OVERVIEW OF LHCb

HERVE TERR IER (on behalf of the LHC b collaboration) Laboratoire d'Annecy-le-V ieux de Physique des Particules, 9 Chem in de Bellevue, BP 110 F, 74941 A nnecy-le-V ieux CED EX

An overview of LHC b experim ent is given, focusing on detector, trigger and expected physics perform ances. LH C b is a second generation b physics experim ent design to do precise m easurem ents of CP violation in B m eson system and to study b hadron rare decays.

1 Introduction

The LH C b experim $ent^{1,2}$ $ent^{1,2}$ $ent^{1,2}$ has been designed to study CP violation and rare phenom ena in B m eson decays w ith very high precision. T he physics goalbeing to provide an understanding of quark avor physics, and possibly to reveal physics beyond the Standard M odel. The experim ent w ill be based at CERN and w ill study the decay of b quarks from bo pairs produced in protonproton collision. It will operate at an average lum inosity of 2 10^{32} cm $^{-2}$ s 1 , much lower than the m axim um design lum inosity of the LHC, in order to have a num ber of interactions per crossing dom inated by single interaction. T his facilitates the triggering and reconstruction by assuring low channel occupancy. In addition, the radiation dam ages are m ore m anageable. To achieve its physics goals, the experim ent w ill have to perform , a high track reconstruction e ciency, a good K separation form om enta from few to 100 G eV / c, a very good propertim e resolution $(40$ fs), and, a high triggere ciency (both for nal states including leptons and for those w ith hadrons only). These needs have led to the detector design that is represented on Fig. [1](#page-1-0) and that is described in the next section.

2 LH C b detector description

LH C b detector is a single-arm spectrom eter w ith a forward angular coverage from 10 m rad to 300 (250) m rad in the bending (non-bending) plane. The choice of the geom etry has been m otivated by the fact that at high energies both the b and \overline{b} hadrons are produced at \overline{sn} all angles with respect to the beam ppe^1 . This is illustrated by Fig. [2](#page-1-1) obtained from PYTH IA

Figure 1: Side view of LHC b detector.

Figure 2 : Polar angles of the b and $\frac{1}{\mathsf{D}}$ hadrons produced in proton-proton collisions with $\frac{\mathsf{p}}{\mathsf{S}}$ = 14 TeV calculated by the PY T H IA event generator.

event generator³. Figure [1](#page-1-0) show s a side view of the detector that consists of the beam pipe, the vertex detector (VELO), the dipole m agnet, the tracking system (TT, $T1-T3$), two R ing Im aging C herenkov detectors (R IC H 1 and R IC H 2), the calorim eter system (SPD/PS, ECAL and H C A L) and the m uon system (M 1-M 5). The V E LO has to provide precise m easurem ents of track coordinates close to the interaction region in orderto get good propertim e resolution. It ism ade of circular silicon stations placed along and perpendicularly to the beam axis. W ith the excellentm om entum resolution achieved by the tracking system, the proper time of reconstructed B m esons can bem easured with a resolution of 40 fs². The tracking system is composed of the dipole m agnet w hich is a warm m agnet and has a eld integral of 4 Tm , a Trigger Tracker(TT) located in front of the m agnet entrance and three tracking station $(T1-T3)$ placed behind the m agnet. TT stations arem ade of silicon sensors and play two roles. Firstly, it will be used in the Level-1 trigger to assign transverse m om entum inform ation to large im pact param eter tracks. Secondly, it w ill be used in the \circ ine analysis to reconstruct tracks, in particular the decay products of long-lived neutral particle that decay outside the V ELO . Each T station consists ofan Inner Tracker (IT) close to the beam pipe and an O uter Tracker (O T) surrounding the IT. The IT is m ade of silicon strip detectors and the 0 T of straw tubes. Charged tracks are reconstructed w ith a high e ciency of 95% w ith a low rate of w rongly reconstructed tracks, w hich does not introduce signi cant additionnal com binatorial background in the reconstructed B m eson signals. R IC H system is com posed oftwo elem ents located in frontofT T and behind T stations. To cover the m om entum range from few to 100 G eV/c, three dierent radiators

have been chosen: silica aerogeland two uorocarbon gases, C_4F_{10} and CF_4 . In thism om entum range, the average e ciency for kaon identi cation is 88% for an average pion m isidenti cation rate of 3%. The m ain purpose of the calorim eter system is to identify electrons and hadrons and to provide m easurem ents of their energy and position. These m easurem ents are used by the trigger system and for the o-line analysis. The structure consists of four elem ents, a scintillator pad detector (SPD), a preshower (PS), an electrom agnetic calorim eter (ECAL) and an hadronic calorim eter (H C A L).T hese elem ents em ploy sim ilar technologies, i.e. scintillators coupled to wavelength-shifting bers read out by fast photodectors. The electron identication e ciency for tracks in ECAL acceptance is 94% with a pion m isidenti cation rate of 0.7%. The m uon detector is used to identify m uons for the trigger and \circ -line analysis. It consists of ve stations, M 1 in front of the calorim eter system and M 2-M 5 behind the calorim eter, interleaved w ith iron shielding plates. Each station is m ade of four layers of M ulti W ire Proportional C ham bers (M W PC) except for M 1 w hich is m ade oftwo. For tracks in m uon detector acceptance,m uon identi cation e ciency is 93% with a pion m isidenti cation rate of 1%.

