LHCb Hardware Early Running Experience

Karol Hennessy

on behalf of the LHCb Collaboration

LHCb

- LHCb is a flavour physics detector, designed to detect decays of b- and c-hadrons for the study of CP violation and rare decays.
- Forward arm spectrometer as both b's primarily produced in the forward direction
- LHCb expected to operate in current config to 2015
- Open Detector 10-300mrad
- Reach nominal luminosity in 2011 *L*=2x10³²cm⁻²s⁻¹

Precision Instrument

LHCb

LHCb

Vertex Locator

Vertex Locator

- Primary tracking and vertexing detector - R and ϕ sensors
- n⁺-in-n silicon
- S/N ~ 20
- CO₂ cooling
- An aluminium foil (300µm thick) separates the 42 VELO modules from the LHC vacuum
- Retractable halves 8mm from beam!
- Rad. Hard Innermost region 1.3x10¹⁴ n_{eq}/ cm²/year

Locator

45

<u>특</u>40

Resolution 05 05

25

10

4µm peak resolution

best at LHC!

Projected angle 0-4 degrees

Projected angle 7-11 degrees

Binary Resolution

70

VELO - LHC

- Provide essential feedback to LHC
- Look at beam gas events determine crossing angle
- determine absolute luminosity

• extract beam shapes and monitor stability of beam using VELO

video

Silicon Tracker

- p-in-n "long strips" 9cm, 11cm, 22cm, 38cm
- Strip pitch 183µm, 198µm
- Resolution 65µm
- S/N good
- noise rate 10⁻⁵
- Winter technical stop
 - replace hybrids with broken bonds, service boxes, modules

VCSEL - Front-end optical transmitter

- Biggest cause of inefficiency in ST
- See discussion in Optical WG
- Dying VCSELs

- 2 /month reason unknown testing with manufacturer
- also seen in other subdetectors
- replacing during technical stops
- easier than ATLAS/CMS due to open detector

Beetle chip - Front-end ASIC

- Common to silicon detectors VELO & ST
- Samples at 40MHz
- Analogue output and transmission to counting room
 - 60m copper cables with no loss of S/N

- Pedestal shift On some chips pedestal is rate dependent usually a step function with cut off ~10kHz
 - Solution tune pedestals to rate
- Beetle derandomiser needs better emulation at high rate

Outer Tracker

- Straw tracker surrounding part of ST
- <50ns drift time
- OTIS FE Time-to-Digital Converter ASIC performing well
- Repairs
 - ~20 FE boxes exchanged
 - adding Cu shields to front-end boxes in winter stop for noise reduction

Separation of K,π,p

Provide the second secon

- Hybrid Photon Detectors 20kV
 - Noise-less can detect single photons
 - Pixel chip design error introduces small dead time at high rate

Calorimeters

- SPD/PS, ECAL, HCAL
- Sampling calorimeters Interleaved scintillator and absorber
- Each Calo scintillator tile read out via MAPMT pixel photomultiplier
- System very stable
- HV modifications required noise improved

Muon Chambers

Muon Chambers

- Multiwire Proportional Chambers, except M1R1 triple GEM
- HV power supplies
 - resistor on daughter boards faulty, had to replace on 2500 boards
 - high infant mortality, ~25% had to be repaired/ replaced by manufacturer
 - much more stable with recent replacements and repair
- CARIOCA (amp, shaper) & DIALOG (logic)- no problems
- SYNC (TDC) minor mis-timing bug tightened time window -> OK.

TELL1 - Common readout board for LHCb

- Failing TELL1s
 - 10/292 this year, very little in last few months
 - often during powercuts
- Tell1 replacements
 - Not plug and play
- Firmware on FPGAs
 - enables same board to be used by different sub-detectors
 - Lots of testing/emulation needed before firmware upgrade qualified
 - requires a lot of support from subdetector
- Tell1 high rate issues resolved in new firmware

Trigger

- L0 Hardware trigger uses 1.6GHz high speed opto-links
 - L0 Decision Unit no problems
- HLT Farm
 - 550 servers, 4 core, 1GB ram/core = 1/3 of final configuration (staged)
 - Upgrade expected soon

Timing

- Global LHCb timing
 - Calorimeter timed to beam crossing (0.75ns)
- Other subdetectors time to calorimeter
- VELO all links timed to 1ns
 - Equalise pre-spill/spillover
- OT good to ~2ns

General LHCb Improvements

- Work on reducing down-time during beam
 - automatic recovery of failing DAQ systems
 - exclude/include trigger farms on the fly during data taking
 - problems in monitoring/calibration do not halt running
 - fewer problems running at high rate (100-200kHz L0)
- Some things can't be prevented
 - Thunderstorms, general powercuts, network outages
 recovery time ~6 hours
 - Learned much from recent test power-cuts faster in future
- Interface with LHC
 - High level of automation, interlocking
 - Shifter required for confirmation
 - VELO critical most sensitive part of LHCb

Detector	Efficiency	
VELO	99.3	
ST	99.1	
OT	>99.9	
RICH	96.3	
CALO	CALO >99.9	
MUON	99.8	

LHCb Increasing Data rate/size

- Multiple Interactions 1.5 per bunch crossing designed for 0.7
 - high occupancies, large event size (85kB vs 35kB), storage backpressure
 - identifies bottlenecks
- At higher luminosity
 - need new trigger config as data rate goes up
 - harsher cuts at L0 trigger
 - harsher cuts in HLT
- Current running scenario closer to upgrade design
 - Adapted firmware/software to cope with large event sizes

Luminosity Uptime

Conclusion

- LHCb showing excellent performance
- Over 91% uptime for *total* luminosity delivered this year.
 - Typically 97% in recent months
- Most subdetectors >99% working channels
 - others fixed/replaced in winter stop
- LHCb is a precision physics detector with unique capability
 - Will reach its physics potential next year
- Looking forward to fruitful years of physics to come.

5250

5200

5150

5100

0

4

6

8

10

Z⁰ Candidate

Timing

Time after peak (ns)	Prespill %	Spillover %	S/N loss %
0	2.0	24.5	0
1	4.0	21.8	1.6
2	6.2	19.2	1.5
3	9.2	16.8	2.2
4	13.0	14.6	4.4
5	17.5	12.5	6.4
6	22.9	10.5	8.7

