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Abstract - The effect of the coherent radiation on the acceleration process 
of highly charged bunches is considered. The energy dependence of the 
energy losses of a relativistic charge passing various periodic structures 
is analysed. 

At present the question of energy losses of highly charged relativistic 
bunches passing through the various structures presents some interest. The 
investigation of the dependence of energy losses on the relativistic factor 
γ = (1 - v20/c2)-½ while the bunch passes through a linear accelerator having 
in general periodic structure, appears particularly important. 

Already a long time ago1) it has been explained that in such cases the 
energy losses have a resonant character. But up to now even in the most 
recent works one has not tried to explain with sufficient completeness 
the asymptotic γ-dependence of the losses2-5). The only exception, as far 
as we know, is the case of the excitation of a "comb" of half planes for 
which an exact solution has been obtained by Bolotovskii and Voskresenskii 
and for which in certain approximations a dependence of the losses on 1/γ 
has been found. It is not clear whether this law is universal. 

The difficulty in solving problems of this kind rests in the necessity 
to account for all frequencies for which radiation is excited. It has 
been possible to find an approach for the three periodic systems considered 
below (one among them is the "comb" of Bolotovskii and Voskresenskii which 
is given for comparison), offering the possibility to estimate the asymptotic 
behaviour of the losses for large γ. 

The structure of the systems is presented in Fig. 1. Cases of point 
charges (cases I,II) and of a rod of charge (case III) are treated. The 
velocity of these sources is v0 = const. The functional relation between 
the values of the current density in the m-th (m arbitrary) and the zero-th 
element of the structure follows from the assumptions (on the symmetry) of 
the problems as: 

∞ 
(ξ+mD,t + Dm ) = 

j0
z (ξ,i). ∫ 

x 
(ξ+mD,t + Dm ) = 

j0
z (ξ,i). ∫ 

x 
(ξ+mD,t + 

v0 
) = 

j0
z (ξ,i). 0 ≤ ξ ≤ d in case I 
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(r,t + Dm 
) = j0r ( r , t ) ; jmy (y,t + 

Dm 
)= j0y (y,t) (r,t + 

v0 
) = j0r ( r , t ) ; jmy (y,t + 

v0 
)= j0y (y,t) in cases II, III 

The Fourier-components of the Hertz vectors, created by these currents of 
the secondary fields, may be presented in the form: 

ΠI = -πae-iωt 
∫d0 

jdzω(ξ)dξ 
+∞ 

e1(z-ξ)wa { j0(xs r)H
(1)

0(x,a),r<a; 
(1.1) ΠI = -πae-iωt 

∫d0 
jdzω(ξ)dξ Σ e1(z-ξ)wa { j0(xs r)H

(1)
0(x,a),r<a; 

(1.1) ΠI = -
Dω. ∫d0 

jdzω(ξ)dξ Σ e1(z-ξ)wa { j0(xs a)H(1)0(x,r),r>a; (1.1) ΠI = -
Dω. ∫d0 

jdzω(ξ)dξ e1(z-ξ)wa { j0(xs a)H(1)0(x,r),r>a; (1.1) 

ΠIIrω = - πe-iωt ∞ 

∫0rω 
(r')r'dr' 

+ ∞ c 
{ 
J1(xsr)H(1)1(xsr'),r<r'; 

(1.2) ΠIIrω = - πe-iωt 
∫ ∫0rω (r')r'dr' Σ 

c 
{ 
J1(xsr)H(1)1(xsr'),r<r'; 

(1.2) ΠIIrω = -
Dω ∫ ∫0rω (r')r'dr' Σ 

c 
{ 

J1(xsr')H(1)1(xsr'),r<r'. 
(1.2) ΠIIrω = -

Dω ∫0rω 
(r')r'dr' 

c 
{ 

J1(xsr')H(1)1(xsr'),r<r'. 
(1.2) 

ΠIIIyω = -
e-iωt ∞ 

∫0
yω(y')dy' 

+∞ e e1Xs|y-y'| (1.3) 
ΠIIIyω = -

e-iωt 
∫ ∫0

yω(y')dy' Σ 
e e1Xs|y-y'| (1.3) 

ΠIIIyω = -
Dω ∫ ∫0

yω(y')dy' Σ 
e e1Xs|y-y'| (1.3) 

ΠIIIyω = -
Dω 0 

∫0
yω(y')dy' 

e 
(1.3) 

where 

ws = ω - 2π . x a =√k3 - w3a, k =| ω |. ws = 
v0 
- D . x a =√k3 - w3a, k =| 

c |. 

