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Abstract: We present a novel type of differential equations for on-shell loop integrals.

The equations are second-order and importantly, they reduce the loop level by one, so that

they can be solved iteratively in the loop order. We present several infinite series of integrals

satisfying such iterative differential equations. The differential operators we use are best

written using momentum twistor space. The use of the latter was advocated in recent

papers discussing loop integrals in N = 4 super Yang-Mills. One of our motivations is to

provide a tool for deriving analytical results for scattering amplitudes in this theory. We

show that the integrals needed for planar MHV amplitudes up to two loops can be thought

of as deriving from a single master topology. The master integral satisfies our differential

equations, and so do most of the reduced integrals. A consequence of the differential

equations is that the integrals we discuss are not arbitrarily complicated transcendental

functions. For two specific two-loop integrals we give the full analytic solution. The

simplicity of the integrals appearing in the scattering amplitudes in planar N = 4 super

Yang-Mills is strongly suggestive of a relation to the conjectured underlying integrability

of the theory. We expect these differential equations to be relevant for all planar MHV and

non-MHV amplitudes. We also discuss possible extensions of our method to more general

classes of integrals.
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1 Introduction

In this paper we present new differential equations for on-shell loop integrals. Our main

motivation is to develop efficient methods to determine the loop-level S-matrix in N = 4

super Yang-Mills (SYM), which is built from precisely the types of integrals we discuss

here. The planar N = 4 theory is believed to be governed by some underlying integrable

structure and hence it certainly deserves to have a beautiful and simple S-matrix. Our

differential equations can be viewed as a step towards explaining this simplicity, as they

restrict the integrals contributing to the amplitudes. Our results are at the level of specific

integrals and so can also be used for subsets of integrals appearing in less supersymmetric

theories. We also expect our method to be applicable to larger classes of integrals.

The simplicity of the loop integrals implied by the differential equations we find is

suggestive of a connection to the expected underlying integrability of planar N = 4 SYM,

and more concretely, of the underlying symmetries of its tree-level amplitudes. It was found

that the tree-level S-matrix in this theory has a hidden symmetry, dual superconformal

symmetry [1–3]. Together with the ordinary superconformal symmetry of the theory, it

leads to a Yangian symmetry [4]. At loop level, a priori the symmetries are broken.

The breaking of the bosonic part of dual superconformal symmetry is well understood

and is controlled by anomalous Ward identities [1, 5] that were initially derived for cer-

tain Wilson loops, and are conjectured to hold for the scattering amplitudes. The Ward

identities completely fix the functional form of the four-point and five-point amplitudes,

confirming the ABDK/BDS conjecture for these cases [6, 7]. Starting from six points, a

modification is required, called the remainder function [8, 9]. An alternative way of un-

derstanding the dual conformal symmetry at loop level is possible by using the massive

regulator of [10], which is inspired by the AdS/CFT correspondence [11]. This setup is

expected to make dual conformal symmetry exact, i.e. unbroken, at loop level. Given this,

it is natural to assume that the loop-level integral basis of N = 4 SYM should consist

of integrals having this exact symmetry (see [12] and references therein). Indeed, the ab-

sence of triangle sub-graphs at one loop was confirmed in [13] and further support for this

conjecture comes from [14].

A similar understanding of the full Yangian symmetry at loop level is still lacking

and subject to ongoing research [15–18]. Recently it was argued that the (unregulated)

loop integrand has the full Yangian symmetry, up to total derivatives [19] . Indeed the

integrand can be recursively constructed via a BCFW type recursion relation [19] (see

also [20]). Ignoring regularisation, this recursive construction can be written as a sequence

of Yangian invariant operations on the basic Yangian invariant functions [19] (see also [21–

24] for a discussion of Yangian invariants).

Just as the dual conformal symmetry of the integrand [25] was a hint that there is an

anomalous Ward identity [5], the existence of the Yangian invariant integrand indicates that

there should be a way to directly understand the breaking of the full symmetry. Although

we do not yet make a direct connection to the Yangian generators, we find it likely that

the underlying Yangian symmetry is related to the differential equations we find.

Further very concrete motivation for our study also comes from recent explicit results
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for the hexagonal light-like Wilson loop, which is dual to the six-gluon MHV amplitude [8, 9]

(for reviews see [26, 27] and references therein, and [28, 29] for recent developments). In [30],

a remarkably simple form of the six-point remainder function [8, 9] was given, based on

previous work [31]. Simple results are also conjectured to hold in special kinematics [32,

33]. Recently, the analytic six-point Wilson loop result of [31] could be reproduced in

a kinematical limit by an analytic calculation of the corresponding scattering amplitude,

extending previous calculations for mass-regulated amplitudes [12, 34]. Related recent

work on loop amplitudes in N = 4 SYM can be found in [35, 36]. See also [37, 38] for other

related recent developments.

The use of differential equations to evaluate loop integrals [39–41] is widespread in the

literature, for a review see chapter 7 of [42]. In this approach one considers a set of master

integrals, and an associated family of integrals is be obtained from by shrinking lines. One

differentiates the master integrals with respect to kinematical invariants or masses. The

result is in general a linear combination of several integrals. Integral reduction identities are

then applied to re-express the latter in terms of the set of master integrals. In complicated

cases this step can be non-trivial, as in general it requires the knowledge of all reduction

identities. In general one obtains a set of first-order differential equations for the master

integrals. A disadvantage is that in order to solve for a given integral, one has to deal with

all integrals of a given family. It can also happen that when computing a finite integral,

intermediate steps contain divergences that only cancel at the end, and a regulator has

to be used.

The differential equations we obtain here are quite different in nature. There are two

important differences to the method described above: Firstly, our differential equations

can be applied directly to a given integral, without having to know all integrals with fewer

propagators, or any integral reduction identities. Secondly, they are second-order equations,

and, importantly, they reduce the loop level by one. In other words, the homogeneous term

of the equations corresponds to lower-loop integrals, and the equations therefore have an

iterative structure.

While the differential equations method known in the literature can be applied in

principle to all loop integrals, the differential equations we find are specific to a certain

class of integrals. The latter constitute a subset of integrals needed for computing scattering

amplitudes in a generic theory. There is reason to believe that in the special case of N = 4

SYM, all planar loop integrals are constrained by the type of differential equations we

find here. Very concretely we observe that the one- and two-loop MHV amplitudes in

N = 4 SYM in the form given in [19], can all be expressed in terms of a single ‘master’

integral, namely

(1.1)

at one- and two-loop order, respectively. The reason is that reduced topologies, such as

box, double box or penta-box topologies, can be obtained by taking soft limits of the master
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integrals. We will give the precise definition of the integrals later. In the six-point case,

they were used recently to obtain an analytic result for the remainder function at two loops

(in a kinematical limit) by two of the present authors in [43]. This is the first time that

such an analytical result was obtained directly for the scattering amplitude, and the results

also hinted at a certain simplicity of the integrals that had to be computed. We will make

this more precise in this paper. As we will show, the integrals depicted in (1.1) satisfy

second-order differential equations that reduce their loop degree by one, namely

D(2) = (1.2)

The one-loop integrals appearing in (1.1) and on the r.h.s. of (1.2) satisfies a similar equa-

tion with simple rational functions as inhomogeneous terms. These equations imply power-

ful constraints on the functional dependence of those integrals. In the following we will give

several examples where we solve such equations and obtain analytic answers for two-loop

integrals with multiple external legs.

Iterative differential equations of the type (1.2) were previously found in [25] by two

of the present authors and Smirnov and Sokatchev for certain off-shell ladder (i.e. multiple

box) integrals, and are closely related to the equations we find here. We will review the

differential equations of [25] in section 3. The differential equations presented here can be

thought of as a generalisation of the ones used in [25] to on-shell integrals.

We find it very convenient to work with momentum twistor variables [44]. These are

well-suited to describe planar loop integrals. They solve the momentum conservation and

on-shell constraints and therefore are unconstrained variables. This makes them the natural

variables to use if one is interested in differential equations. One-loop box integrals were

discussed in momentum twistor space in [45, 46]. In the cases where infrared divergences

are present we employ the AdS-inspired mass regulator of [10]. The latter allows us to

stay in four dimensions and continue to use momentum twistors in those cases as well. For

recent references using momentum twistors and this regulator see [43, 45, 46].

The outline of the paper is as follows. In section 2, we recall the definition of momen-

tum twistor variables and the expression for the one- and two-loop MHV amplitudes in

N = 4 SYM. It is shown that at each loop level there is only one ‘master’ topology. In

section 3 we show that certain classes of integrals satisfy second-order differential equations

that reduce the loop order by one. We first review the differential equations for off-shell

integrals found in [25], and then generalise them to the on-shell case. We present two

mechanisms for finding such differential equations. We present several infinite classes of

integrals satisfying iterative differential equations. In section 4 we give an example for how

to solve the differential equations, using certain assumptions about boundary conditions.

We give explicit analytical results for several multi-leg integrals at two loops. In section 5

we conclude and comment on several possibilities of extending our method. There are

two appendices. In appendix A we discuss twistor differential operators that annihilate

– 4 –
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the integrand of the integrals appearing in the MHV amplitudes, up to anomalies. Ap-

pendix B contains the analytic formulas for the one- and two-loop penta-box integrals with

“magic” numerator.

2 Motivation: MHV amplitudes

In this section we recall how momentum twistor variables can be used to describe loop

integrals. We also recall the recently-proposed integral representation for planar two-loop

MHV amplitudes in N = 4 super Yang-Mills [19]. We show that at each loop order, all

integrals contained in the MHV amplitudes can be thought of as deriving from a single

master topology. Reduced topologies are obtained by taking soft limits. This is related to

the consistency of the loop integrand with soft limits [43].

Let us briefly recall how the momentum twistor variables are related to the standard

momentum space variables. Given the n incoming light-like momenta of a planar colour-

orderd ordered amplitude,

pαα̇
i = λα

i λ̃α̇
i , (2.1)

we define the dual coordinates in the usual manner [25, 47],

xαα̇
i − xαα̇

i+1 = pαα̇
i . (2.2)

The dual xi define a light-like polygon in the dual space. On the other hand, a point in dual

coordinate space corresponds to a (complex, projective) line in momentum twistor space.

Two dual points are light-like separated if the corresponding lines in momentum twistor

space intersect at some point in momentum twistor space. Thus the light-like polygon in

dual space corresponds to a polygon in momentum twistor space with each line intersecting

its two neighbouring lines as each dual point is light-like separated from its two neighbours.

