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Abstract

The response of RPC detectors is highly sensitive to environmental parameters. A novel approach
is presented to model the response of RPC detectors in a variety of experimental conditions. The
algorithm, based on neural networks, has been developped and tested on the CMS RPC gas gain
monitoring system during operation at the scaled-down prototype recirculation gas system.
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Abstract

The response of RPC detectors is highly sensitive to environmental parameters. A novel approach is presented to model the
response of RPC detectors in a variety of experimental conditions. The algorithm, based on Artificial Neural Networks, has been
developed and tested on the CMS RPC gas gain monitoring system during commissioning.
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1. Introduction

Resistive Plate Chamber (RPC) detectors [1] are widely
used in HEP experiments for muon detection and trig-
gering at high-energy, high-luminosity hadron colliders, in
astroparticle physics experiments for the detection of ex-
tended air showers, as well as in medical and imaging ap-
plications. At the LHC, the muon system of the CMS ex-
periment [2] relies on drift tubes, cathode strip chambers
and RPCs [3] for the muon trigger system, with a total gas
volume of about 50 m3.

The response of RPC’s is strongly dependent on environ-
mental parameters as temperature, pressure and relative
humidity, as well as on other operational parameters typ-
ical of the application chosen such as radiation dose. An-
other important parameter is the bakelite resistivity that
is an intrinsic parameter of each chamber.

The dependence of RPC response from environmental
parameters has been studied in the past [4] and several
parameterizations have been proposed.
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In this paper a new approach is proposed to model the
response of the RPC detector via a multivariate strategy.
Full details on the algorithm developed and results can be
found in Ref.[5]. The algorithm, based on Artificial Neu-
ral Networks (ANN), allows one to predict the response of
RPC’s as a function of a set of parameters, once enough
data is available to provide a training to the ANN. As ini-
tial stage, environmental parameters (temperature T, at-
mospheric pressure p and relative humidity H) have been
considered. Further studies including radiation dose are un-
derway and will be subject of a forthcoming paper. In a pre-
liminary phase we trained a neural network with just one
parameter and we found out, as expected, that the predic-
tions constantly are improved after adding parameters into
the network. The agreement found between data and pre-
diction has to be considered a pessimistic evaluation of the
validity of the algorithm, since it also depends on the pres-
ence of unknown parameters not considered in training.

The data for this study have been collected utilizing the
gas gain monitoring (GGM) system [6][7][8] of the CMS
RPC muon detector, during commissioning with cosmic
rays in the ISR test area at CERN. The GGM system mon-
itors efficiency and signal charge continuously by means of
a cosmic ray telescope based on RPC detectors. The GGM
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is described in details elsewhere [6][7][8].

The GGM system is composed by the same type of RPC
used in the CMS detector but of smaller size (2 mm-thick
Bakelite gaps, 50x50 cm?). Twelve gaps are arranged in a
stack. The trigger is provided by four out of twelve gaps of
the stack, while the remaining eight gaps are used to moni-
tor the working point stability. A 3/4 majority coincidence
is required to acquire the cosmic ray event.

In this study, the GGM was operated in open loop mode
with Freon 95.5%, Isobutane 4.2%, SFg 0.3% gas mixture.
Six gaps out of eight were used. The monitoring is per-
formed by measuring the charge distributions of each cham-
ber. The six gaps are operated at different high voltages,
fixed for each chamber, in order to monitor the total range
of operating modes of the gaps (Table 1). The operation
mode of the RPC changes as a function of the voltage ap-
plied.

Table 1
Applied high voltage power supplies for GGM RPC detectors used
in this study

CH1|CH2|CH3|CH6|CH7|CH8

Applied high voltage (kV)|10.2| 9.8 {10.0|10.4|10.2{10.4

This study will be used in the CMS RPC muon detector
which uses a gas gain monitoring system for the control of
the detector working point for changes due to gas mixture
variations. Parameters such as gas mixture components or
contaminants are difficult or impossible to parameterize.
Once the response of the RPC detectors will be adequately
described by the ANN model described in this note, any
discrepancy between prediction and data will provide in-
formation on parameters not used in the training, such as
material changes, gas contaminants, gas mixture changes,
etc.

