Notice that, for α2 ≤ 4, the allowed region inm1, θ13, θ23 only marginally overlaps, at small

values of θ23, with the region for the case VL = I. This means that a measurement of

these three quantities can distinguish between the two cases, VL = I and VL = VCKM ,

and not all combinations of these three quantities seem to be possible. We will be back

on this point in the next section.

In Figure 7 we plotted the relevant quantities for three particular choices of the pa-

rameters, as indicated in the figure caption, corresponding to the three kinds of solutions

found for VL = VCKM . These three sets of values correspond to the three kinds of solu-

tions that are found in the scan plots. The first two sets, corresponding to the left and

central panels, give a tauon dominated asymmetry, while the third set, corresponding to

the right panels, yields a muon dominated asymmetry. Notice that these three kinds of

solutions are the same three kinds, with slight modifications, found for the case VL = I.

However, one can see that this time the third kind of solution, where the final asymmetry

is muon dominated, also yields successful leptogenesis. The major difference that explains

this result, is that for VL = VCKM the flavoured CP asymmetries ε2α are not as hierar-

chical as in the case VL = I, as it can be clearly seen in the three panels showing the CP

asymmetries in Figure 7.
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Figure 7: Case VL = VCKM , NO. Plots of the relevant quantities for three choices of the

involved parameters. The long-dashed red lines correspond to α = τ , the dashed blue

lines to α = µ and the short-dashed dark yellow lines to α = e. Left panels: α2 = 4,

θ13 = 1.7◦, θ12 = 33.6◦, θ23 = 41.8◦, δ = 2.84, ρ =1.53 σ = 3.24, ρL = 0.12, σL = 2.56;

central panels: α2 = 5, θ13 = 3.3◦, θ12 = 35.6◦, θ23 = 40.4◦, δ = −1.06, ρ = 2.87, σ = 6.0,

ρL = 3.13, σL = 3.25; right panels: α2 = 4, θ13 = 4.7◦, θ12 = 35.9◦, θ23 = 40.3◦, δ = −1.89,

ρ = 0.065, σ = 4.85, ρL = 5.89, σL = 3.69.
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Figure 8: Case VL = VCKM , NO. Constraints on the mixing angles without making use

of the current experimental information from neutrino oscillation experiments.

We have also repeated, as for the case VL = I, the exercise to leave the mixing angles

completely free, without imposing any experimental constraint finding the results shown

in Fig. 8. One can see that in this case the points found when the current experimental

constraints are imposed (the green points) fall in more marginally allowed regions, also for

θ13. This might suggest that VL = I seems to be a more attractive case than VL = VCKM .

4.2 Inverted ordering

Finally, we also present in Figure 9 the constraints obtained for IO. Even though there is

again a remarkable suppression of the allowed regions compared to NO, they are somehow

less restrictive than for VL = I. In particular now a broader range of values for m1 is

allowed and θ23 can be as low as ≃ 45◦ for α2 ≤ 4. This is also confirmed by the fact

that lowest allowed value is now α2 = 2, much lower than in the case VL = I (it was

α2 = 4.65). However, it is still fair to say that the IO case is only marginally allowed and

certainly disfavoured compared to the NO case.

5 Global scans

The two specific cases that we discussed, VL = I and VL = VCKM , suggest an interesting

sensitivity of SO(10)-inspired leptogenesis to slight deviations of VL from the identity.

