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From unphysical gluon and ghost propagators to physicaéghll propagators David Dudal

1. Introduction

QCD is a strongly coupled theory, where nonperturbativesfgyplays a crucial role. As such,
it is hard to handle analytically. A way out to investigatanperturbative physics is model building
(e. g. by using holographic QCD models, effective models fiie PNJL model or others). Another
extremely powerful tool is simulating QCD on a finite lattié@ne can also attempt to quantize the
theory in the continuum and try to get as good as possiblerirdton out of this by a variety of
techniques. The latter philosophy shall also be employéhigwork.

With lattice QCD, expectation values of gauge invariantrafmgs can be computed without the
need of gauge fixing. The eventual numerical estimates fgsipal quantities like a particle’s mass
are in good agreement with experimental data. The merittti€éaQCD is that it can also provide
us with physical information in theories which do not appiearature. Some famous examples are
QCD with a number of colors other than 3 or QCD without quaddsigdynamics). In the latter
case, the physical spectrum supposedly exists of coloplessglue states, the glueballs, sBd]1, 2]
and references therein.

We recall the classic&U(N) Yang-Mills action ind = 4 Euclidean space time,

1
Sm=7 / d*xF3, RSy - (1.1)
This action possesses an enormous local invariance w.r.t.
Ay — AL = ST9,S+STAS  SeSUN), (1.2)
or in infinitesimal form

a
Al

— A+DPw’, DP=0,6%—gfA. (1.3)

We need to reduce this enormous overcounting of physicajlyvalent gauge configurations by
fixing a gauge. In principle we have a complete freedom to ddJswally, one can pick a gauge
suitable for the problem under study. However, there is guoittant restriction, as one should be
assured that the eventual gauge fixed theory needs to bamrelimable. Not every gauge belongs

to the class of renormalizable gauges.

We shall now focus on one particular example of a renormialezgauge, viz. the Landau
gauge,d,A; = 0. This is a very popular gauge in the continuum, as it has nmés®/ (quantum)
properties [B]. According to the Faddeev-Popov procedinegauge fixed action reads

Sem+ Syt = / d*x (%Fﬁv +b29, A% + T, Df,bcb> : (1.4)

This gauge fixed action no longer enjoys a local gauge imregaHowever it gets replaced by the
equally powerful nilpotent BRST symmetig(Sy m + S¢) = 0,

sA% — —Dabch, sc,a:gfabccb&, $f=b*, sf=0, £=0, (L5

which can be used to prove the perturbative renormalizgbéind perturbative unitarity of the
theory.
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2. Gauge (Gribov) copies and the Gribov-Zwanziger (GZ) appoach

During the Faddeev-Popov procedure, it is always tacitbuased that there is one and only
one solution to the gauge fixing condition. Gribov was the tiosrealize this to be wrong and
constructed explicit examples in his seminal wdik [4]. If take A, in the Landau gaugeé, A, =
0, and consider an (infinitesimal) gauge transformathp,: Ay, +Dyw, then we quickly see that
a“A’“ =0if 9,Dyw = 0. Apparently, we encounter gauge copies if the Faddeew\Poperator

M2 = —g, D3 (2.1)

has zero modes. In order to exclude these copies from theérgatral, Gribov proposed to restrict
the integration to the Gribov regio wheredA =0 andM > 0. This Q corresponds to local
minima of the functionalfd“fo, along the gauge orbits. This is already an improvement of the
original Faddeev-Popov quantization procedure. The gurestirns out to be how to implement
this kind of restriction toQ in the continuum formulation? Gribov and later on Zwanziggr
worked out this problem and proved many properties of there@, for example that every gauge
orbit passes throug® [[]. We should however warn thé still contains copies, not related to zero
modes of the Faddeev-Popov operafbr [7].

After a lengthy analysis, Zwanziger was able to implemeatréistriction to the Gribov region
Q to all orders by means of a local action, known as the Gribaa2ziger (GZ) action. The
eventual GZ partition function becomé$ [5]

Zrp = / [dA] [dic] o] [db] [d ] [d ] [dev] [de] e %2, (2.2)
with
Soz = SIM+ St +Sppun+ Sy,
Syowo = [ dX(950, (985 + g1 RE[) ~ 0, (3, ff + g1 AEGY)
~g(av@y) Fm(Dye)° o5)
S = —yzg/d“x (fabCA3¢2°+ FAARGLE + g (N*-1) y2> , (2.3)

where extra bosonia(, ) and fermionic (v, @) fields were introduced. The paramejecarries
the dimension of mass amdustbe self-consistently fixed to the nonzero solution of théofeing
gap equation 5

EV:':IC

3y =0, (2.4)
commonly known as the horizon conditiof] [5], thereby giving- Aqcp, a typical example of
dimensional transmutation. It can be easily checked thigt 00 one recovers the Faddeev-Popov
theory. It is important to mention that this actidn {2.3) def a renormalizable theory s¢¢ [[5, 8]
and references therein.