The n momentum twistors associated to this configuration of n light-like lines are defined

via the incidence relations,

ZA
i = (λα

i , µα̇
i ), µα̇

i = xαα̇
i λiα = xαα̇

i+1λiα . (2.3)

The momentum twistor transforms linearly under the action of dual conformal symmetry, as

indicated by the fundamental sl(4) index A. Moreover the n momentum twistors describing

the polygon are free variables, in contrast to the dual points xi which obey the constraints

of light-like separation from their neighbours. The dual point xi is associated to the line

described by the pair (Zi−1Zi) or (i − 1 i) for short. The incidence relations (2.3) allow

one to express functions of the xi in terms of momentum twistors. For example we have

x2
ij =

(i 1 i j 1 j)

〈i 1 i〉〈j 1 j〉 , (2.4)

where the four-brackets and two-brackets are defined as follows,

(ijkl) = ǫABCDZA
i ZB

j ZC
k ZD

l , 〈ij〉 = λα
i λjα . (2.5)
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Figure 1. ‘Two-mass-hard’ integral in momentum space, dual space, and momentum twistor space

variables, see equations (2.6) and (2.7).

The four-brackets are obviously dual conformal invariants while the two-brackets are in-

variant under just the Lorentz and (dual) translation transformations.

We can consider integrals over the space of lines in momentum twistor space (AB).

As we have discussed, this is equivalent to an integration over points in dual space. For

example, the two-mass hard integral of figure 1 is given by

∫

d4k

iπ2

(p3 + . . . + pi−1)
2(p2 + p3)

2

k2(k + p2)2(k + p2 + p3)2(k + p2 + . . . + pi−1)2
=

∫

d4x0

iπ2

x2
3ix

2
24

x2
02x

2
03x

2
04x

2
0i

, (2.6)

where the first expression is written in momentum space and the second one in dual coor-

dinates. In twistor notation, this becomes

∫

d4ZAB

iπ2

(23 i 1 i)(1234)

(AB12)(AB23)(AB34)(AB i 1 i)
. (2.7)

The integral (2.6) as written is infrared divergent, so its proper definition should involve a

regulator. We will use the the AdS regularisation introduced in [10]. The latter allows us

to stay in four dimensions and regulates the infrared divergences by masses that in turn

are generated by a Higgs mechanism. For actual calculations we will use the regularisation

where all masses are equal. In particular this means the outermost propagators in the

planar loop integrals that we are studying are modified as follows,

1

x2
ij

−→ 1

x2
ij + m2

. (2.8)

In twistor space this has the effect that each of the propagator factors becomes

1

(AB i 1 i)
−→ 1

〈AB i 1 i〉 ≡ 1

(AB i 1 i) + m2〈AB〉〈i 1 i〉 . (2.9)

When doing this, there is a choice of adding O(m2) terms to the integrand. This is certainly

relevant if one wishes to obtain the exact m-dependence of amplitudes on the Coulomb

branch of N = 4 SYM. In the cases considered here we are mostly interested in the case

where m is small. Unless an integral diverges linearly as m → 0 one can then drop such

numerator terms. This is the case for all integrals considered here.

Let us now discuss how such integrals appear in scattering amplitudes in N = 4 SYM.

At one loop, the MHV amplitudes are usually represented (or more precisely, their parity-

even part) as a sum over so-called two-mass easy box integrals [48]. In [19], an alternative

– 6 –
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xixi

xj

xj

xj+2

xj+1

xj+1

xk
xk+1

Ipent
n;i,j,k

Ibox
n;i,j

Figure 2. Integrals contributing to the one-loop MHV amplitude. The box integrand is obtained

from the pentagon integrand by taking the soft limit pn → 0. The dashed line represents here the

numerator which is denoted by wiggly line in [19].

form was given that uses pentagon integrals with certain twistor numerators. The formula

given in [19] is a sum over the integrals shown in figure 2. Their integrand is given by

Ipent
n;i,j,k =

(i 1 i j k)(AB(j 1 j j+1) ∩ (k 1 k k+1))

(AB i 1 i)(AB j 1 j)(ABj j+1)(AB k 1 k)(ABk k+1)
. (2.10)

We use the notation I for the integrand and F for the function obtained after integra-

tion,1 i.e.

F pent
n;i,j,k =

∫

d4ZAB

iπ2
Ipent
n;i,j,k , (2.11)

where the number of points n is implicit and appears only in the condition n + 1 ≡ 1.

A comment is in order here regarding the numerator factors: In [19] both one-loop and

two-loop amplitudes are written using numerators with wiggly lines representing

(AB(i 1 i i+1) ∩ (j 1 j j+1)) := (Ai 1 i i+1)(B j 1 j j+1) − (B i 1 i i+1)(Aj 1 j j+1) .

(2.12)

The MHV amplitude is obtained by changing wiggly lines to dashed lines that stand for

(AB i j), etc. In our discussion we do not distinguish between an integral and the parity

conjugate integral because their difference is a parity odd integral which integrates to

O(m2). Therefore, in any diagram we can change all (but not just some) wiggly lines to

dashed lines and vice-versa. In the following we will not distinguish between integrals with

all dashed lines and those with all wiggly lines.

We now argue that all integrals appearing in the one-loop MHV amplitudes can be

thought of as deriving from the pentagon integral. It is clear that pentagon integrals with

lower number of legs can be obtained from a generic pentagon integral by taking soft limits.

Therefore we only have to show how to obtain the box integrals of equation (2.7). As we will

1As was mentioned before, some of the integrals are in fact infrared divergent and require a regulator.

In this section we mostly discuss properties of the (unregulated) loop integrand. It was argued in [19] that

a correct expression for the loop integrand on the Coulomb branch of N = 4 SYM [10], up to O(m2) terms,

can be obtained by adding masses to propagators on the perimeter of the diagams.

– 7 –
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Idouble−pent
n;i,j,k,ℓ Ipenta−box

n;i,j,k Idouble−box
n;i,k

xi

xixi

xi+1

xi+1xi+1

xi+2
xj

xj

xj+1xj+1

xk
xk

xk

xk+1 xk+1

xk+1

xk+2 xk+2
xℓ

xℓ+1

Figure 3. Integrals contributing to the two-loop MHV amplitude. The integrands of the double

box and penta-box integrals are obtained from the double pentagon integrals by taking the soft

limits. The dashed line have again the same meaning as in 1-loop case.

see presently, they are also obtained by taking soft limits. Indeed, consider the pentagon

integral of figure 2 with k = j +2, so that only one external leg enters its rightmost corner.

The soft limit of pj+1 → 0 corresponds to letting

Zj+1 → αZj + βZj+2 . (2.13)

Applying this limit to the integrand of the pentagon integral given in (2.10), we find

lim
pj+1→0

Ipent
n;i,j,j+2 → Ibox

n−1;i,j , (2.14)

one reproduces exactly the integrand of the “two-mass hard” box. In this sense we can say

that the one-loop MHV amplitude is built from a single master integral. We will show in

section 3 that the latter satisfies a differential equation.

The situation is almost identical at the two-loop level. The expression given in [19]

involves only the integrals shown in Fig 3. Recall that we denote the integrand of loop

integrals by I and the functions obtained after integration by F . For example, the first

integral shown in figure 3 has the following definition,

Idouble−pent
n;i,j,k,ℓ =

N

(ABCD)

(CD(i 1 i i+1) ∩ (j 1 j j+1))

(CD i 1 i)(CD i i+1)(CD j 1 j)(CD j j+1)
×

× (AB(k 1 k k+1) ∩ (ℓ 1 ℓ ℓ+1))

(AB k 1 k)(AB k k+1)(AB ℓ 1 ℓ)(AB ℓ ℓ+1)
, (2.15)

with the normalisation N = (i j k ℓ) and

F double−pent
n;i,j,k,ℓ =

∫

d4ZAB

iπ2

d4ZCD

iπ2
Idouble−pent
n;i,j,k,ℓ , (2.16)

where the number of points n is implicit and appears only in the condition n + 1 ≡ 1.

The double pentagon integrals defined in (2.16) are in fact infrared finite [19]. Some of the

pentagon and all of the box integrals we consider are infrared divergent and their definition

is understood with the mass regulator in place, which leads to the modifications discussed

above. From the one-loop case it is clear that the penta-box and double box integrals

shown in figure 3 can be obtained from the double pentagon integral by taking subsequent

soft limits.

– 8 –
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. . .xi

xj

xk

xl

Figure 4. Ladder integrals defined in equations (3.1) and (3.11).

So, in summary, at each loop level the integrals appearing in the MHV amplitudes can

be thought of as deriving from a single master topology. We will show in section 3 that

the latter integral satisfies a second-order differential equation that reduces its loop order

by one.

The relationship between the master integrals and the reduced integrals works at the

level of the integrand. When the integration is taken into account, in some cases infrared

divergences can lead to a non-commutativity of the soft limit and the regulator limit. We

adopt the point of view that in those cases the relation to the master integral still implies a

certain simplicity of the reduced integral. We show this explicitly for IR-divergent penta-

box integrals in section 3, which satisfy the same type of differential equations.

Let us briefly discuss how many functionally different integrals of this class exist. The

most general double pentagon integral of the type shown in figure 3 is the one where four

of its external legs are doubled (when more legs are added, the function does not change).

This is possible for the first time at n = 12, e.g. F double−pent
12;1,4,7,10 . In general, we can consider all

integrals F double−pent
n;i,j,k,ℓ with zero, one, or two momenta flowing into these corners. Because

of the symmetries of the pentagon, there are 18 different possibilities. However, because of

the finiteness of the double pentagon integrals, all of them can be obtained from the most

general case F double−pent
12;1,4,7,10 by taking soft limits. Finally, there are 12 penta-box integrals

F penta−box
n;i,j,k and 6 double box integrals of the type F double−box

n;i,k . The latter are all infrared

divergent and therefore depend on the regulator m2.