This sensitivity was absent in the results found in N1-dominated leptogenesis [5]. In this

way it seems that one could even gain some information on VL from low energy neutrino

experiments. However, there is a potentially dangerous aspect of such a sensitivity: if

for a slight variation of VL the entire space of low energy neutrino parameters becomes

21



10-3 10-2 10-1

4

6

8

10

12

14

16
10-3 10-2 10-1

4

6

8

10

12

14

16

m1 (eV)

 

 

Lo
g(

M
i /

G
eV

),
 L

og
(T

R
H
 /G

eV
)

10-3 10-2 10-1 100
0

2

4

6

8

10

10-3 10-2 10-1 100

0

2

4

6

8

10

 

 

m1 (eV)
10-3 10-2 10-1 100

40

42

44

46

48

50

52
10-3 10-2 10-1 100

40

42

44

46

48

50

52

m1 (eV)

 

 

0 1 2 3 4 5 6 7 8 9 10 11

40

42

44

46

48

50

52

0 1 2 3 4 5 6 7 8 9 10 11

40

42

44

46

48

50

52

 

 

0 1 2 3 4 5 6 7 8 9 10 11

32

34

36

0 1 2 3 4 5 6 7 8 9 10 11

32

34

36

 

 

0 2 4 6 8 10

-2

0

2

0 2 4 6 8 10

-2

0

2

 

 

13

0 2 4 6 8 10
-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20
0 2 4 6 8 10

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

 

 JCP

13

0 2 4 6
0

2

4

6

0 2 4 6

0

2

4

6

 

 

10-3 10-2 10-1 100
10-3

10-2

10-1

100
10-3 10-2 10-1 100

1E-3

0.01

0.1

1

 

 

mee

m1 (eV)

Figure 9: Case VL = VCKM , IO. Scatter plot of points in the parameter space that satisfy

the condition ηB > 5.9 × 10−9 for α2 = 5 (yellow circles), α2 = 4 (green squares) and

α2 = 2 (red star).
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accessible, then any chance to test SO(10)-inspired leptogenesis is lost. On the other

hand, from a comparison of the results obtained for the two definite cases, VL = I and

VL = VCKM , one can understand that this does not happen.

One can still suspect that for a continuous variation of the parameters in VL, such

that VL changes from VL = I to VL = VCKM , new solutions appear so that any point in

the space of the low energy neutrino parameters can be obtained for a proper choice of

VL.

In this section we study this issue. We perform a global continuous scan of the pa-

rameters for VL between VL = I and VL = VCKM . Obviously a precise limit VL = VCKM

for such a global scan is somehow arbitrary. It should be therefore taken as a working as-

sumption defining SO(10)-inspired leptogenesis, even more than the condition αi = O(1)

that, as we stressed many times, should not be regarded as a very restrictive assumption.

Clearly within well defined realistic SO(10) models, more specific conditions on VL should

be obtained. In any case one expects that if the VL satisfies the condition I ≤ VL ≤ VCKM ,

then the allowed values for the low energy parameters should fall in the allowed regions

for SO(10)-inspired leptogenesis.

Therefore, in this Section we present the constraints on the low energy neutrino pa-

rameters for a continuous variation of the values of the mixing angles θLij in the range

0 ≤ θLij ≤ θCKM
ij (i.e. for I ≤ VL ≤ VCKM). More explicitly the shown scatter plots are

obtained for the low energy neutrino parameters scanned over exactly the same ranges as

for the case VL = I. The three angles in VL are scanned over the ranges 0 ≤ θL13 ≤ 0.2◦,

0 ≤ θL13 ≤ 2.5◦, 0 ≤ θL12 ≤ 13◦, while the three phases are scanned over [0, 2π]. In order to

determine the allowed regions, we have followed the same strategy as in the case VL = I,

with a similar total number of scanned points, O(107).

5.1 Normal ordering

The results for NO are shown in figure 10. One can see how the allowed regions are

approximately given by a super-position of those found for VL = I and VL = VCKM plus

all intermediate solutions. The result is that now the correlations among the parameters

found in the two special cases seem to disappear. There are however still interesting non

trivial constraints. What clearly survives is that the allowed points still cluster within two

distinguished ranges of values for m1, one range at small values, m1 ≃ (1− 5)× 10−3 eV,

and one range at high values, m1 ≃ 0.03 − 0.1 eV, a distinction that is sharp for α2 = 4

(green squares) while it is softer for α2 = 5 (yellow circles). At the same time one can see

that a global scan actually shows a slight correlation between m1 and θ13 in the low m1