What about the BRST symmetry? One can naturally extend tHeTBsymmetry to the new
fields'

ac ac ac 7-ac ac ac
p= Wy, sw; =0, swy =9, sp; =0. (2.5)

IFory = 0, we then obtain a trivial extension of the usual FaddegqwR@gauge theory.
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The symmetry of the original action under the BRST transftiam is softly broken
Sz = gy / d4x(fab°Af,w2°— (DEm™) (92 + ¢3°)) . (2.6)

With softly we mean that it is proportional to the mass par&@mng, thus it can be controlled at the
guantum level. Very recently, an equivalent formulationttaf GZ theory was given in which case
the breaking is even converted into a linear break[hg [9].

Apparently, treating gauge copies a la GZ leads to a losseoBRRST symmetry. As such, the
situation of how to define physical states also becomes leas (see later).

3. Why studying propagators?

During the past decade, a lot of effort went into the investan of the elementary gluon
and ghost propagators. One might wonder why so much studgvisted to these gauge variant
guantities, as these do not correspond to physically mebuquantities? Propagators are the
basic building blocks of quantum field theory: they do ddsthe propagation of the elementary,
albeit perhaps unphysical, degrees of freedom and theyharéstimplest” objects to compute.
In any Feynman diagram-based approach to QCD, propagatpesaa This reaches far beyond
perturbation theory, one needs only to think about Schwiiyeson, Bethe-Salpeter, sum rules,
... approaches to QCD, which are all nonperturbative in natureaddition, since gluons are
confined at low energy, we might expect to see something in@italready at the level of the
propagators.

These propagators were also intensively studied usingdagtmulations, in particular in the
Landau gauge. This gauge is very suitable to be simulateitl,cagresponds to searching for the
minima of the functionalfd“fo, along the gauge orbits. As such, one gets the “exact” propa-
gators and can compare those with analytical results inrdodéest the latter. If analytical and
lattice results are in good agreement, we may have a certgjred of confidence that the analyt-
ical approximation scheme gives reasonably good propegjatdiich can then be used in other
computations which depend heavily on knowledge of nongeative propagators.

In Figure 1, taken from[[30], we show the lattice SU(3) Landauge gluon propagator and it

Renormalized Gluon Propagatqt = 3 GeV
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Figure 1: Gluon propagator renormalized at= 3 GeV.
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is clear that there is no sign of a blow-up in the infraredjagly occurring when using perturbation
theory in the massless Faddeev-Popov scheme. This is fivdicd nonperturbative effects, and
we shall try to motivate that these might be related to Gribopies.

4. The Refined Gribov-Zwanziger (RGZ) approach

Using the action[(2]3), it is readily verified that the treeglegluon propagator reads

2 p?
D(p°) = A
which is indeed infrared suppressed, although it vanishexntradistinction with the lattice Fig-
ure 1. We have set hede = 2g2Ny*. These effects persist upon including loop correctignf.[11
For the ghost propagat@(p?), one can prove at any orddf [5] or compute explicifly] [12]tthy
invoking the gap equatior (2.4)

(4.1)

1
pZG(pz) ~ E ) for p2 ~ 07 (42)

which again seems to be at odds with large volume lattice [i&fa

Apparently, something is missing in the Gribov-Zwanzigaemfulation as standing. In order to
overcome this, in[[14, 15] extra dynamical effects due topesturbatived = 2 condensates were
taken into account. We recall that tde= 2 condensate was popularized in the last decennium,
thanks to works like[[16, 17, 1.8]. As a result of the analysise finds a gluon propagator of the

form [L4,[15]

D(1?) = iy (4.9
P = P (M M2 P2+ M2n? 1 22Ny '
wherebyr? andM? are mass scales corresponding to condensates, in particula

m~ (A%, M?~ (P¢ — Dw) . (4.4)

We observe thaD(p?) is still infrared suppressed, bi(0) # 0 thanks to the presence bf?.
Hence, the gluon propagator lattice data is already quisktg reproduced. For the ghost, one
finds [14.[1]G(p?) ~ é for p2 ~ 0, again consistent with lattice data.