The work done in the period on the source by the ω-component of the 
secondary field may be found from the formula: 

Wω = — q 
Re. |Ezω |z=v0t}v0dt.(2) 

Wω = — q 
∫ Re. |Ezω |z=v0t}v0dt.(2) 

Wω = — q 0 
Re. |Ezω |z=v0t}v0dt.(2) 

In the evaluation of the corresponding expression it turns out that all 
terms with s ≠ 0, i.e. all waves with phase velocities different from v0, 
become zero and that only the surface wave propagation with the phase 
velocity of the source gives the final result. The expressions for Wω 
will assume for the three cases the form: 



- 3 -

WIω = -
2q k 

k0( 
kn 

)Jm{ 
d 
0 

(ξ)e 
-iξ 

ω/v0 dξ}, (3.1) 
WIω = -

2q k 
k0( 

kn 
)Jm{ ∫ j (ξ)e 

-iξ 
ω/v0 dξ}, (3.1) 

WIω = -

c γ2β k0( γβ 
)Jm{ ∫ j (ξ)e 

-iξ 
ω/v0 dξ}, (3.1) 

WIω = -

c γ2β k0( γβ 
)Jm{ 

0 zω 
(ξ)e 

-iξ 
ω/v0 dξ}, (3.1) 

WIIω = 
2qk 

Re { 
∞ 

j0rω (r)Κ1 ( 
kr 

)r d r } , (3.2) WIIω = 
2qk 

Re { ∫ 
j0rω (r)Κ1 ( 

kr 
)r d r } , (3.2) WIIω = cγβ2 Re { ∫ 

j0rω (r)Κ1 ( 
kr 

)r d r } , (3.2) WIIω = cγβ2 Re { 
j0rω (r)Κ1 ( 

γβ )r d r } , (3.2) 

WIIIω = 
κ 

Re { 
∞ 
f0yω 

- k (y + a ) 

dy} (3.3) WIIIω = 
κ 

Re { 
∞ 
f0yω 

-
γβ 

(y + a ) 

dy} (3.3) WIIIω = 
κ 

Re { ∫ f0yω ( y ) e 
γβ 

(y + a ) 

dy} (3.3) WIIIω = cβ Re { ∫ f0yω ( y ) e dy} (3.3) WIIIω = cβ Re { 
0 

( y ) e dy} (3.3) 

Formulae (3) are fundamental. Estimates for Wω will be obtained from 
the corresponding estimates for the current amplitudes. The latter may 
be found, as usual, from integral equations obtained from the boundary 
conditions on the screens. For brevity, problem II is presented below, 
for the others only the results are quoted. 

The sum in Eq. (1.2) at z = 0 may be represented by an integral with 
contour , shown in Fig.2*). 

M = 

+∞ 

{ 
J1(xsr)H(1)1(xsr') 

∫{ 

J1(r√k2-( ω 
-ν)2)H(1)1(r'√k2-( 

ω - ν)2)ctg( νD )dνr 

(4) 

M = 

+∞ 

{ 
J1(xsr)H(1)1(xsr') 

D 

∫{ 

J1(r√k2-( v0 -ν)2)H(1)1(r'√k2-( v0 
- ν)2)ctg( 2 )dνr 

(4) 

M = 

Σ { = D 

∫{ 

J1(r√k2-( v0 -ν)2)H(1)1(r'√k2-( v0 
- ν)2)ctg( 2 )dνr 

(4) 

M = 

Σ { = 4πi 

∫{ J1(r'√k2-( 
ω -ν)2)H(1)1(r√k2-( 

ω - ν ) 2 ) . 
(4) 

M = 

{ J1(xsr')H(1)1(xsr) 
4πi 

∫{ J1(r'√k2-( 
ω -ν)2)H(1)1(r√k2-( 

ω - ν ) 2 ) . 
(4) 

M = 

{ J1(xsr')H(1)1(xsr) ∫{ J1(r'√k2-( v0 -ν)2)H(1)1(r√k2-( v0 - ν )
2 ) . 