23



10-4 10-3 10-2 10-1 100

4

6

8

10

12

14

16
10-4 10-3 10-2 10-1 100

4

6

8

10

12

14

16

m1 (eV)

 

 

Lo
g(

M
i /

G
eV

),
 L

og
(T

R
H
 /G

eV
)

10-4 10-3 10-2 10-1 100
0

2

4

6

8

10

10-4 10-3 10-2 10-1 100

0

2

4

6

8

10

 

 

m1 (eV)
10-4 10-3 10-2 10-1 100

40

42

44

46

48

50

52

10-4 10-3 10-2 10-1 100

40

42

44

46

48

50

52

m1 (eV)

 

 

0 1 2 3 4 5 6 7 8 9 10 11

40

42

44

46

48

50

52

0 1 2 3 4 5 6 7 8 9 10 11

40

42

44

46

48

50

52

 

 

0 1 2 3 4 5 6 7 8 9 10 11

32

34

36

0 1 2 3 4 5 6 7 8 9 10 11

32

34

36

 

 

0 2 4 6 8 10

-2

0

2

0 2 4 6 8 10

-2

0

2

 

 

13

0 2 4 6 8 10
-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20
0 2 4 6 8 10

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

 

 JCP

13

0 2 4 6
0

2

4

6

0 2 4 6

0

2

4

6

 

 

10-4 10-3 10-2 10-1 100
10-4

10-3

10-2

10-1

100
10-4 10-3 10-2 10-1 100

10-4

10-3

10-2

10-1

100

 

 

mee

m1 (eV)

0 1 2 3 4 5 6 7 8 9 10 11
10-4

10-3

10-2

10-1

100
0 1 2 3 4 5 6 7 8 9 10 11

10-4

10-3

10-2

10-1

100

m
ee

 (
eV

)

 

 

Figure 10: Global scan, NO. Scatter plot of points in the parameter space that satisfy

successful leptogenesis (ηB > 5.9 × 10−9), for α2 = 5 (yellow circles), α2 = 4 (green

squares) and α2 = 1 (red stars).
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Figure 11: Global scan, NO, m1 < 0.01 eV. Scatter plot of points in the parameter space

that satisfy successful leptogenesis (ηB > 5.9 × 10−9), for α2 = 5 (yellow circles), α2 = 4

(green squares) and α2 = 3.7 (red stars). The region below the dashed line in the left

panel corresponds to the condition eq. (43).

range while the interesting linear dependence between θ13 and θ23 found for VL = I seems

now to be lost.

However, it should be considered that these plots are projections on two-parameters

planes of an allowed region in a seven-parameter space. Therefore, only a full multi-

parameters analysis would be able to unreveal correlations involving more than two pa-

rameters. Nevertheless, thanks to the distinct analysis that we carried out for the two

special cases VL = I and VL = VCKM , one can catch sight of an interesting correlation

among m1, θ12, θ13 and mee. To this extent, this time we have also plotted the constraints

in the plane θ13 −mee, showing how the lower bound on mee increases with θ13.

5.1.1 Low m1 range

In order to find out whether the linear dependence between θ13 and θ23 found for VL = I

(cf. eq. (34)) still holds for a global scan, we show in Fig. 11 the same constraints as in

Fig. 10 imposing the condition m1 . 0.01 eV, since the linear dependence was found in

that range of values. We only show the constraints on the relevant parameters, therefore

only those in the plane θ13 − θ23, in the plane θ12 − θ13 and in the plane θ13 −mee. This

time we could also easily find points for α2 = 3.7 (red stars), showing again how allowing

for a VL 6= I the allowed regions get larger.