3 LH C b trigger

The trigger^{[4](#page-3-3)} is one of the biggest challenge for the LHC b experiment, the bo pair creation cross section being less than 1% of the total cross section. It is designed to distinguish events containing B m esons from m inim um -bias events through the presence of particles with a large transverse m om entum (p_T) and the existence of secondary vertices. The trigger is divided in three levels : Level-0 (L0) im plem ented in custom electronics, Level-1 (L1) and H igh Level Trigger (H LT) both executed in farm processors. T he L0 trigger w illreduce the 40 M H z LH C beam crossing rate to 1 M H z. The events are triggered by requiring at least one lepton or hadron w ith a p_T exceeding 1 to 3 G eV /c. Events can also be rejected based on global event variables such as track m ultiplicities and num ber of interactions. The L1 trigger selects events w ith an output rate of 40 kH z. The L1 algorithm reconstructs tracks in the VELO and m atches these tracks to L0 m uons or calorim eter clusters to identify them and m easure their m om enta. The firinge eld of the m agnet between the VELO and TT is used to determ ine the m om enta of particles w ith a resolution of 20-40% and events are selected based on tracks w ith a large p_T and signi cant in pact param eter to the prim ary vertex. Finally the HLT will select the stored events w ith a frequency of 200 H z. T he H LT algorithm has access to alldata and starts by reconstructing the V ELO tracks and the prim ary vertex. A fast pattern recognition program links the VELO tracks to the tracking stations $T1-T3$. The nal selection of interesting events is a combination of the con muation of the L1 decision with better resolution, and selection cuts dedicated to specic nalstates. In addition to the events stored by HLT , 1.8 K H z w ill be stored to get system atics from the data (e.g. a trigger on high di-m uon m ass will be used to calibrate tracking, inclusive b ! events w ill be selected to calibrate trigger, and D events to calibrate the particle identi cation).

4 LH C b expected physics perform ances

\Toy M onte C arlo" program s have been used to estim ate the LH Cb sentivities to som e CP observables.T hese program sinclude signalresolution,eciency,purity,etc. taken from studies w ith fully-sim ulated events. N evertheless, assum ption need to be m ade concerning the properties of background events due to the lack of statistics. In the real analyses, these properties and the system atics e ects w ill be extracted from the data. H ere only statistical errors are given.

The LHC b physics program includes m any topics. For some of them , expected sensitivities corresponding to one year of data taking (integrated lum inosity of 2 fb 1) and a bb pair production cross-section assumed to be 0.5 m b w ill be given hereafter. B_a m ixing phase w ill be

m easured with B^0 ! J= K 0_s decay with a sensitivity 0.02. B 0_s m ixing phase s and decaywidth $_{s}$ = $_{s}$ will be assessed with B $_{s}^{0}$! J = decay. This channel presents several challenges. Indeed, an angular analysis is needed as J= and are vector m esons. In addition, the oscillation frequency m_s is expected to be large, requiring excellent proper-time resolution. The expected sensitivities to $_{s}$ and $_{s}$ = $_{s}$ are respectively 0.064 and 0.018. m $_{s}$ will be measured with B_s^0 ! D_s^+ decay that is avor-specic and give access to m_s through avour asymmetry analyses (see Fig. 3). The sensitivity on m s is 0.009 (0.016) for m s = 15 ps¹ (30 ps¹). M or
eover, oscillations can be observed (5) for $\,$ m $_{\rm s}$
values up to 68 ps 1 .

Figure 3: B_s^0 ! D_s $^+$ decay rate for two dierent values of m s. Only B_s^0 decays which have been tagged as not having oscillated are included. The curve show s the result of the likelihood m axim ization.

The measurement of the angle of the unitarity triangle will be done in three dierent ways. T in e-dependant decay asymmetries in B_s^0 ! $D_s K$ decays combined with s measurem ent from B_s^0 ! J= decay, will give () = 14 15 without theoretical uncertainty. T in e-dependant CP asymmetries in B $_{d}^{0}$! $^{+}$ and B $_{s}^{0}$! K $^{+}$ K decays, in combination with m easurem entwith B^0 ! J= K $_S^0$ and B_S^0 ! J= respectively, will give () = 4 6 assuming U-spin symmetry⁵. Time-integrated rates of B⁰ ! D⁰K, B⁰ ! D⁰K ⁰, and B⁰ ! D_{CP}K⁰ decays 6 , will give () = 7 $\,$ 8 $\,$. In the presence of new physics, these three dierent approaches could allow to identify it. In addition, very rare decays like B_s^0 ! \pm decay, b ! s penguin processes as B^0 ! K_s^0 , B_d^0 ! K^0 , B_d^0 ! K^0 , B_s^0 ! and B_s^0 ! decays, b ! d penguin processes with B^0 ! decay, B_c m esons and b-baryons will be studied in great detail by LHCb.

R eferences

- 1. LHCbCollaboration, A Large Hadron Collider Beauty Experim ent for Precision Measurem ents of CP-violation and Rare D ecays, LHC b Technical P roposal, CERN -LHC C / 98-4.
- 2. LHCbCollaboration, Reoptim ized LHCbDetector Design and Perform ance TechnicalDesign Report, CERN -LHCC / 2003-030.
- 3. T. S pstrand et al., C om puter P hysics C om m un, 135 (2001) 238.
- 4. LHCb Collaboration, Trigger Technical Design Report, CERN -LHCC / 2003-31.
- 5. R. Fleisher, Phys. Lett. B 459 (1999) 306.
- 6. M. G ronau and D. W yler, Phys. Lett. B 265 (1991) 172; I.Dunietz, Phys. Lett. B 270 (1991) 75.