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ABSTRACT 

Transverse forces acting on charged particles passing off-axis through 
resonant stn1ctures can lead to instabi 1 it ics and beam break-up in 
high-energy particle accelerators or storage rings. These forces can 
be calculated from the resonant transverse modes, which are calculated 
here for a structure consisting of periodically repeating circular
cylindrical cavities connected by concentric side tubes. Results for 
the dipole mode are presented graphically for a ,vidc variety of 
geometries, as well as Brillouin lliagrams for m=-1 and mc:.c2, 

1 • INTRODUCTION 

We investigate a perfectly conducting structure consisting of c:ircular cylindrical 

cavities of radius b and length 2g, connected by concentric tuhes of radius a, and repea

ted periodically with period 2TIR. The l!J.ong.itudinal11 i.e. axi-symmetr:ic resonances have 

been obtained previously 1) by matching the expansion coeffic:icnts of the fields in 
cylindrical subregions. The 1

1transverse11 resonances, i.e. fie:Jds ,._rith azimutha.1 dcpen<lancc, 

are complicated by the fact that they do no longer separate into the familiar TM an<l TE 

modes, but are in general 11hybr:i.d modes" for which all 6 field components are present. 

Further complications arise for the 11synchronous case11 when the phase-velocity of the tra

velling wave equals the light-velocity. 

Nevertheless, the lowest deflecting (dipole) modes in such structures have been obtai

ned in the past for the desit,in of RF particle separators 2) ' 3)_ For stab:ili ty calculations, 

however, one needs a large number of transverse resonances, and the techniques had to be 

refined in order to obtain all resonances in a given frequency :interval within reasonable 

time on a high-speed computer4). 

The results of these computations are presented in graphical forni as a function of ca-

vity dimensions for the synchronous case, and in the form-of Br:i.l:lou:in diagrams for a 

particular geometry. AA application of this program to the Stanford Linear Accelerator 

structure is discussed in another paper at this Conference. 

2. '11lE HERTZ VEC'IDRS 

Electro-magnetic resonances for a loss-less structure can be obtained by looking for 

the existence of fields in the absence of any excitation. In this case it is advantageous 

to derive the 6 electro-magnetic field components from the electric and magnetic Hertz vec

tors nE and nM, for which only the two ax:ial components are non-zero in any w1ifonn cylin

drical region. The field components can then be fow1d by pure differentiations 

E = curl curl 1 311M HE - curl C Jt·, 



Z II 0 
1 arrE curl curl HM + curl C cit- en 

\\1c divide the geometry into subregions with unifonn cross-section in the z-direction, 

one consisting of the infinite circular cylinder r <  a which can support travelling waves, 

and the others of the annular cylinders a <  r < b, -g +nnR < z < g + rnrR in which only stand

ing \,,raves are possible. Using the Floquet condition for periodic structures, we need to 

calculate the fields only in one of these annular regions if we prescribe either the 

phase-shift per period or the phase velocity of the travelling wave. 

The Hertz vectors are detennined by the wave-equation, which reduces to the Helmholtz 

equation for a single frequency w (or wave number k = !:':'.), We use cylindrical coordinates 

and expand the Hertz vectors into infinite series of product-solutions which fulfill a 

number of boundary conditions. For region I (O<r<a) we take for a given azimuthal mode

number m 

e2) 

where I are modified Besselfunctions of order m. These expressions fulfill the Floquetm 
condition if 

1<hcrc $
0 

is the phase shift per cell divided by the period (or 6
0 
=Bk for the synchronous case 

with v=Bc). The Helntl10ltz equation requires 

x2=B2-k2 
n n 

e4) 

The denominator 

nience. In region I I 

x2 I ex a) is completely arbitrary and only taken for later conven m n 

IT II 
M 

(a < r < b, -g < z < g) we take 
00 

C' R er r) s m s - yr 
s=O s Rmer sa) 

oo D' S er r) _Ls m s  
J yr s s er a) 

s=1 m s 

cos <\ (z + g) cos me 

sin "s ez + g) sin me 

es) 

where R and S are combinations of the modified Besselfunctions I and K which fulfil m m m m 
R erb) = s•erb) = 0 m m 

TIS This satisfies the boundary conditions at r = b, and we have to take a.s = Zg 

e6) 

e7) 

in order to fulfil the boundary conditions at z = ±g. The Helmholz equation is satisfied if 

f 2 =a2 - k2 es) 
s s 

The four infinite sets of expansion coefficients An' Bn, C�, D; are still completely 

free and will be detennined by field-matching at r = a. In order to obtain purely real 

equations, we take C, D equal c•, D' for even s and equal jC', jD' for odd s. 



3. FIELD MATCHING 

At the common boundary of the two regions r =a, lzl··:g the� tangcntic.11 fjcJd-cornJJO·· 

nents have to be equal. In addition, the tangential electric field components have to 

vanish at the (perfectly conducting) tube-wall r=a, g< lzl <·nR, Using the orthogonality 

of exp (- iS z) jn (-·1rR,1rR) we obtain n 

where 

is the circumference factor, 

and 
= Il1B..'l 
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Similarly, using the orthogonality of sina5 (z + g) or coscx5 (z + g) we find 

where 

R C +Q D 
s s s s 

D 
s 

00 

z I: 
n=-oo 

00 

z I: 
n=-oo 

N (I A + P B ), ns n n n n 

M B , ns n 

( <)) 

( 10) 

( 11) 

( 12) 

(13) 

(14) 

We thus have 4 infinite sets of real equations for the unknown expansion coefficients. 

We can rewrite them in matrix notation if we remember that the index n varies between -oo 

and +co, while the index s runs from O to oo (or from 1 to oo since M = 0). We thus obtain no 

( 1 S) 

where 1 stands for the unit matrix, and M, N are the transpose matrices of M and N. 

Substitution of the first into the second equation yields a single homogeneous equa

tion for the vector (g). Since some of the matrix elements diverge for xn = 0 or r
5 

• 0, 



( -C 
11'l' 1·r:in�fo11n this cqtiation into one for the vector \QC + Sil). Since it is still homogenous, 

and 
= (N O) 

K O M 

( 16) 

(17) 

The Cl[Uiltions are symmetric, and the coefficients no longer diverge for r or x vanish

ing (the latter happens when the phase-velocity equals the light velocity), 

The compLtter program "TRANSVERSE11 searches for zeros of the truncated detenninant by 

stepping up in frequency after dividing out known poles. These zeros are the resonant fre

quencies, with which we can then obtain the expansion coefficients (except for an arbitrary 

conunon factor). One can then calculate the stored energy for each resonance, and hence 

the loss-factors and the geometrical factor R/Q 

( 18) 

where V is the accelerating voltage per cell seen by a synchronous particle with v=c at r=a, 

0=0. The results of these calculations are illustrated in the figures which show the [lj-$ 

diagram for two fixed geometries, and the resonant frequencies as well as R/Q as a f,mction 

of a/b for a number of cavity and period lengths for the two lowest dipole modes. 
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Fig. Brillouin diagrams of the two lowest modes £01· m=1 and m=2 in a particular 
geometry. 
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F.i.g. Normulized frequency (llb/c (full line) and transverse R/Q (in D)(dashed line) versus 
the ratio of the tube cavity to tube diameter a/b for several values of cavity and 
period length for the f.-irst two dipol e modes (labe] 1 and 2) for the synchronous 
case (vp=c). 