One can see that the quite clear linear dependence eq. (34) between θ13 and θ23 holding

for VL = I, now turns more, for the red star points at α2 = 3.7, into an allowed region

below the dashed line showed in the figure and corresponding approximately to

θ23 . 49◦ + 0.65 (θ13 − 5◦) . (43)
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This result should be also understood in terms of the condition K1τ . 1 (cf. (33)) when

a very small VL is allowed clearly yielding a dispersion around the linear dependence

eq. (34). Notice that inside this region there are still sort of sub-regions that seem to be

excluded.

We can summarize these results saying that, at low values of m1 . 0.01 eV, there is

an interesting testable constraints in the plane θ13 − θ23 given by the relation eq. (43). In

particular experiments that are already taking data such as the nuclear reactor experiment

DOUBLE CHOOZ [27] and the long baseline experiment T2K [28] have the capability of

a 3σ discovery of values θ13 & 8◦. Our results seem to suggest that if such high θ13 values

will not be found, then a restricted range of values for θ23 is predicted. For example, if

θ13 . 8◦ then θ23 . 51◦, and if θ13 ≃ 6◦ then θ23 . 48◦. Such a constraint on θ23 should

be also tested during next years with quite a good accuracy by the T2K experiment [28].

These constraints in the plane θ13 − θ23 should be considered at this level indicative, and

should also consider that they are quite sensitive to the value of α2.

Notice that at the same time, cosmological observations and/or neutrinoless double

beta decay experiments should also be able to test the condition m1 < 0.01 eV. It should

be therefore appreciated that this scenario will be tested during next years.

It is also interesting to notice (see right panel in Fig. 11) that there is a linear depen-

dence between mee and θ13 as well. In particular, for α2 ≤ 4, at large values θ13 & 6◦

one has mee ≃ 10−3 eV and even for θ13 & 8◦ one has mee ≃ 3 × 10−3 eV. These values

for mee are below the sensitivity of future planned experiments (& 0.01 eV) such as EXO

[29]. However, at least, mee cannot be arbitrary small but has a lower bound that, for

sufficiently large θ13 values, is 3 times below the currently planned reachable experimental

sensitivity, a very small value but maybe not completely hopeless.

Within the two-parameter analysis we are presenting, we cannot draw sharper pre-

dictions but is seems quite plausible that from a more involved multi-parameter analysis

precise correlations could emerge, maybe also involving the solar neutrino angle θ12. In

this respect the central panel in figure 11 suggests that the solar mixing angle could indeed

play also a role and that maybe sharper predictions in the 3 parameter space (θ13, θ12, θ23)

exist.

5.1.2 Large m1 range

We can also study how the allowed regions would reduce requiring large values m1 >

0.01 eV. The results are shown in figure 12. One can see that in this case one obtains

very clear constraints that will allow to test this scenario during next years in a quite
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Figure 12: Global scan, NO, m1 > 0.01 eV. Scatter plot of points in the parameter space

that satisfy successful leptogenesis (ηB > 5.9 × 10−9), for α2 = 5 (yellow circles), α2 = 4

(green squares) and α2 = 1 (red stars).

unambiguous way. First of all from the Fig. 10, thanks to the very precise values of the

Majorana phases, one can notice that there is a very clear relation between m1 and mee.

Second, one can see from the left panel of Fig. 12 how there is an upper bound θ23 . 46◦

for α2 ≤ 4. For values of θ13 ≃ (5−6)◦, one has even θ23 . 41◦. It should be said however

that at these large m1 values, one typically obtains a final asymmetry that depends on the

initial conditions. Since we are assuming vanishing initial N2 abundance and vanishing

initial asymmetry, these constraints should be regarded as the most stringent ones, but

likely also the best motivated ones.

5.2 Inverted ordering

Finally, we repeated the global scan for IO as well and the results are shown in Fig. 13.