Having found a reasonable qualitative agreement, one mightler whether the lattice data
for the gluon could also be quantitatively fitted with a proator of the form[(4]3). This was tested
in [Ld]. The fit with m? = 0 did not work out well, indicating thatA?) is of importance. The
following continuum extrapolated values were reported

M?=215+0.13 Ge\?, nmP=-181+0.14Ge\?, 2¢°Ny*=4.16+0.38 Ge\}, (4.5)

leading to the fits displayed in Figure 2 for the gluon propagand its form factor. We see that
the fit works out well up tqp ~ 1.5GeV. As a byproduct of this analysis, an estimate fordhe2
gluon condensate was obtained,

(A% _10cev™ 3GEVE, (4.6)
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Renormalized Gluon Propagatory-= 3 GeV Renormalized Gluon Dressing Functionu= 3 GeV
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Figure 2: Fit to the lattice gluon propagator (left) and form factag().

which is in the same ballpark as other, rather independeptoaches, se¢ [L0] for references.

It is apparent that the RGZ framework seems to be able to ibesguite well the nonperturba-
tive (gluon) propagator. One is thus lead to believe that R&Zbe a good starting point to study
nonperturbative aspects of Landau gauge QCD. Future warllldtbe devoted to try to compute
the scales irD(p?) in a clean analytical fashion using an effective potentigiraach. Recently,
in [L9] an even more general RGZ setting was proposed. Weluwdedhis first part of our talk
by drawing attention to similarly good-looking results fitve two basic propagators in other ap-
proaches obtained by solving Schwinger-Dyson equati@eseme of the other proceedings and

(3. 231.

5. Glueballs in the (R)GZ approach and the concept oi-particles

There is however more to life than gluon and ghost propagatas the latter are believed to
be unphysical, one should look what the physical degreeeflbm could be, such that these can
be described by the (R)GZ theory. Therefore, we need to lé@iueball correlation functions.
The big question is how to proceed from the “simple” gluomgttto the “less simple” glueball?

It turns out to be useful to consider two sets of variablesndé¢he old variables (gluons,
ghosts and extra GZ fields), which are useful for renormabrassues, and a set of new variables,
the so-called-particles [2R], useful for spectral issues.

Let us first introduce theseparticles. We notice that there are 2 complex (conjugaiie)ry
“masses” in the propagatof (}.3), given certain bounds ossnsaales, which are for example
fulfilled by the numbers[(4]5). A set of@ masses immediately leads to a tree level gluon positivity
violation (which is also seen on the lattice), meaning thatgluon cannot be a physical excitation
[B€]. One can believe this is reflective of gluon confinem@iij[ We also observe that there is a
field mixing in the tree level RGZ action

1
/ dx <§Aﬁ(_025,w — 0u0y)AS + R~ ) P50+ P PP (90— 60 + baa“Aﬁ> . (5.1)
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Thesecc masses are a bit hidden in these variables; we shall alst’set0 for the remainder of
this talk. By using a set of linear transformatiofig| [22], ftbeegoing tree level action can however
be recast in the following form

2_ i I M2 2 i JINE— 2
/d4x[%}\ﬁ<—d2+M I g)\ M ))\ﬁ+%r]ﬁ<—62+M a ;M M )r]ﬁJrrest.

Clearly, the new field?\7 andnj havecc masses. They contain the gluon fields, which are un-
avoidably mixed with the (R)GZ content due gz 0. We call these novel fields theparticles of
the (R)GZ theory. The question how to describe glueballhénR)GZ context is still unanswered.

A first potential pitfall is how to define a physical subspadgthaut BRST invariance? These
i-particles are obviously unphysical, which can be callashfmement” if one is of a very optimist
nature. But gluon confinement is of course more. We shoulbeta define a physical subspace
of purely gluonic states (i.e. glueballs), which should detay into unphysical gluons/ghosts/

It looks like we need a symmetry to define such a subspacetthexpelling the unphysical stuff.
This smells like a BRST symmetry application, but the GZattreaks BRST as we have seen
already. In [2B], it was shown how to construct a local albeit nilpotent BRST symmetry of an
equivalent version of the GZ theory, but it remains unclé#ris symmetry is sufficiently strong to
define a physically sensible set of glueball operators.

A second pitfall concerns the renormalization of a suitajileeball operator. As a glueball
is a kind of bound state of gluons, we need a suitable (locahposite operator, whose quantum
numbers correspond to the glueball state under investigafAs glueballs are physical, we expect
gauge invariant composite operaford\gain, the loss of the quantum version of the BRST sym-
metry seems problematic. Nevertheless, in case of thergglakeball, it was shown in[24] that a
renormalization group invariant extension of the cladbiggauge invariant operatd?ﬁv(x) can be
constructed in (R)GZ. As expected, there is operator-mixinc?®

O =Fj, +5(d = 4 operator$+ y*(d = 2 operators+ EOM-terms (5.2)
Notice that, unlike in usual QCD,
(0()O)) # (F2, (IFZ %) ) (5.3)

the reason being the BRST breakingy?. This means that the mixing terms do influence the
correlator.