3 Differential equations for loop integrals

3.1 Finite integrals

3.1.1 Ladders

The ladders (or scalar boxes) provide a first example of a class of integrals which satisfy the

type of differential equations we are interested in. To understand the differential equations

for the ladder integrals it is convenient to use the dual coordinate notation. For the integrals

appearing in the two-loop amplitude discussed in section 2 we will pass to the momentum

twistor notation. We will begin with the one-loop box as an example, using dual variables

to express the momenta,

F̃ (1)(xi, xj , xk, xl) =

∫

d4xr

iπ2

1

x2
irx

2
jrx

2
krx

2
lr

. (3.1)

– 9 –
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Note that the points xi, xj , xk, xl are generic points without any light-like separations. The

L-loop version of this diagram is shown in figure 4. Since the integral (3.1) is covariant

under conformal transformations of the x coordinates, it can be expressed in terms of a

function of the two available cross-ratios,

u =
x2

ijx
2
kl

x2
ikx

2
jl

, v =
x2

ilx
2
jk

x2
ikx

2
jl

. (3.2)

Thus we have

F̃ (1)(xi, xj , xk, xl) =
Φ(1)(u, v)

x2
ikx

2
jl

, (3.3)

where the function Φ(1)(u, v) is known [47, 49, 50]. In fact the function is best expressed

in terms of the variables z and z̄ defined by2

u =
zz̄

(1 − z)(1 − z̄)
, v =

1

(1 − z)(1 − z̄)
. (3.4)

Explicitly it is given by

Φ(1)(u, v) =
f (1)(z, z̄)

z − z̄
, f (1)(z, z̄) = log(zz̄)

(

Li1(z)−Li1(z̄)
)

−2
(

Li2(z)−Li2(z̄)
)

. (3.5)

The integral F̃ (1) satisfies a simple second order differential equation. The reason for this

is that acting with the Laplace operator on one of the external points, xi say, produces a

delta function under the integral [25],

�i
1

x2
ir

= −4iπ2δ(4)(xi − xr) . (3.6)

This has the effect of localising the integral completely, giving a simple second-

order equation,

�iF̃
(1)(xi, xj , xk, xl) =

−4

x2
ijx

2
ikx

2
il

. (3.7)

On the other hand [25], acting on the form of F̃ (1) given in (3.3) one obtains

�iF̃
(1)(xi, xj , xk, xl) =

x2
jkx

2
kl

x6
ikx

4
jl

∆u,vΦ
(1)(u, v) (3.8)

where ∆u,v is a second-order differential operator,

∆u,v = u∂2
u + v∂2

v + (u + v − 1)∂u∂v + 2∂u + 2∂v . (3.9)

The equality of the two expressions (3.7) and (3.8) is a second order differential equation

for the function Φ(1) or equivalently f (1). Expressing the equation in terms of z and z̄

it reads,

z∂z z̄∂z̄f
(1)(z, z̄) =

z

z − 1
− z̄

z̄ − 1
. (3.10)

2Note that z and z̄ are real and independent in Minkowski signature whereas they are complex conjugate

to each other in Euclidean signature.
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The main points we wish to stress are that the action of the operator removes the loop

integration, leaving a rational function behind. The existence of a simple equation also

means that the underlying function is a relatively simple pure transcendental function of

degree two.

The one-loop integral we have been discussing is just the first in an infinite sequence

of ladder integrals. These integrals (along with a large class of equivalent integrals [25])

exhibit an iterative structure,

F̃ (L)(xi, xj , xk, xl) =

∫

d4xr

iπ2

x2
jl

x2
irx

2
jrx

2
lr

F̃ (L−1)(xr, xj, xk, xl) . (3.11)

As before the integrals are invariant under conformal transformations of the xi and so are

given in terms of functions of the the two cross-ratios,

F̃ (L)(xi, xj , xk, xl) =
Φ(L)(u, v)

x2
ikx

2
jl

. (3.12)

As before the function Φ(n) is best expressed in terms of the variables z and z̄,

Φ(L)(u, v) =
f (L)(z, z̄)

z − z̄
, (3.13)

where

f (L)(z, z̄) =

L
∑

r=0

(−1)r+L(2L − r)!

r!(L − r)!L!
logr(zz̄)

(

Li2L−r(z) − Li2L−r(z̄)
)

. (3.14)

The fact that the one-loop box satisfies a differential equation guarantees that all the

ladder integrals do. One can see that Laplace operator �i is effectively acting only on a

one-loop box subintegral which we have already seen reduces to a rational function. Thus

the operation reduces the loop order of the ladder integral,

�iF̃
(L)(xi, xj , xk, xl) = −4

x2
jl

x2
ijx

2
il

F̃ (L−1)(xi, xj , xk, xl) . (3.15)

The functions appearing in the explicit expressions exhibit corresponding

differential equations

z∂z z̄∂z̄f
(L)(z, z̄) = f (L−1)(z, z̄) . (3.16)

3.1.2 Pentaladders

The integrals involving twistor numerators can also satisfy differential equations. We will

begin with integrals which are similar to the ladders of the previous section. We would like

to consider the finite pentaladder integrals, beginning with one of the one-loop pentagon

integrals discussed in section 2. We will write in dual coordinate notation to begin with

and later move to the momentum twistor notation. The integral we would like to consider

is the seven-point one-loop pentagon integral, which is shown for arbitrary number of loops

in figure 5(a),

F̃
(1)
pl (x1, x3, x4, x5, x6) =

∫

d4xr

iπ2

x2
ar

x2
1rx

2
3rx

2
4rx

2
5rx

2
6r

. (3.17)
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. . .x1

x3 x4

x5x6

(a)

. . .x1

x3 x4

x6x7

(b)

Figure 5. figure (a) represents the seven-point integrals defined in (3.17) and (3.24), and (b) shows

the eight-point integrals defined in (3.28) and (3.32).

Note that we have not normalised the integral so (3.17) is dimensionful. The point xa

is the magic complex point which is null-separated from every point on the null lines

(x3, x4), (x4, x5) and (x5, x6). It is one of the solutions to

x2
a3 = x2

a4 = x2
a5 = x2

a6 = 0 . (3.18)

The other solution is its parity conjugate.

Just like the ladder integrals, the pentagon we are considering is conformally covariant

so we can write it in the following way

F̃
(1)
pl (x1, x3, x4, x5, x6) =

x2
1a

x2
14x

2
15x

2
36

Ψ(1)(u, v)

(1 − u − v)
, (3.19)

where u and v are the two non-vanishing conformal cross-ratios,

u =
x2

13x
2
46

x2
14x

2
36

, v =
x2

16x
2
35

x2
15x

2
36

. (3.20)

We have chosen to make a factor of 1/(1 − u − v) explicit on the r.h.s. of (3.19) for later

convenience.

In terms of the quantities introduced in section 2 we have

x2
14x

2
15x

2
36F̃

(1)
pl (x1, x3, x4, x5, x6) = Ψ(1)(u, v) = F pent

7;1,3,5 (3.21)

The integral satisfies a differential equation very similar to the equation for the lad-

der integrals,

�1F̃
(1)
pl = −4

x2
1a

x2
13x

2
14x

2
15x

2
16

. (3.22)

This equation translates into a second order p.d.e. for the function Ψ(1),

uv∂u∂vΨ
(1)(u, v) = 1 . (3.23)

Just as for the ladders we can define multi-loop pentaladder integrals via an iterative

structure. For example we can consider the integrals, see figure 5(a),

F̃
(L)
pl (x1, x3, x4, x5, x6) =

∫

d4xr

iπ2

x2
36

x2
1rx

2
3rx

2
6r

F̃
(L−1)
pl (xr, x3, x4, x5, x6) . (3.24)
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Equivalently we can write them using the ladder integrals,

F̃
(L)
pl (x1, x3, x4, x5, x6) =

∫

d4xr

iπ2

x2
arx

2
36

x2
3rx

2
4rx

2
5rx

2
6r

F̃ (L−1)(x1, x3, xr, x6) . (3.25)

As before, we will use conformal symmetry in the x variables to write the integral in

the form

F̃
(L)
pl (x1, x3, x4, x5, x6) =

x2
1a

x2
14x

2
15x

2
36

Ψ(L)(u, v)

(1 − u − v)
. (3.26)

Now applying the Laplace operator gives the following differential equation for Ψ(L),

(1 − u − v)uv∂u∂vΨ
(L)(u, v) = Ψ(L−1)(u, v) , (3.27)

where we define Ψ(0)(u, v) ≡ 1 − u − v.

We can also consider pentaladder integrals with a massive corner on the pentagon

subintegral, see figure 5(b). At one loop the integral takes the form

F̃
(1)
pl (x1, x3, x4, x6, x7) =

∫

d4xr

iπ2

x2
ar

x2
1rx

2
3rx

2
4rx

2
6rx

2
7r

. (3.28)

Here the point xa is light-like separated from x3, x4, x6, x7. It is convenient to write this

integral as

F̃
(1)
pl (x1, x3, x4, x6, x7) =

x2
1a

x2
14x

2
16x

2
37

Ψ̃(1)(u, v,w)

(1 − u − v + uvw)
, (3.29)

where the three cross-ratios are

u =
x2

13x
2
47

x2
14x

2
37

, v =
x2

17x
2
36

x2
16x

2
37

, w =
x2

37x
2
46

x2
36x

2
47

. (3.30)

We remark that the function Ψ(1)(u, v) discussed before can be obtained from Ψ̃(1)(u, v,w)

by taking the (smooth) soft limit w → 0.

Following the same logic as before we obtain the equation

u∂uv∂vΨ̃
(1)(u, v,w) = 1 . (3.31)

A similar analysis holds for the L-loop case defined by

F̃
(L)
pl (x1, x3, x4, x6, x7) =

∫

d4xr

iπ2

x2
arx

2
37

x2
3rx

2
4rx

2
6rx

2
7r

F̃ (L−1)(x1, x3, xr, x7) . (3.32)

Writing the integral as a function of the cross-ratios,

F̃
(L)
pl (x1, x3, x4, x6, x7) =

x2
1a

x2
14x

2
16x

2
37

Ψ̃(L)(u, v,w)

(1 − u − v + uvw)
, (3.33)

we find the differential equation,

(1 − u − v + uvw)uv∂u∂vΨ̃
(L)(u, v,w) = Ψ(L−1)(u, v,w) , (3.34)

with Ψ̃(0)(u, v,w) ≡ 1 − u − v + uvw.
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3.1.3 Pentaladders reloaded

In the case of the pentaladder integrals we can also arrive at the differential equation by

considering the momentum twistor representation of the integrals. A clue to constructing

the right operator comes from the fact that the Laplacian naively annihilates the integrand,

�1
1

x2
1r

= 0 (naive) . (3.35)

Of course we have seen that this does not imply that the integral itself is annihilated by the

Laplace operator because there is an anomaly in the form of the delta function as in (3.6).

Let us recall that if one writes the one-loop finite pentagon integral using momentum

twistors it takes the form,

Ψ(1)(u, v) = F pent
7;1,3,5 =

∫

d4ZAB

iπ2
Ipent
7;1,3,5 , (3.36)

Ipent
7;1,3,5 =

(456[7)(1]234)(AB35)

(AB71)(AB23)(AB34)(AB45)(AB56)
. (3.37)

It is possible to construct an operator acting on the momentum twistor variables which

also annihilates the integrand Ipent
7;1,3,5. Let us first introduce some notation to deal with

twistor derivatives.

We define a twistor derivative Oij as

Oij = Zi ·
∂

∂Zj
, (3.38)

It acts trivially on four-brackets, Oij(jℓkm) = (iℓkm). The normalized integrals are ho-

mogenous in all external twistors, which can be also written as

OiiI = 0 , i = 1, . . . n . (3.39)

Let us do a trivial exercise which will be important in the following discussion. Let us start

with the rational function of four-bracket, I = (AB24)/(AB23)(AB34) and act on it with

the operator O12. We immediately get

O12I =
(AB14)

(AB23)(AB34)
− (AB24)(AB13)

(AB23)2(AB34)
=

(AB12)

(AB23)2
(3.40)

where we used Shouten identity (AB14)(AB23)− (AB24)(AB13) = (AB12)(AB34). Now,

we see that the dependence of twistor Z3 is just through the four-bracket (AB23). If we

now act with the operator O23, then we get zero, therefore

O23O12
(AB24)

(AB23)(AB34)
= 0 . (3.41)

Most of the equations we will derive later are based on the same principle.