One can see how the allowed regions somehow merge those found for the two extreme

cases VL = I and VL = VCKM . There is therefore nothing really new. IO is quite strongly

constrained and it will be fully tested in next years. In particular we can notice again

how there is a clear lower bound on θ23 rather than an upper bound as in NO. More

particularly, one can notice that the allowed region in the plane m1−θ23 is approximately

described by

θ23 ≃ 43◦ + 12◦ log(0.2 eV/m1) (44)

(the dashed line in the upper right panel). It is then quite interesting that SO(10) inspired

leptogenesis is able to distinguish NO and IO even at m1 & 0.01 eV, when the same values

of mee and of
∑

i mi (the quantity tested by cosmological observations) are found both

for IO and for NO. From this point of view SO(10) inspired leptogenesis provides a way

to solve this ambiguity.
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Figure 13: Global scan, IO. Scatter plot of points in the parameter space that satisfy

successful leptogenesis (ηB > 5.9 × 10−9), for α2 = 5 (yellow circles), α2 = 4 (green

squares) and α2 = 1.5 (red stars). The dashed line is the eq. (44).
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6 Final remarks

We have derived constraints on the low energy neutrino parameters from SO(10)-inspired

leptogenesis. Our investigation shows that even minimal leptogenesis, based on a type I

seesaw mechanism and assuming a thermal production of the RH neutrinos and with a

traditional high mass scale RH neutrino spectrum, can be testable within a well motivated

framework, where the see-saw parameter space is restricted by the SO(10)-inspired con-

ditions. The role played by the N2 decays is crucial in this respect, not only in re-opening

the viability of these models. The presence in the N2-dominated regime of a double stage,

a production stage and a lightest RH neutrino wash-out stage, seems to introduce, as

shown simultaneously both by the numerical and by the analytical results, a strong di-

rect dependence on neutrino mixing angles as well, in addition to the dependence on the

absolute neutrino mass scale, already found in usual N1-dominated leptogenesis [2].

Interesting predictions, that can be tested in future years, with intriguing correlations

involving the absolute neutrino mass scale and the neutrino mixing angles emerge.

In the significant case of NO with low m1 values, the neutrinoless double beta decay

effective mass seems to be too small to be measured but not arbitrary small and in any

case future experimental results can be anyway useful to restrict the allowed regions for

the other parameters and sharpening the predictions.

The results for VL 6= I seems also to be sensitive to VL itself and they therefore suggest

that there is an opportunity to gain information on it, an interesting point within studies

of specific SO(10) models. It is quite interesting that there is an allowed region in the

parameter space that allows large values of θ13 testable with on-going reactor neutrino

experiments and that for these large values the models favours either large or small θ23

values depending whether m1 . 0.01 eV or m1 & 0.01 eV.

In the small m1 range it is also interesting that the constraints are completely inde-

pendent of any assumption on the initial conditions, a point that maybe makes this option

more attractive. It is actually quite interesting that this conclusion is also supported by

completely independent and general considerations based on the possibility to reproduce,

without a particularly fine tuned UR matrix, the observed atmospheric to solar neutrino

mass ratio, matm/msol ≃ 6, starting from hierarchical neutrino Yukawa couplings. It is

found [30] that this experimental observation is far more natural if the lightest neutrino

presents a much stronger hierarchy than the the two heavy ones, as it occurs in the region

that we have found at small m1. It should be also stressed again, that since our results

are independent of α3 and α1, as far as M3 & 1012GeV and M1 . 109GeV, they hold

even for a Yukawa couplings hierarchy milder than in the case of up quark masses. This
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can help to make even more natural to reproduce the result matm/msol ≃ 6 without a fine

tuned UR.

A more precise measurement of θ12 could also play a relevant role in testing these

models, a point that should be addressed by a more involved multi-parameter analysis.

A future accurate determination of the neutrino mixing angles will be therefore crucial

to test SO(10)-inspired leptogenesis and could even yield some interesting information

on the matrix VL. In conclusion, it seems that SO(10)-inspired leptogenesis provides an

interesting well justified example that gives some hopes about the possibility of testing

minimal leptogenesis even only with low energy neutrino experiments. It will be then

quite interesting in next years to compare the experimental results with the constraints

and the predictions from SO(10)-inspired models that we discussed.
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