(4) 

Deforming the contour into the contour ( ) (assuming for the 
root the positive sign on the right of the cuts) and further putting 
ν = k(1 + β + iβν)/β on and ν = k(1 - β - iβν)/β on , we get: 

M = -kD 
∞ 
J1(kr√/v2-2iv)J1(kr'√v2-2iv)[ctg 

kD 
(1+β+iβv)+ctg kB (1+β+iβv)]dv. (5) M = -kD ∫ J1(kr√/v2-2iv)J1(kr'√v2-2iv)[ctg kD (1+β+iβv)+ctg kB (1+β+iβv)]dv. (5) M = 

2π ∫ J1(kr√/v
2-2iv)J1(kr'√v2-2iv)[ctg 

2β 
(1+β+iβv)+ctg 

2β 
(1+β+iβv)]dv. (5) M = 

2π 0 
J1(kr√/v2-2iv)J1(kr'√v2-2iv)[ctg 

2β 
(1+β+iβv)+ctg 

2β 
(1+β+iβv)]dv. (5) 

*) As usual, we assume that k has a small imaginary part. 
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It is easy to see that the functions under the integral in (5) tend 
exponentially to zero for ν → ∞. After inserting (5) into (1.2) the 
result is further transformed by partial integration with respect to r' 
taking into account the boundary condition for the current: 

∫0rω(r)|r = a = 0. (6) 

The integral equation for j0rω is written down as: 

- E0rω = k 
∞ d(r'j0ω) dr' 

∞ 
G(v) 1-v

2+2iv J1(kr√v2-2iv)J0(kr'√v2 - 2iv)dv (7) - E0rω = k ∫ d(r'j0ω) dr' ∫ G(v) 1-v
2+2iv J1(kr√v2-2iv)J0(kr'√v2 - 2iv)dv (7) - E0rω = 2c ∫ dr' dr' ∫ G(v) 

√v2-2iv 
J1(kr√v2-2iv)J0(kr'√v2 - 2iv)dv (7) - E0rω = 2c α dr' 

dr' 
0 

G(v) 
√v2-2iv 

J1(kr√v2-2iv)J0(kr'√v2 - 2iv)dv (7) 

where Ε0 is the external field*), and where 

G(v)=etg kD (1+β+iνβ) + ctg kD (1-β-iβν). G(v)=etg 2β (1+β+iνβ) + ctg 2β (1-β-iβν). 

It is convenient to differentiate (7) again with respect to r and to sub
stitute: ν = γ2x2/√1+γ2x2. In this form we apply to the double integral 
the method of stationary phase6) taking into account that the domain where 
r ≈ r' gives the main contribution. (One may check this using the asymptotic 
expansions for the Bessel functions and taking into account the presence of 
the large parameter γ.) Restricting ourselves to the main terms we obtain 
as a result: 

-
dErw0 = 

2(1+i) γ2 . d < r j 0
r ω ) . (8) 

-

dr = kcD r . dr < r j 0
r ω ) . (8) 

From this, together with (6) we find the estimate for the current. Finally, 
after inserting this into (3.2) and integrating with respect to frequency, 
the estimate for the total energy lost by the charge in one period of the 

*) The Fourier components into which the Hertz vector of the external 
field is decomposed are introduced in Fig. 1. (K charge per unit 
length of the wire.) 
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structure is obtained: 

WII = 5 q2D 
. (9) 

WII = 

24 π a2 . (9) 

An analogous procedure performed for the "comb" gives: 

WIII = κ2D 
. (10) 

WIII = 

16 a . (10) 

Finally, for case I we give only a crude upper estimate which may be 
obtained with the help of (3.1) in the following way: Let us assume that 
j0zω is simply proportional to the amplitude of the "incoming" field E0zω 
which would enter into the corresponding integral equation. By this we 
take into account the effect of the periodicity only partially, inasmuch 
as formula (3.1) is exact and has been derived with due consideration of 
the periodicity of the structure, while in the expression for j0z we neglect 
the screening of the charge by the neighbouring elements, i.e. to a certain 
extent we take the most unfavourable case. As a result, the following ex
pression for the total loss is obtained: 

W1 = A q2d . (11) W1 = A 
a3y . (11) 

where A is a numerical coefficient which remains unknown in the given 
approximation. 

As a conclusion, we may note that the obtained estimates show that in 
the high-relativistic limit the losses tend at least to a constant limit 
with indefinite increase of γ. The deviation of the result for the system 
of half planes from that by Bolotoskii and Voskresenskii who state the 
formula (Ref. 3): 

w = 2k
2D β 

(12) w = a γ (12) 

for the loss, may be explained by the fact that in the asymptotic formula 
(12) only the frequency domain ka ≥ γ has been taken into account, while 
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in formula (10) ka ≥ 1. It is difficult to compare the numerical results 
given in Ref. 3 calculated from the exact formula, with (10), since cor
responding points on the calculated curve lie too near to zero. 

Finally, we give the formula for the losses in case II, when the 
system is excited by an infinitely thin charged ring of radius b [with 
(a - b)/b « 1]: 

WII = 10-2 q2d . (13) WII = 10-2 
a ( a - b ) 

. (13) 
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