In the case of the pentagon integral the analysis above leads us to define the following

operator

Õ234 = NplO34O23N
−1
pl , Npl = (456[7)(1]234) . (3.42)
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The operator Õ234 naively annihilates the integrand Ipent
n;1,3,5,

Õ234I
pent
7;1,3,5 = 0 (naive) . (3.43)

We have written ‘naive’ here because, just as for the Laplace operator, we must remember

that we are going to perform an integration and there may be anomalies like the delta

function left behind. In fact we can easily convince ourselves that there are indeed anoma-

lous terms in place of the naive zero on the r.h.s. of (3.43). Let us express the action of

the operator on the integral function Ψ(1)(u, v). We recall that the cross-ratios take the

following form in terms of momentum twistors,

u =
(7123)(3456)

(7134)(2356)
, v =

(7156)(2345)

(7145)(2356)
. (3.44)

Acting with the operator Õ on the integral function we find

Õ234Ψ
(1)(u, v) = − (7135)Npl

(7145)(7134)(3456)
u∂uv∂vΨ

(1)(u, v) . (3.45)

We already know from acting with the Laplace operator that the r.h.s. of (3.45) is not zero.

Indeed the second-order derivative of Ψ(1) is 1 according to (3.23). Writing the equation

without the factors of Npl on both sides leads us to the following relation,

O34O23

∫

d4ZAB

iπ2

(AB35)

(AB71)(AB23)(AB34)(AB45)(AB56)
= − (7135)

(7134)(7145)(3456)
. (3.46)

This equation can then be used whenever we find the one-loop pentagon as a subintegral. In

particular one can derive the differential equations for the multi-loop pentaladder integrals.

As an example we discuss here the finite two-loop pentabox integral,

Ψ(2)(u, v) =
∫

d4ZAB

iπ2

d4ZCD

iπ2

(AB35)Npl(2356)

(AB23)(AB34)(AB45)(AB56)(ABCD)(CD56)(CD71)(CD23)
.

(3.47)

Applying the operator Õ234 and using the identity (3.46) we find

Õ234Ψ
(2)(u, v) = −(2356)

(3456)

∫

d4ZCD

iπ2

Npl(CD35)

(CD71)(CD23)(CD34)(CD45)(CD56)
. (3.48)

Using (3.45) on the l.h.s. and the definition of the one-loop pentagon (3.36), (3.37) on the

r.h.s. we arrive at

(7135)Npl

(7134)(7145)(2356)
u∂uv∂vΨ

(2)(u, v) = Ψ(1)(u, v) . (3.49)

By using cyclic identities one finds that the four-brackets on the l.h.s. can be written in

terms of u and v and we arrive at the equation

(1 − u − v)u∂uv∂vΨ
(2)(u, v) = Ψ(1)(u, v) , (3.50)
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exactly as derived from the Laplace operator in (3.27) in the case L = 2. We have rederived

the equation for the two-loop finite pentaladder to simplify the equations but the derivation

for L loops is essentially identical and leads to (3.27) for general L.

In summary, we have derived the second-order equations (3.27) by acting with

the twistor differential operator O34O23 on the pentagon sub-integral, thanks to equa-

tion (3.46). What this implies is that whenever we have an integral with the pentagon

integral as a sub-integral, we can use this mechanism and generate a second-order equa-

tion by using (3.46). Importantly, this is also possible in cases where one cannot apply

the Laplace operator, as e.g. for the double pentagon integrals that we will discuss in sec-

tion 3.1.4. Before doing this, we are going to discuss the generalisation where the pentagon

sub-integral has a massive corner.

In the case of the pentaladders with a massive corner one again finds certain operators

which annihilate the integrand. Let us consider the integrand of the one-loop pentagon

with three massive legs,

Ipent
8;1,3,6 =

Npm(AB36)

(AB81)(AB23)(AB34)(AB56)(AB67)
, (3.51)

with Npm = (567[8)(1]234). The integrand is annihilated by certain twistor operators,

NpmO24O42N
−1
pmIpent

8;1,3,6 = 0 , NpmO75O57N
−1
pmIpent

8;1,3,6 = 0 . (3.52)

Applying these operators to the explicit function we actually find that they annihilate it,

i.e. there is no anomaly associated to this operator on F pent
8;1,3,6. In fact we will see that

F pent
8;1,3,6 is given explicitly by [51]3

F pent
8;1,3,6 ≡ Ψ̃(1)(u, v,w) = log u log v + Li2(1 − u) + Li2(1 − v) + Li2(1 − w)

−Li2(1 − uw) − Li2(1 − vw) , (3.53)

where the cross-ratios take the form

u =
(8123)(3467)

(8134)(2367)
, v =

(8167)(2356)

(8156)(2367)
, w =

(2367)(3456)

(2356)(3467)
. (3.54)

We remark that the function Ψ(1)(u, v) describing the seven-point integral F pent
7;1,3,5 can be

obtained from Ψ̃(1)(u, v,w) by taking a (smooth) soft limit,

lim
w→0

Ψ̃(1)(u, v,w) = Ψ(1)(u, v) . (3.55)

Using (3.53) we then find that the following homogeneous equations are satisfied,

NpmO24O42N
−1
pmF pent

8;1,3,6 = 0 , NpmO75O57N
−1
pmF pent

8;1,3,6 = 0 . (3.56)

Writing these in terms of the cross-ratios we find,

[

(1 − u)2∂uu∂u + (1 − w)2∂ww∂w − uv(1 − u)(1 − w)∂u∂v

+ (1 − u)(1 − w)(1 + uw)∂u∂w − v(1 − w)2∂v∂w

]

Ψ̃(1)(u, v,w) = 0 , (3.57)

3Here we are assuming that all dual distances are spacelike. One must carefully analytically continue to

the regions where some of them become timelike.
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and the equation obtained from swapping u and v. As before, we can generalise these

equations to higher-loop integrals. Note, however, that e.g. the first operator given in (3.56)

, O24O42, contains a derivative acting on Z2. We can only use (3.56) on a pentagon sub-

integral of a higher-loop integral if the latter does not depend on Z2 elsewhere, to avoid

cross terms. This is the case if there are at least two additional legs attached at the

intersection of the pentagon integral with the rest of the diagram (both additional legs

must be on the same side of the diagram).

We will now present a further mechanism for generating differential equations that will

yield an equation that is valid without the above restriction. To begin with, let us apply

the differential operator O24O75 to the integrand Ipent
8;1,3,6. A short calculation shows that

O24O75I
pent
8;1,3,6 = Npm

(AB36)

(AB81)(AB34)2(AB56)2
, (3.58)

i.e. we have cancelled two propagators. Notice that for obtaining this expression no cyclic

identities were needed. What this means is that the calculation would go through un-

changed in the presence of a +m2 regularisation, so that we do not expect contact terms

here. Also note that the resulting integral is finite thanks to the numerator factor. Since

it is also dual conformal, it can only have a very restricted variable dependence. In fact,

one can easily convince oneself that up to a trivial factor, this integral is a dual conformal

three-point function that can depend on the dual points x1, x4, x6 only. Since there are

no cross-ratios at three points, it must be a rational function. Let us compute the latter.

Introducing Feynman parameters, we find

∫

dαi
α1α4α6(3618)

[α1α4(8134) + α1α6(8156) + α4α6(3456)]3
. (3.59)

The remaining projective integrals are easily carried out, with the result being propor-

tional to

(3618)

(8134)(8156)(3456)
. (3.60)

Since the differential operator commutes with the normalisation of the integrand we find

O24O75F
pent
8;1,3,6 ∝ Npm

(3681)

(8134)(8156)(3456)
. (3.61)

One can easily check this equation on the explicit function (3.53).

The equation for the sub-integral can immediately be applied to higher-loop integrals

containing it. There is no subtlety since the twistor derivatives only act on Z4 and Z5, and

the latter variables are separated from the rest of the integral.

We can write down several other operators which follow the same pattern. The idea

is simple: if we can manage to reduce the number of propagators to three, dual conformal
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Figure 6. Six-point double pentaladder integral (3.62).

symmetry will imply that the resulting integral is rational.4 An example is given by O42O75.

Note, however, that in that case the corresponding equation can only be used iteratively

in cases where there is no Z2 dependence in the remainder of the integral.

In conclusion, whenever we encounter a pentagon sub-integral of the type considered

in this section, either with or without massive corner, we can always find at least one

differential equation that can be used iteratively. In some cases we can even find further

equations. In particular what this means is that we can find differential equations for

all double pentagon integrals appearing in the MHV amplitudes. In the next section we

are going to spell these equations out explicitly for the case of an infinite class of double

pentaladder integrals.

3.1.4 Double pentaladders

The fact that we have shown that one can derive differential equations using the momentum

twistors is important because it allows us to find equations in cases where no Laplace

operator derivation exists. As an example we will consider the six-point finite double

pentaladder integrals. These integrals can be defined in terms of the pentaladders of the

previous subsection,

F̃
(L)
dp (x1, x2, x3, x4, x5, x6) =

∫

d4xrx
2
arx

2
14

x2
1rx

2
2rx

2
3rx

2
4r

F̃
(L−1)
pl (xr, x4, x5, x6, x1) , (3.62)

see figure 6. Conformal symmetry in the x variables tells us that we can write

F̃
(L)
dp (x1, x2, x3, x4, x5, x6) =

x2
ab

x2
26x

2
35x

2
14

Ω(L)(u, v,w) , (3.63)

where u, v and w are the three cross-ratios,

u =
x2

13x
2
46

x2
14x

2
36

, v =
x2

24x
2
15

x2
14x

2
25

, w =
x2

35x
2
26

x2
25x

2
36

. (3.64)

4Naively one might find it surprising that dual conformal symmetry is helping us here, since the mo-

mentum twistors already made that symmetry manifest. Indeed with six twistor variables it is possible

to form homogeneous cross-ratios but the final result contains no extra functional dependence on these

variables. The reason is that we are combining the symmetry with the fact that our functions are Feynman

integrals built from propagators, which leads to additional restrictions on the possible dependence on the

twistor variables.
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To derive differential equations for these integrals we need to express them in momentum

twistor notation. We will consider the finite six-point two-loop double pentagon integral

as an example,

Ω(2)(u, v,w) = F double−pent
6;1,3,4,6 (3.65)

=

∫

d4ZAB

iπ2

d4ZCD

iπ2

(AB13)(CD46)Ndp

(AB61)(AB12)(AB23)(AB34)(ABCD)(CD45)(CD56)(CD61)
,

where Ndp = (2345)(5612)(3461). In terms of the momentum twistors the three cross-ratios

take the form,

u =
(6123)(3456)

(6134)(2356)
, v =

(1234)(4561)

(1245)(6134)
, w =

(2345)(1256)

(2356)(1245)
. (3.66)

We see that the double pentagon integral contains the one-loop pentagon that we studied

in the previous subsection as a subintegral. Thus we can apply the same kind of differential

operator and derive a differential equation. The operator we wish to apply here is

Õ612 = NdpO12O61N
−1
dp . (3.67)

Acting with this operator on the the double pentagon integral and using the relation (3.46)

with the appropriate relabelling we find

Õ612Ω
(2)(u, v,w) = − 1

(1234)

∫

d4ZCD

iπ2

Ndp(CD13)(CD46)

(CD12)(CD23)(CD34)(CD45)(CD56)(CD61)

= −(3461)

(1234)
Ω(1)(u, v,w) . (3.68)

Here Ω(1)(u, v,w) is the one-loop finite hexagon integral,

Ω(1)(u, v,w) =

∫

d4ZCD

iπ2

Nhex(CD13)(CD46)

(CD12)(CD23)(CD34)(CD45)(CD56)(CD61)
, (3.69)

where Nhex = (2345)(5612).