2. The Artificial Neural Network simulation code

An Artificial Neural Network (ANN) is an information
processing paradigm that is inspired by the way biological
nervous systems, such as the brain, process information [9].
An ANN is configured for a specific application, such as
pattern recognition or data classification, through a learn-
ing process. The commonest type of artificial neural net-
work consists of three groups, or layers, of units: a layer of
input units is connected to a layer of hidden units, which
is connected to a layer of output unit. The activity of the
input units represents the raw information that is fed into
the network. The activity of each hidden unit is determined
by the activities of the input units and the weights on the
connections between the inputs and the hidden units. The
behavior of the output units depends on the activity of the
hidden units and the weights between the hidden and out-
put units. For this study temperature, humidity and pres-
sure have been selected as inputs and anodic charge as out-
put. For the ANN an error back-propagation pattern with
3 hidden layers. It was demonstrated [10] that the number

of layers is not critical for the network performance, so we
decided to go with 3 layers and give to the neural network a
sufficient number of hidden units automatically optimized
by a genetic algorithm that can take into account several
configurations.

For each configuration, in each layer there are a number
of neurons between 2 and 12, the genetic algorithm per-
forms the training process with an estimation of the global
error; then the configuration is stored and the genetic al-
gorithm continues to evaluate a slightly different configu-
ration. Once the algorithm has taken into account all the
possible configurations the best one in terms of global error
is chosen. The error is calculated point by point just with
the comparison between the neural network forecast and
the experimental data.

During the training phase the network is taught with
environmental data as input, the output depends on the
neuronal weights, that at the very beginning are initialized
with random numbers. The network output is compared
with the experimental data we want to model, and in this
phase the network has an estimation of the error, the error
itself is back-propagated into the network in order to modify
the weights to minimize the error.

Once the training is complete the network’s weights are
optimized to have the minimum error for the chosen net-
work pattern, the genetic algorithm goes on considering
several configuration in an automatic way and the really
optimal network along with its structure is returned. Such
a network is ready to be executed in a none taught period,
with different input data. Thanks to this approach it is pos-
sible to have a prediction, in terms of charge measurement,
with a good accuracy, in the future also the dark current
will be added as a target parameter in the neural network
simulation, and both the charge measurement and the dark
current will be used to spot a pathological behavior. In that
case the resistivity will play an important rule in order to
deal with different responses given by different chambers,
built with different bakelite sheets. In this study the GGM
is the system used to train the neural network with charge
measurement but this approach will be used more in gen-
eral with RPC CMS detectors, using the dark current as
output variable in the neural network.

3. Environmental parameters and datasets

The environmental parameters are monitored by an Ore-
gon Scientific weather station WMR100. The WMR100 has
relative humidity, pressure and temperature built-in sen-
sors in the main station and the possibility to add remote
wireless sensors for both temperature and relative humid-
ity. The DAQ has been modified in order to acquire via
USB the environmental informations and merge environ-
mental parameters with performance detector parameters
such as efficiency, average anodic charge and avalanche
and streamer area. The accuracy of the temperature sen-
sor £1°C in the range 0 —40°C and the resolution is 0.1°C.



The relative humidity sensor has an operating range from
2% to 98% with a 1% resolution, 7% absolute accuracy
from 25% to 40%, and £5% from 40% to 80%. The barom-
eter operational range is between 700 mbar and 1050 mbar
with a 1 mbar resolution and a £10 mbar accuracy.

The online monitoring system records the ambient tem-
perature, pressure and humidity of the GGM box, as well
as the gas mixture temperature before and after each RPC
gap, also the pressure and the relative humidity are mon-
itored and recorded both inside the box that contains the
RPC stack and in the gas mixture before and after each
gap. The dataset used is composed of four periods, each pe-
riod composed of runs. Each run contains 10* cosmic ray
events where environmental parameters and GGM anodic
output charges are collected. The acquisition rate is typi-
cally 9.5 Hz.

4. Results

Typical simulation outputs show generally good agree-
ment between data and prediction (Fig. 1). In periods
where prediction is not accurate, the discrepancy is typi-
cally concentrated in narrow regions (”spikes”).