How should a general glueball operato(x) look like in the (R)GZ world?O(x) should be
renormalizable, and foy = 0, we expect to find back the original QCD cohomology outpuist
something of the form

Oy—o(X) = gauge invariant operaters(d = 4 operatoy + EOM-terms (5.4)
Hence, fory # 0, we seem to be driven to

Oy.0(X) = gauge invariant operater s(d = 4 operatoy
+y?(d = 2 operatoy + EOM-terms (5.5)

20r more precisely, quantum BRST cohomology classes, if we hanilpotent BRST operator.
3EOM-terms stand for terms proportional to the equations ofiom.
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The discussion on renormalization of classically gauganawnt operators is most easily given in
the old variables. The story changes when we want to checkhehéhe operator generates a
physical two-point function. In order to speak about a ptaispropagatof(p?) = (O(p)O(—p)),
D(p?) must have a decent spectral representation

Z * p(t) dt 2

A(p?) = , eC 5.6
(p) pz—l—m,%+ Tot+p2 p ( )

so thatA(p?) displays a branch cut only along the negative axis, withtjpesdiscontinuityp(t),
given by

p(t) = % EILr& [A(—t—ig) —A(—t+ig)].

This positivity can be easily understood from the opticadiem sincep is proportional to the
cross section, which ought to be positive. Tin@ > 0 correspond to physical particle masses,
while 19 > 0 corresponds to the multiparticle-threshold.

As demonstrated irff [22], thieparticles are very suited to derive the spectral represiemt of
e.g. the correlation function built witﬁﬁv. At lowest order, we can work in the quadratic tree level
(Abelian) approximation, in which casﬁgfv, rewritten ini-particle field strengths, reads

1 1 1
O(X) = Efﬁv fﬁv :)‘ﬁvnﬂv+§)‘ﬁv)\ﬁv+§nﬁvnﬁv- (5.7)

A priori, it is unclear how to compute the spectral repreatah, as the Cutkosky cut rules are in
principle only intended for use with real masses in Minkoisgace. This problem can neverthe-
less be handled, but discussing this here would lead us.td &t suffice to mention that a few
examples were worked out ifi ]22].

Foroy(x) = Aj,nfy, it turns out that
_ [P p)dt

(01(p)or(—p)) = o T+ P2 with p(t) > 0. (5.8)

This is good news, as this represents a physical spectraseptation. On the contrarg,(x) =
1/2A5,Af +1/2n3,nf, leads to

oa(proz(-py= [ P o 59

curve inC T+ p2

thereby displaying cuts in the complex plane. Unfortungattis also means that the tree level
version ofF 3, itself, viz. f, = 01+ 02, leads to an unphysical correlatgr[22].

It would then seem that only takinkfj, njj, is a good choice, since
Adunfy = i, +rest (5.10)

and it leads to a physical correlation function. Howeveis thiperator falls outside the clags {5.5),
and it therefore seems to be doubtful to be renormalizabke,dontrollable beyond the tree level.
In addition, we do not have any information yet on the spépit@perties beyond tree level either.

4We work in Euclidean space.
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We are currently investigating an operator of the kind
fﬁv + s(other operators+ y?(other operators (5.11)

restricted to the Abelian level. If the spectral propertisuld turn out to be OK, the fornj (5]11)
would allow to at least write down an extension of the operédathe quantum level. One can
then try to investigate its renormalization and, if possilils higher order spectral properties. This
kind of operator [(5.71) would also fit with the new BRST cousted in [2B]. From the tree level
results, if they are physically decent, one can also alrexthact information on glueball masses,
perhaps along the lines ¢f[25] where a GZ-like theory wadistliin relationship with glueball-like
operators.

We conclude that it is apparently very hard to accommodatel genormalization and good
analyticity properties at the same time when it comes toftiingdysof glueball operators. We believe
this is not only of relevance to work in the (R)GZ context, butall people active in propagator
research: how can one go from the unphysical gluon/ghogtagators to a well-defined physical
subspace of glueball operators, which can be controlleth@igiantum level. In addition, one
should also try to find reasonable estimates for the gluehaises[[2]. This looks like a very
ambitious program, but we hope that it will stimulate a lothefwv research in the coming years.
It would also be interesting to find out whether the differehetween GZ and RGZ plays a role
when it comes to glueball properties. Also the issue of a BR§gTimetry needs to be further
clarified, even in the Schwinger-Dyson context due to themitdlly subtle role played by boundary

conditions [2p[ 28] 39].
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