From the discussion in section 3.1.3 it is clear that the above equations can

be straightforwardly generalised to the case where the pentagon sub-integrals have a

massive middle leg.

3.2 Divergent integrals

Some of the integrals appearing in the MHV amplitudes are infrared divergent. These

divergences are regulated by masses as explained in section 2. In this section we show that

one can find similar differential equations as above, that hold up to O(m2).

3.2.1 One-loop box integrals

As explained in section 2, they are special cases of the general pentagon topology with

magic numerator, when no external legs are attached to the rightmost corner. In this case,

one obtains a two-mass hard box integral, whose integrand is given by

F box
n;i,2 =

∫

d4x0

iπ2

x2
24x

2
3i

(x2
20 + m2)(x2

30 + m2)(x2
40 + m2)(x2

i0 + m2)
, (3.70)
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Unlike the generic pentagon integral F pent
n;i,j,k the two-mass hard integral is infrared divergent

and depend explicitly on the mass m that regulates the infrared divergences, see section 2.

Here we discuss that the differential equations we found for the finite integrals work in

exactly the same way here, up to O(m2) corrections. To understand why this is the case,

consider again the Laplace operator, but acting on a massive propagator.5 We have

�1
1

x2
1i + m2

= −8
m2

(x2
1i + m2)3

= −4 iπ2 δ(4)(xµ
1i) + O(m2) , (3.71)

so that in this case we would indeed “undo” one integration as in the massless case, but up to

O(m2) corrections. As we discuss presently, this leads second-order differential equations

for this integral, at least for n ≥ 5. We will first discuss the generic case where (3.70)

represents indeed a two-mass hard integral, and subsequently discuss the degenerate one-

mass case where i = 4 or i = n.

In the former case, there is one off-shell leg that we can apply the Laplace operator to,

see equation (3.71). This leads to a differential equation valid to O(m2), namely

x2
2ix

2
3ix

2
4i �i (x

2
24x

2
3i)

−1 F box
n;i;2 = −4 + O(m2) . (3.72)

We can explicitly verify (3.72) by differentiating the known answer for the two-mass hard

integral. In terms of Feynman parameters, it is given by

F box
n;i;2 =

∫

dαi
x2

24x
2
3i δ(α2 + α3 + α4 + αi − 1)

[α2α4x2
24 + αi(α2x2

2i,m + α3x2
3i,m + α4x2

4i,m) + m2]2
, (3.73)

where x2
2i,m := x2

2i + m2, etc. One obtains

F box
n;i;2 =

1

2
log2 (y1y2y3) + 2Li2 (1 − y2) + 2Li2 (1 − y3) + O(m2) , (3.74)

where we used the variables y1 = x2
24/m

2 , y2 = x2
3i/x

2
2i , y3 = x2

3i/x
2
4i. Just like in sec-

tion 3.1, we can also find twistor derivatives that lead to differential equations. However,

the two-mass hard integral is infrared divergent, and here we have dropped certain O(m2)

terms. When applying differential operators to an infrared divergent subintegral, e.g. in

the double box case, one must be very careful when making such approximations. We

postpone a detailed analysis of the double box integrals to future work.

3.2.2 Penta-box integrals

A class of finite pentaladder integrals was already discussed in section 3.1. Here we show

that the IR divergent penta-box integrals also satisfy analogous differential equations, up

to O(m2).

5In this case one could also note that massive propagators are formally identical to free AdS bulk-to-

boundary propagators, and use the corresponding equation of motion, see [52]. For this it is necessary to

consider situation with generic masses mi, but this is no restriction thanks to dual conformal symmetry.

This would yield equations that are exact in the mi, i.e. that do not rely on taking the masses small

w.r.t. the Mandelstam invariants. It is an interesting open question how to extend this efficiently to the

on-shell case.
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x1 x2

x3
x4

x5 . . .

x1 x2

x3x4

x5

Figure 7. Five-point penta-ladder integrals considered in the text.

Let us consider the pentaladder integrals shown in figure 7. The discussion for other

divergent pentaladder integrals would be very similar. At one loop, we have

F pent
5;5,1,3 =

∫

d4ZAB

iπ2

(2345)(4512)(AB13)

(51AB)(12AB)(23AB)(34AB)(45AB)
, (3.75)

Since all external legs are on-shell, we cannot use the Laplace operator. We already know

from section 3.1.3 that in such cases twistor derivatives can have the same effect. Indeed,

consider the action of the differential operator

NO32O43N
−1 = Z3 ·

∂

∂Z2
Z4 ·

∂

∂Z3
+

(5134)

(1245)
Z4 ·

∂

∂Z3
, (3.76)

where N = (2345)(4512), One can check that it annihilates its integrand, up to O(m2)

terms. As discussed above, one can think of the mass as regulating distributional terms

that arise when acting with the derivatives. Let us now find out what happens when we

act with the operator in (3.76) on the function obtained after integration. Computing the

one-loop integral F pent
5;5,1,3 directly using Feynman parameters in the small m2 limit, we have

(see appendix B)

F pent
5;5,1,3 = −1

2
log2(y1y2y3) − 2Li2(1 − y1) − 2Li2(1 − y2) +

π2

6
+ O(m2) . (3.77)

Here y1 = x2
35/x

2
13, y2 = x2

25/x
2
24, y3 = x2

14/m
2, and we recall the relation of the dual

variables to the momentum twistors,

x2
13 =

(5123)

〈51〉〈23〉 , x2
24 =

(1234)

〈12〉〈34〉 , x2
35 =

(2345)

〈23〉〈45〉 , x2
14 =

(3451)

〈34〉〈51〉 , x2
25 =

(4512)

〈45〉〈12〉 . (3.78)

Using the chain rule and acting on (3.77) one can easily verify that

(5123)

(4513)

[

Z3 ·
∂

∂Z2
Z4 ·

∂

∂Z3
+

(5134)

(1245)
Z4 ·

∂

∂Z3

]

F pent
5;5,1,3 = −1 + O(m2) , (3.79)

i.e. the r.h.s. is not zero but a simple rational term. In other words, it is still true that the

differential operator “undoes” the integration, at least up to O(m2).

We now discuss the all-loop generalisation of these equations. The two-loop version

of F pent
5;5,1,3 is

F penta−box
5;5,1,3 =

∫

d4ZABd4ZCD (iπ2)−2 N(CD13)

(AB34)(AB45)(AB51)(ABCD)(CD51)(CD12)(CD23)(CD34)
, (3.80)
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where N = (3451)(2345)(4512).

As in the previous sections, we need to discuss the pentagon subintegral. In fact the

subintegral is the same finite integral that was discussed in section 3.1, with the differ-

ence that since the two-loop integral is IR divergent its propagators contain +m2 pieces.

However, we already know that the special numerator makes the subintegral finite, and

therefore the effect of the masses in the pentagon propagator should be only O(m2). 6

Therefore we can neglect these masses when acting with the differential operator, and it is

clear that we will obtain differential equations completely analogous to those discussed in

section 3.1. The only difference is that by construction they are only valid up to O(m2)

corrections. Therefore we have

(5123)

(4513)
NO32O43N

−1 F penta−box
5;5,1,3 = F pent

5;5,1,3 + O(m2) . (3.81)

Of course one can immediately generalise this equation to arbitrary loop order, by replacing

the integral on the l.h.s. and r.h.s. by the L-loop and (L − 1)-loop penta-box integrals, re-

spectively. Finally, the other divergent penta-box integrals which differ in the arrangement

of external legs all satisfy analogous differential equations.

In summary, we have found differential equations for all integrals contributing to the

one- and two-loop MHV amplitudes in N = 4 SYM, except for the six double box integrals.

The differential equations we find are iterative in the loop order and apply to infinite

series of on-shell loop integrals. We expect that integrals contributing to higher-loop MHV

amplitudes and other helicity configurations are constrained in a similar way.

The same mechanisms for generating differential equations that we described above

should also hold for the double box integrals. However a separate analysis is required there

since they do not contain IR finite subintegrals. We leave this for future work. (An encour-

aging fact is that in appendix A we find differential operators that naively annihilate the

double box integrand.) Of course, the double box integrals are in some sense the simplest

integrals appearing in the two-loop MHV amplitudes, so perhaps they could also be com-

puted by other means. Also, they are related to the more general integrals that do satisfy

differential equations through soft limits. If one can control the non-commutativity of the

soft limit with the regulator limit this can also provide a useful tool for computing them.

4 Solving the differential equations

4.1 Harmonic polylogarithms

We will now discuss solving the differential equations. The solutions we find are typically

written in terms of polylogarimic functions. Here we will give a brief introduction to the

notation we use which can be found in [53, 54].

The simple harmonic polylogarithm functions are given in terms of iterated integrals.

We start from the functions

H(0;x) = log x , H(1;x) = − log(1 − x) . (4.1)

6This argument presupposes that the divergent box subintegral produces only logarithmic but no linear

divergences in m2. This is the case for all integrals we consider.
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Their derivatives are given by the fractions

d

dx
H(a;x) = f(a;x) , f(0;x) =

1

x
, f(1;x) =

1

1 − x
. (4.2)

We can now define weight w harmonic polylogarithms depending on a vector with entries

of ones and zeros. For a vector of all zeros of length w (written ~0w) we have

H(~0w;x) =
1

w!
logw x . (4.3)

Further harmonic polylogarithms depending on a more general vector ~mw = (a, ~mw−1) can

be defined by repeated integration,

H(~mw;x) =

∫ x

0
dx′f(a;x′)H(~mw−1;x

′) . (4.4)

Below we save space by writing the vector ~mw as a subscript. Finally we can use the

shorthand notation where proceeding from right to left a zero is eliminated if it is to the

left of a non-zero entry while at the same time one is added to the value of that entry.

For example

H3,2(x) = H(0, 0, 1, 0, 1;x) . (4.5)

There also exist harmonic polylogarithms with negative arguments but we will not need

them here.