300

250

200

150

—+—Nn forecast

<adc channels>

100 —=—Experimental data

50

0

NN ;o
o0 n N~

109
127
145
163
181
199
217
235
253
271

runs

Fig. 1. Gap 7 trained on the period 3 - prevision on the same period

The overall agreement between data and prediction is
shown in Fig. 2 where the quantity
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is plotted for all four periods, divided for training and pre-
diction respectively. The error distribution for the predic-
tions is much wider than for the training as expected.

The distribution of the error for the predictions shows
a Ofwhm ™~ 7% where O fwhm = Ffwhm/2-36 width with
very long tails, due to points with very large discrepancy
between data and prediction. The cases with very large dis-
crepancy were studied in detail, and found to be charac-
terized by a (p, T, H) value at the edges of the parameter
space.

To quantify the position of each point in the (p, T, H)
parameter space, the centroid of the distribution of runs in
the (p, T, H) parameter space
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Fig. 2. Error for training (left) and prediction (right) for all runs.
Gaussian fit superimposed.
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were computed. The distribution of the % error as a func-
tion of the norm ||x|| (Fig. 3) shows three distinct struc-
tures. The satellite bands with very large error were studied
in detail. All data point in such bands belong to period four
and chamber six for which problems were detected. Period
four and chamber six therefore were excluded in the anal-
ysis. The distribution of the error as a function of r, after
this selection has a o fuwpm ~ 4% width and nongaussian
tails extending up to % = 200%.
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Fig. 3. Distribution of error as a function of the ||x|| norm for all
runs, six chambers and both training and prediction.

A selection on the fiducial volume in the x parameter
space (Table 2) was applied in order to avoid runs on the
boundaries of the (p, T, H) space. After the selection cuts,
predictions on two periods based on training on the third
period were performed. The selection cuts provide o fiyhm ~
5% error, as summarized in Table 3.

Table 2
Synopsis of selection cuts for fiducial volume.

‘(958 < p < 968)mbar|(19.4 < T < 20.4)°C|(34 < H < 44)%




Table 3
Summary of errors o fyhm and nongaussian (NG) tails for various
selection cuts and samples.

Data sets 0 pwhm|NG tail
% %
6 chambers, 4 periods train. 123 2.26
6 chambers, 4 periods predict. 358 6.60
Ch.6 and per.4 excluded predict. 251 4.63
Predict. on per. 2 and 3, train. on per. 1 273 3.52
Predict. on per. 3 and 1, train. on per. 2 229 2.95
Predict. on per. 1 and 2, train. on per. 3 127 1.63
Predict. on per. 2 and 3, train. on per. 1, fiducial cuts| 38 0.49
Predict. on per. 3 and 1, train. on per. 2, fiducial cuts| 77 0.98
Predict. on per. 1 and 2, train. on per. 3, fiducial cuts| 23 0.29

5. Conclusions

A new approach based on ANN in modeling the response
of RPC detectors was presented, and preliminary results
obtained with data from the CMS RPC GGM system
were described. The model, once trained on the response
of a detector well within the parameter space (p, T, H), is
able to predict the response in other periods with a bet-
ter than ofunm ~ 10% accuracy. With this approach it
is possible to model the RPC response in terms of anode
charge; this prediction once demonstrated in good agree-
ment with experimental data, can be a very useful tool to
spot pathological behavior for example due to pollutants
in the gas mixture. Besides the anode charge, also the dark
current is an important indicator of the chamber perfor-
mance and studies are in progress to use the dark current
in the training phase. The use of the dark current will be
very important in operating and maintaining the CMS
RPC detector, where the current of hundred of chambers
is monitored and recorded online without any environ-
mental correction. This approach, once properly trained,
could spot immediately and online pathological chambers
whose behavior is shifting from the normal one. Further
studies are in progress to determine and cure the residual
nongaussian tails of the AT?Q errors distributions, to deal
with training and prediction on detectors with different
high voltage supply, to widen the sample of environmental
conditions, and in adding new dimensions to the parame-
ter space such as radiation levels.
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