The simple harmonic polylogarithms defined above are all single variable functions.

However they can be generalised to functions of more than one variable. In general the

relevant functions are the Goncharov polylogarithms. Here we will only need functions

of two variables at most which can be described in terms of two-dimensional harmonic

polylogarithms. These functions are defined in much the same way as the simple harmonic

polylogarithms but we allow slightly more general arguments of the vector ~mw. This is

done by enlarging the set of weight one functions and fractions to include

H(1 − y;x) = − log

(

1 − x

1 − y

)

, f(1 − y;x) =
1

1 − x − y
. (4.6)

4.2 Solution for seven-point pentagon and penta-box integral

Let us consider the equation for Ψ(1), the one-loop pentagon integral. The equation is

uv∂u∂vΨ
(1)(u, v) = 1 . (4.7)

The general solution is

Ψ(1)(u, v) = log u log v + g(u) + g(v) (4.8)

for some single variable function g.

Let us recall that we chose to write the pentaladder integrals is the following way,

F̃
(L)
pl (x1, x3, x4, x5, x6) =

x2
1a

x2
14x

2
15x

2
36

Ψ(L)(u, v)

(1 − u − v)
. (4.9)
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This form makes it clear that the function Ψ(L)(u, v) should have a simple zero when

1 − u − v = 0 since the integral clearly has no special singular behaviour on this region.

Thus we have

Ψ(L)(u, 1 − u) = 0 . (4.10)

The boundary condition (4.10) implies that the function g should satisfy

g(u) + g(1 − u) = − log u log(1 − u) . (4.11)

The solution of (4.11) is ambiguous up to any function odd in swapping u and 1−u. Thus

we find

g(u) = Li2(1 − u) − 1

2
ζ(2) + h(u) − h(1 − u) , (4.12)

for any single variable function h.

We need some extra data to fix the function h(u) − h(1 − u). If we adopt maximal

transcendentality (which translates here to the fact that h(u) can only be a sum of harmonic

polylogarithms) and also the requirement that there are no branch points of Ψ(1)(u, v) for

u > 0, v > 0 then we fix h(u) = 0. Indeed if we assume that we can write h(u) as a sum of

harmonic polylogarithms of degree 2,

h(u) = aLi2(u) + b log2 u + c log uLi1(u) + dLi21(u) , (4.13)

then the only solution where h(u)−h(1−u) has no branch points at u = 1 is indeed h = 0.

Thus we deduce that

Ψ(1)(u, v) = log u log v + Li2(1 − u) + Li2(1 − v) − ζ(2) . (4.14)

Given the correct answer for Ψ(1) we can go on to determine the next pentaladder function

Ψ(2). The equation we have to solve is

(1 − u − v)uv∂u∂vΨ
(2)(u, v) = Ψ(1)(u, v) . (4.15)

It is helpful to divide by the factor (1 − u − v)uv and use partial fractions to write

∂u∂vΨ
(2)(u, v) = Ψ(1)(u, v)

[

1

uv
+

1

u(1 − u − v)
+

1

v(1 − u − v)

]

. (4.16)

Now we look for particular solutions which reproduce each of the three terms on the

r.h.s. , i.e.

∂u∂vH
0(u, v) =

Ψ(1)(u, v)

uv
, (4.17)

∂u∂vH
u(u, v) =

Ψ(1)(u, v)

u(1 − u − v)
, (4.18)

∂u∂vH
v(u, v) =

Ψ(1)(u, v)

v(1 − u − v)
. (4.19)
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We find the following solution for H0,

H0(u, v) = 2ζ(4) +
1

2
ζ(2)2 − ζ(2)

(

Li2(1 − u) + Li2(1 − v)
)

+ log u log v
(1

4
log u log v + Li2(1 − u) + Li2(1 − v) − ζ(2)

)

+ log u
(

2H2,1(1 − v) − Li3(1 − u) + ζ(3)
)

+ log v
(

2H2,1(1 − u) − Li3(1 − v) + ζ(3)
)

− 3
(

H3,1(1 − u) + H3,1(1 − v)
)

, (4.20)

where we have used the notation of harmonic polylogarithms [53]. In fact H2,1 is a Nielsen

polylogarithm and can be reexpressed in terms of ordinary trilogarithms but we prefer not

to do so here. For Hu we find,7

Hu(u, v) = ζ(2)
(

H0,1−v(u) − Li2(u) − log u log(1 − v)
)

+ H0,0(u)H1,0(v)

+ log v
(

H0,1−v,0(u) − H2,0(u)
)

+ log uH1,1,0(v)

− H2,1,0(u) + H0,1−v,1,0(u) + H0,1−v(u)H1,0(v) , (4.21)

where in addition to harmonic polylogarithms we have used the two-dimensional harmonic

polylogarithms of [54]. We have neglected some obvious simplifications such as H0,0(u) =
1
2 log2 u and H1,0(u) = −Li2(u) − log u log(1 − u). By symmetry we have also

Hv(u, v) = Hu(v, u) . (4.22)

Thus the general solution to the differential equation (4.15) is

Ψ(2)(u, v) = H0(u, v) + Hu(u, v) + Hv(u, v) + g(u) + g(v) , (4.23)

for some single variable function g. The function g can be constrained by the fact that

Ψ(2)(u, v) should vanish when 1−u−v = 0. Again assuming that it is purely transcendental

and has no spurious branch cuts (although as presented, the branch cut structure of Hu is

not obvious) fixes the function. We find

g(u) = − 1

2
ζ(2)2 − 3ζ(4) + ζ(2)

(1

2
log2 u + Li2(1 − u)

)

(4.24)

+ log u
(

Li3(1 − u) + H2,1(1 − u) − 3ζ(3)
)

+ 2H3,1(1 − u) + 3H2,1,1(1 − u) .

We have checked that this combination of functions numerically matches the Mellin-Barnes

representation of the integral in the triangular region u > 0, v > 0, u + v < 1 to a high

degree of accuracy. Thus we are confident that (4.23) together with (4.20), (4.21), (4.22),

and (4.24) correctly give the two-loop pentaladder function.

7We thank L. Dixon for pointing out a typo in a previous version of this formula.
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4.3 Equations for eight-point pentagon and pentaladder integrals

We would now like to discuss the equations for integrals with pentagon subintegrals with

massive corners. For example we have the pentaladder integrals with a massive corner,

F̃
(L)
pl (x1, x3, x4, x6, x7) =

x2
1a

x2
14x

2
16x

2
37

Ψ̃(L)(u, v,w)

(1 − u − v + uvw)
, (4.25)

Note that the way we have chosen to write the r.h.s. means that Ψ̃(L)(u, v,w) vanishes

when 1 − u − v + uvw = 0 because the integral has no pole in this region.

As we have seen for the pentaladders with a massive corner we have two sources of

differential equations. Firstly from applying the Laplace operator we have:

(1 − u − v + uvw)uv∂u∂vΨ̃
(L)(u, v,w) = Ψ(L−1)(u, v,w) . (4.26)

Then in the twistor language we can apply the operator

O24O75 (4.27)

which also produces a rational function. In fact we have

NpmO24O75N
−1
pmΨ̃(1)(u, v,w) = O24O75Ψ̃

(1)(u, v,w) =
Npm(3681)

(3456)(3481)(5681)
. (4.28)

This leads to the equation

w[(1 − w)∂w((1 − w)∂w + v(1 − v)∂v + u(1 − u)∂u) + u(1 − u)v(1 − v)∂u∂v]Ψ̃
(1)(u, v,w)

= 1 − u − v + uvw ≡ Ψ̃(0)(u, v,w) . (4.29)

More generally we have for the L-loop pentaladder with a massive corner,

w[(1 − w)∂w((1 − w)∂w + v(1 − v)∂v + u(1 − u)∂u) + u(1 − u)v(1 − v)∂u∂v]Ψ̃
(L)(u, v,w)

= Ψ̃(L−1)(u, v,w) . (4.30)

From (4.26) we know the result of acting with the final term in the operator on the l.h.s.

so we can rewrite the equation in a simpler way. We find

w∂w[(1 − w)∂w + u(1 − u)∂u + v(1 − v)∂v ]Ψ̃
(1)(u, v,w) = 1 − u − v , (4.31)

or more generally for L loops,

w∂w[(1−w)∂w +u(1−u)∂u+v(1−v)∂v ]Ψ̃
(L)(u, v,w) =

(1 − u − v)Ψ̃(L−1)(u, v,w)

1 − u − v + uvw
. (4.32)

Now let us consider (4.26) restricted to w = 1. We find that the operator factorises,

u(1 − u)∂uv(1 − v)∂vΨ̃
(L)(u, v, 1) = Ψ̃(L−1)(u, v, 1) . (4.33)

In the one-loop case we then have simply

u∂uv∂vΨ̃
(1)(u, v, 1) = 1 . (4.34)
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and so

Ψ̃(1)(u, v, 1) = log u log v + f(u) + f(v) , (4.35)

for some single variable function f . We recall that Ψ̃(L)(u, v,w) vanishes when 1− u− v +

uvw = 0. In our case where w = 1 this implies that Ψ̃(1)(u, v, 1) vanishes when u = 1 or

v = 1. Thus we have

f(u) + f(1) = 0 , (4.36)

which implies that f(u) = 0 and so

Ψ̃(1)(u, v, 1) = log u log v . (4.37)

In the two-loop case it is again simple,

u(1 − u)∂uv(1 − v)∂vΨ̃
(2)(u, v, 1) = log u log v . (4.38)

Integrating we find

Ψ̃(2)(u, v, 1) = [H0,0(u) + H1,0(u)][H0,0(v) + H1,0(v)] + f(u) + f(v) (4.39)

for some single variable function f . As before we have the condition that Ψ̃(L)(u, v, 1)

vanishes when u = 1 or v = 1. Thus we find

− ζ(2)[H0,0(u) + H1,0(u)] + f(u) + f(1) = 0 . (4.40)

Setting u = 1 this tells us

f(1) = −1

2
ζ(2)2 . (4.41)

Thus we have

f(u) = ζ(2)

[

H0,0(u) + H1,0(u) +
1

2
ζ(2)

]

(4.42)

and we have solved for Ψ̃(2)(u, v, 1) quite simply.

Now we can return to the other equation (4.32). Let us perform the w integral,

[(1 − w)∂w + u(1 − u)∂u + v(1 − v)∂v ]Ψ̃
(L)(u, v,w) = X(L)(u, v,w) + f

(L)
X (u, v) (4.43)

where

X(L)(u, v,w) = (1 − u − v)

∫ w

1

dtΨ̃(L−1)(u, v, t)

t(1 − u − v + uvt)
(4.44)

and fX(u, v) is an arbitrary two-variable function. We can determine fX however by setting

set w = 1 in (4.43) and we find

[u(1 − u)∂u + v(1 − v)∂v ]Ψ̃
(L)(u, v, 1) = f

(L)
X (u, v) . (4.45)

The l.h.s. is known from the Laplace operator as shown above so given Ψ̃(L)(u, v, 1) we

know f
(L)
X (u, v). In the one-loop case we have

f
(1)
X (u, v) = (1 − u) log v + (1 − v) log u . (4.46)
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while

X(1)(u, v,w) = (1 − u − v)

∫ w

1

dt

t
= (1 − u − v) log w . (4.47)

Thus (4.43) becomes a first order equation for Ψ̃(1)(u, v,w). One can easily convince oneself

that the unique solution is (3.53) given the known boundary condition for Ψ̃(1)(u, v, 1) or

equivalently Ψ̃(1)(u, v, 0) = Ψ(1)(u, v).

More generally we always have a first order equation for Ψ̃(L)(u, v,w) and thus one

can write the function in a simple integral form.

4.4 Equations for the six-point hexagon and double-pentagon integrals

Let us now discuss the simplest cases of the double pentaladder integrals. To start we will

consider the finite six-point double-pentagon, defined in (3.65). In terms of the twistor

variables the independent cross-ratios take the form

u =
(6123)(3456)

(6134)(2356)
, v =

(1234)(4561)

(1245)(6134)
, w =

(2345)(1256)

(2356)(1245)
. (4.48)

Translating the equation (3.68) into an equation for the function Ω(2) we find
[(

1 − u − v +
ǫ̃

2

)

uv∂u∂v +
ǫ̃ − 2u

2
vw∂v∂w (4.49)

+
ǫ̃ − 2v

2
uw∂u∂w − ǫ̃w

2
∂w(1 − w)∂w

]

Ω(2)(u, v,w) = Ω(1)(u, v,w) .

with ǫ̃ =
√

δ2 − 4uvw + δ and δ = u + v + w − 1.

In fact the sign of the square root is ambiguous and so the equation separates into two

second order equations, one homogeneous, the other inhomogeneous,
[

(

1 − u − v
)

uv∂u∂v − uvw∂v∂w − uvw∂u∂w

]

Ω(2)(u, v,w) = Ω(1)(u, v,w) , (4.50)
[

uv∂u∂v + uw∂u∂w + vw∂v∂w − w∂w(1 − w)∂w

]

Ω(2)(u, v,w) = 0 . (4.51)

In fact we can set w = 0 in (4.50) and we find

(1 − u − v)uv∂u∂vΩ
(2)(u, v, 0) = Ω(1)(u, v, 0) . (4.52)

This equation is identical in form to that for the functions Ψ(L)(u, v) from the pentaladder

with a massless corner. At one loop we have in fact

Ω(1)(u, v,w) = log u log v + Li2(1 − u) + Li2(1 − v) + Li2(1 − w) − 2ζ(2) , (4.53)

and indeed Ω(1)(u, v, 0) = Ψ(1)(u, v). We have verified numerically from the Mellin-Barnes

representation that the same holds at two loops, Ω(2)(u, v, 0) = Ψ(2)(u, v), so this two-

variable slice of the function Ω(2) is the same function that we have solved for from the

pentaladder equation.

Combining the two equations (4.50), (4.51) we can write a factorised operator,

w∂w

[

−u(1−u)∂u − v(1− v)∂v +(1−u− v)(1−w)∂w

]

Ω(2)(u, v,w) = Ω(1)(u, v,w) . (4.54)

After performing one integration on w we have a first-order equation for the function Ω(2).
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Figure 8. The iterative differential equations can always be obtained if a key sub-integral is present,

as shown in the figure. The salient feature is the presence of a “magic numerator”, as indicated by

the dashed line. The number of differential equations that can be obtained for an integral depends

on the precise configuration of external legs.

5 Conclusion and outlook

In this paper we derived a new type of differential equations for on-shell integrals. The

equations are second order and reduce the loop order by one. We presented several classes

of infinite of integrals closed under the differential equations. In particular, these include

most integrals appearing in N = 4 MHV amplitudes to two loops. One may speculate that

the same should be true to all loop orders.

We also discussed how such differential equations can be solved by making reasonable

assumptions about the boundary conditions. The explicit solution for a finite two-loop

seven-point and a divergent two-loop five-point integral was given. The answers are rel-

atively simple and one can hope that one can solve for infinite series of such integrals,

as is possible for the off-shell ladder integrals [47, 49, 50]. This would be an important

step toward summing the perturbation series in N = 4 SYM. See [55] for a study of the

summation of the off-shell latter integrals.

The main motivation of this study was to contribute to the determination of the all-

order S-matrix of N = 4 SYM. One may ask whether there is a short-cut by deriving

differential equations for the whole amplitude, as opposed to individual integrals. In ap-

pendix A we found differential operators that annihilate (naively) the integrand of the

one-loop MHV amplitude. In order to understand these differential operators better it is

important to systematically investigate distributional terms that can appear and lead to

inhomogeneous terms in differential equations. A related open question is the link of our

differential equations to the conformal symmetry of N = 4 SYM.

We expect our differential equations to be useful for other theories as well. Due to

their nice properties it is certainly desirable to include the integrals with magic numera-

tors introduced in [19] and discussed in [43] and the present paper in the integral basis.

The necessary numerator identities were given in [43]. Moreover, one can find differential

equations of the type presented here for larger classes of integrals. This is clear from the

way the differential equations were derived: all one needs is a certain sub-topology with

“magic” numerators. In the cases considered in this paper the latter appeared on top of

a pentagon topology, see figure 8, which made sure that the integrals are dual conformal.

However, one could drop this requirement and extend the current method to integrals that

are not dual conformal.
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Another natural extension of our work is to use different regulators. Some of the

integrals discussed here are finite, and in the case of infrared divergences we used a mass

regulator, allowing us to stay in four dimensions, which is very natural when working with

twistor variables. However, this is not mandatory. Although the details may be slightly

different, the mechanism for finding differential equations should work with other regulators

as well. E.g. in dimensional regularisation one might expect similar equations to hold, at

least to some order in ǫ, where the dimension is 4 − 2ǫ.

It is interesting to obtain equations exact in m2, which would allow to discuss e.g.

scattering amplitudes on the Coulomb branch of N = 4 SYM. Equations exact in m2

could also be useful to study integrals appearing in realistic amplitudes involving massive

particles, see e.g. [56]. It should be possible to derive such equations at least in some cases,

perhaps by noticing that four-dimensional massive propagators are formally identical to

AdS bulk-to-boundary propagators [52].
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A Twistor differential operators

In section 3, we showed that all integrals appearing in the one- and two-loop MHV ampli-

tudes with at least five external legs satisfy differential equations. In order to obtain these

equations it was crucial to find differential operators that can act on a sub-integral and

reduce it to a rational function.

In order to find the relevant twistor differential operators we found it useful to system-

atically write down all differential operators that have of property of (naively) annihilating

the integrand of a given integral. Of course this is not equivalent to finding a useful differ-

ential equation for the function after integration, but it served as a helpful starting point

for our above analysis. Here we present more details of the mechanism how differential

operators annihilate the integrand of the integrals discussed above. The reason is two-fold:

firstly, it would be interesting to understand in more detail how the distributional term

that freezes the loop integration is generated. Secondly we expect our differential equation

method to apply to larger classes of integrals. We hope that this section will prove a useful

starting point for such investigations.

We do not claim that we exhaust all differential equations for a given diagram, but

we show that there is always at least one for all diagrams appearing in the one-loop and

two-loop MHV amplitudes.

A.1 Diagrams in the one-loop amplitude

The form of one-loop MHV amplitude presented in [19] contains sum of two-mass-hard

boxes and double pentagons with “magic numerator”. As was mentioned above, for con-
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venience we use the pentagons with dashed lines, the difference being a parity odd piece

that vanishes after integration (or is of order O(m2) in the massive regularization).

A.1.1 Two-mass hard diagram

The two-mass-hard boxes as integrals in momentum twistor space are8

I2mh =
N

(AB12)(AB23)(AB34)(AB i i+1)
, where N = (1234)(23 i i+1) . (A.1)

This integrand is annihilated trivially by the first order differential operators O21, O34,

Oii+1, Oi+1i and also Okj for all k and j = 5, . . . i − 1, i + 2 . . . n.

We are interested in obtaining non-trivial second order differential equations for Ii
2mh.

Applying the operator O24 on the un-normalised integrand I2mh/N we get

O24
1

(AB12)(AB23)(AB34)(AB i i+1)
=

1

(AB12)(AB34)2(AB i i+1)
, (A.2)

and this is trivially annihilated by O12 and O43. Similarly, we can start with the operator

O31 and then apply O12 and O43. As a result, we get four differential equations9

Õ1224I2mh = Õ4324I2mh = Õ1231I2mh = Õ4331I2mh = 0 , (A.3)

where

Õijkl = NOijOklN
−1 . (A.4)

In the boundary case of i = 4 or i = n (which corresponds to a one-mass diagram) we

cannot use both “directions” of the derivatives. So in the first case we use only O31 to

create a massive corner, while in the second case only O24. There is a special case of n = 4

which corresponds to the zero-mass diagram. In this case we cannot use our construction.

However, this diagram itself represents the one-loop MHV amplitude and we will see at

the end of this subsection that there exist differential operators that annihilate naively all

MHV one-loop integrands (including the n = 4 case).

For reasons that will become clear later, it will be quite useful also to find a differential

operator acting only on a limited number of twistors. Suppose that the only operators we

want to use are Ok2, Ok3, On1, O54 for any k. Even in that case there exists a second-order

operator, although somewhat complicated,

[

Õ4354 −
(2345)

(1234)
Õ1223 −

(2456)

(2356)
Õ54 +

(1356)(2345)

(1234)(2356)
Õ23

]

I2mh = 0 , (A.5)

and also its flipped version. It is hard to find an explanation for this operator (like we did

for other operators above), but its existence is important for the discussion of the two-loop

double boxes.

8We changed the labels from i → i + 1 w.r.t. to the main text.
9Note that we do not include the second order operators that include O21 and O34 as first order pieces.
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A.1.2 Pentagon diagram

The pentagon integrals in momentum twistor space are

Iij
pent =

N (AB(123) ∩ (i 1 i i+1))

(AB12)(AB23)(AB i 1 i)(AB i i+1)(AB j j+1)
, (A.6)

where N = (2 i j j+1). The strategy is very similar to the two-mass hard case. We can

find many trivial first order operators that annihilate the integrand, and we can use again

the same trick of creating a massive corner. Here we have even more freedom in the choice

which propagator we want to kill, e.g. we can first apply the operator O13, yielding

O13
(AB(123) ∩ (i 1 i i+1))

(AB12)(AB23)(AB i 1 i)(AB i i+1)(AB j j+1)
=

=
(AB(123) ∩ (i 1 i i+1))

(AB23)2(AB i 1 i)(AB i i+1)(AB j j+1)
, (A.7)

which is annihilated by the operator O32. Finally, we can find four operators10 that non-

trivially annihilate Iij
pent,

Õ3213I
ij
pent = Õ1231I

ij
pent = 0 , (A.8)

and the same for (1, 2, 3) → (i+1, i, i 1). We see that the operators act separately just on

the left or right region.
Now, something interesting happens when i = 4, i.e. when the top corner is massless.

Then both regions (1, 2, 3) → (i+1, i, i 1) overlap and the equations we wrote are not
valid anymore. However, the numerator saves the situation and helps us to find another
differential equation. First, let us apply the operator O23,

O23

(AB(123) ∩ (345))

(AB12)(AB23)(AB34)(AB45)(AB j j+1)
=

=
(AB(123) ∩ (245))

(AB12)(AB23)(AB34)(AB45)(AB j j+1)
− (AB24)(AB(123) ∩ (345))

(AB12)(AB23)(AB34)2(AB45)(AB j j+1)

=
(1234)

(AB12)(AB34)(AB j j+1)
, (A.9)

where we used (AB(123) ∩ (234)) = (AB23)(1234). The term we obtained is annihilated

by O12 and O34. Similarly, we can start with the operator O43 and repeat the above

calculation. In total we get four differential equations,

Õ1223I
4j
pent = Õ3423I

4j
pent = Õ5443I

4j
pent = Õ3243I

4j
pent = 0 . (A.10)

Here there are no boundary cases for j = 5 or j = n.

In addition to these operators, we can also find two more special operators that an-

nihilate the integrand of the pentagon. Like in the two-mass hard case they also contain

only a restricted number of derivatives, but their forms are much nicer,

[

i−2
∑

k=2

Õki 11k + O1i 1

]

Ii,j
pent =

[

i
∑

k=4

Õk3i+1k + O3i+1

]

Ii,j
pent = 0 . (A.11)

10For the boundary case when j = i + 1 or j = n some operators are not present.
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We can see that two of equations for i = 4 were exactly of this type.

We completed the picture of differential operators for all diagrams in one-loop MHV

amplitude. Of course, the one-loop MHV amplitude is known analytically, but this re-

sult will be extremely useful in analyzing the diagrams contributing to the two-loop

MHV amplitude.

A.1.3 Differential equations for the one-loop MHV amplitude

So far, we analyzed the one-loop amplitude giving the equations for all diagrams contribut-

ing to it. However, there exists an equation for the integrand of the whole amplitude. In

fact, for the n-point amplitude there exist n2 differential equations of the form

QijI
1−loop
MHV = 0 i, j = 1, . . . n (A.12)

where

Qij =
n

∑

k=1

OikOkj − (n − 2)Oij . (A.13)

Note that the structure of operators is quite similar to that which we found for the pen-

tagons at the end of the last subsection.

A.2 Diagrams in the two-loop amplitude

We start with the form of two-loop MHV amplitude given in [19] and reviewed in section 2.

It contains three topologies: double-boxes, penta-boxes and double-pentagons.

We will analyze each topology separately. Naively, they look like one-loop diagrams

(two-mass hard integrals and pentagons) glued together, and we will see that in some sense

they really are.

We want to find a second-order differential equation for the integrands of these dia-

grams, keeping in mind our motivation that acting with the correct second-order differential

operator on a two-loop diagram can decrease the loop level by one). Therefore, it would

be very natural to act just on a one-loop sub-diagram, which is exactly what we are going

to do. We will see that there is close link with the operators found in the last subsection.

A.2.1 Double-boxes

The integrand for the general double-box appearing in the amplitude

Ii
double−box =

(1234)(i 1 i i+1 i+2)(23 i i+1)

(AB12)(AB23)(AB34)(ABCD)(CD i 1 i)(CD i i+1)(CD i+1 i+2)
, (A.14)

can be rewritten in a very suggestive form

(1234)(23 i i+1)

(AB12)(AB23)(AB34)(AB i i+1)
· (i 1 i i+1 i+2)(AB i i+1)

(ABCD)(CD i 1 i)(CD i i+1)(CD i+1 i+2)
. (A.15)

We see that the double box can be written in a factorised form as a product of two-mass

hard diagrams (note that they are properly normalised), where the right CD sub-diagram

contains twistors A,B as external, but the left AB sub-diagram depends only on external
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twistors. If 5 < i < n − 1 (both internal corners are massive), then there is no overlap

between AB and CD sub-diagrams and the AB part is annihilated by the same operators

as the normal 2-mass-hard integrand,

Õ1224I2box = Õ4324I2box = Õ1231I2box = Õ4331I2box = 0 (A.16)

where here by the normalisation N we mean the normalisation of left sub-diagram N =

(1234)(23 i i+1). If i = 4, 5, n − 1, n just half of the operators survive (we still have one

massive corner).

For n = 4, 5, 6 we have diagrams that do not contain any massive corners. However,

the diagrams for n = 5 and for n = 6, i = 5 satisfy differential equations and here we use

the complicated forms that we found in the end of the discussion of the two-mass hard

boxes. Thanks to restrictions we made on the first-order operators for the construction of

the second-order operator, these operators act just on one half of the double-box integrand

even if the indices overlap (which exactly happens for i = 5 or i = n − 1). The only

constraint is that at least one external line (which can be massless and just on one side

of the diagram) must be attached at the point were the two one-loop diagrams are glued

together. Then the equations are exactly the same as we found for the two-mass hard case,

since we act on just half of the diagram.

A.2.2 Pentagon-boxes

As in the previous case, we can write the integrand for the pentagon-box appearing in the
two-loop MHV amplitude,

I
penta−box
n;i,j =

(AB(123) ∩ (i 1 i i+1))(2 i j j+1)(j 1 j j+1 j+2)

(AB12)(AB23)(AB i 1 i)(AB i i+1)(ABCD)(CD j 1 j)(CD j j+1)(CD j+1 j+2)
, (A.17)

in a factorised form,

(AB(123) ∩ (i 1 i i+1))(2 i j j+1)

(AB12)(AB23)(AB i 1 i)(AB i i+1)(AB j j+1)
·

(j 1 j j+1 j+2)(AB j j+1)

(ABCD)(CD j 1 j)(CD j j+1)(CD j+1 j+2)

=
(AB(123) ∩ (i 1 i i+1))(CD2 j)

(AB12)(AB23)(AB i 1 i)(AB i i+1)(ABCD)
·

(2 i j j+1)(j 1 j j+1 j+2)

(CD2 j)(CD j 1 j)(CD j j+1)(CD j+1 j+2)
. (A.18)

We see that there are two choices, either the pentagon or the two-mass-hard is the “proper”

one-loop subdiagram.

If we use the first choice, then the the two-loop diagram is annihilated by all operators

that annihilate its pentagon one-loop sub-diagram, and the same is true for the second

choice, where we use the differential operators for the two-mass-hard diagram. If the

indices do not overlap, we can just act with the operators that we have for pentagons, resp.

two-mass hard and we annihilate the integrand. In the special case of j = i+1 or j = n−1

we would repeat the same discussion as in the case of double-boxes. Here we use the more

complicated forms that we derived in the end of the two-mass hard and pentagon sections

that can be used even if the indices overlap. Therefore, all pentagon-box integrands satisfy

second-order differential equations.

A.2.3 Double-pentagons

Finally, we can write the integrand for the double-pentagons,

(AB(123) ∩ (ℓ 1 ℓ ℓ+1))(CD(i 1 i i+1) ∩ (j 1 j j+1))(2 ℓ i j)

(AB12)(AB23)(AB ℓ 1 ℓ)(AB ℓ ℓ+1)(ABCD)(CD i 1 i)(CD i i+1)(CD j 1 j)(CD j j+1)
, (A.19)
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in a factorised form,

(AB(123) ∩ (ℓ 1 ℓ ℓ+1))(2 ℓ i j)

(AB12)(AB23)(AB ℓ 1 ℓ)(AB ℓ ℓ+1)(AB i j)

(CD(i 1 i i+1) ∩ (j 1 j j+1))(AB i j)

(ABCD)(CD i 1 i)(CD i i+1)(CD j 1 j)(CD j j+1)
.

We again see two correctly normalised pentagons, and one of them is a proper pentagon on

which we can apply differential operators. The discussion would be identical to the previous

cases, one just uses the operators found in the pentagon section which are guaranteed to

annihilate also the double-pentagon integrand.

B Five-point pentagon and penta-box integrals

As an explicit example of the differential equations for regulated integrals of section 3, we

give the result for the five-point pentagon and penta-box integrals at one and two loops.

Let us start with the one-loop pentagon integral. Without loss of generality, we choose it

in the orientation

F pent
5;5,1,3 =

∫

d4ZAB

iπ2

(2345)(4512)(AB13)

(AB51)(AB12)(AB23)(AB34)(AB45)
, (B.1)

and we recall the reader that because of infrared divergences we also include +m2 terms in

the definition of the propagators, see section 2. Introducing Feynman parameters, we obtain

F pent
5;5,1,3 = −2x2

35x
2
25x

2
14

∫

∞

0

dαiα5δ(
∑5

i=1 αi − 1)

(
∑5

i=1 αiαi+2x
2
i,i+2 + m2)3

+ O(m2) . (B.2)

The small m2 expansion of this integral can be conveniently obtained using Mellin-Barnes

methods. The answer depends on three variables, y1 = x2
35/x

2
13, y2 = x2

25/x
2
24, y3 = x2

14/m
2,

and can be written as

F pent
5;5,1,3 = −1

2
log2(y1y2y3) − 2Li2(1 − y1) − 2Li2(1 − y2) +

π2

6
+ O(m2) . (B.3)

We can also compute the corresponding two-loop penta-box integral. In the nomenclature

of section 2, it is

F penta−box
5;5,1,3 =

∫

d4ZABd4ZCD (iπ2)−2 N(CD13)

(AB34)(AB45)(AB51)(ABCD)(CD51)(CD12)(CD23)(CD34)
, (B.4)

where N = (3451)(2345)(4512). It evaluates to

F penta−box
5;5,1,3 = h(y1y2y3) − 2H0(y1y2y3) [f(y1) + f(y2)] + [g(y1) + g(y2)] + O(m2) , (B.5)

where

h(x) = − 7

40
π4 + 2ζ3H0(x) − 1

2
π2H0,0(x) − H0,0,0,0(x) , (B.6)

g(x) = −2

3
H2(x) + 2H0(x)H2,0(x) − 4H3,0(x) − 2H2,0,0(x) − 4H2,1,0(x) , (B.7)

f(x) = H0,1,0(x) . (B.8)
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The integrals satisfy

y1
∂

∂y1
y2

∂

∂y2
F pent

5;5,1,3 = −1 + O(m2) , (B.9)

and

y1
∂

∂y1
y2

∂

∂y2
F penta−box

5;5,1,3 = F pent
5;5,1,3 + O(m2) . (B.10)

One can check that equations (3.79) and (3.81) are indeed satisfied.
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