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Abstract

In this lecture we discuss the basic ingredients for gaugarisnt quantum
field theories. We give an introduction to the elements ohta field theory,

to the construction of the basic Lagrangian for a generajgaeory, and pro-
ceed with the formulation of QCD and the electroweak Stashdidmdel with
electroweak symmetry breaking via the Higgs mechanism. phlemomenol-
ogy of W andZ bosons is discussed and implications for the Higgs boson are
derived from comparison with experimental precision data.

1 Introduction

Relativistic quantum field theory is the adequate theamkframework to formulate the commonly ac-
cepted theory of the fundamental interactions, the StahWadel of the strong and the electroweak
interactions [1-4]. The Standard Model summarizes ourgnmtelsnowledge of the basic constituents of
matter and their interactions. It is a gauge invariant quanfield theory based on the symmetry groug
SU(3) x SU(2) x U(1), with the colour grougp'U (3) for the strong interaction and withi/ (2) x U (1)

for the electroweak interaction spontaneously broken byHlggs mechanism. The renormalizability
of this class of theories allows us to make precise predistior measurable quantities also in highel
orders of the perturbative expansion, in terms of a few ipawameters. The higher-order terms contail
the self-coupling of the vector bosons as well as their auiéons with the Higgs field and the top quark,
even for processes at lower energies involving only lightnfens. Assuming the validity of the Stan-
dard Model, the presence of the top quark and the Higgs basthreiloop contributions to electroweak
observables allows us to obtain indirect significant bowrdtheir masses from precision measurement
of these observables. The only unknown quantity at preseheiHiggs boson. Its mass is getting more
and more constrained by a comparison of the Standard Modédighions with the experimental data,
preparing the ground for a crucial test at the LHC.

In these lectures we give an introduction to the basic elésradra relativistic quantum field theory
in the Lagrangian formulation, involving scalar, vectargddermion fields, and indicate how to calculate
amplitudes for physical processes in perturbation thedtly thie help of Feynman graphs. The principle
of local gauge invariance is explained in terms of the waliwn example of Quantum Electrodynamics
(QED) with an Abelian gauge symmetry and is then generalipettie case of non-Abelian gauge in-
variance and applied to the formulation of Quantum Chromadyics (QCD). In the formulation of the
electroweak theory the gauge principle has to be supplexddmnt the concept of spontaneous symmetr
breaking with the help of the Higgs field and by Yukawa intéitats, for embedding massive particles
in a gauge-invariant way. Excellent textbooks [5] are a@dé for further reading.

The presentation of the structure of the electroweak Stdndadel is followed by a discussion
of the phenomenology df” and Z bosons and of tests of the electroweak theory at presentusume: f
colliders. The accurate predictions for the vector bososses, cross sections, and theaesonance
observables like the width of thé resonance, partial widths, effective neutral current nggonstants
and mixing angles at th& peak, can be compared with precise experimental data, eligkant impli-
cations for the empirically still unexplored Higgs sectdhe present situation of the Higgs sector ant
expectations for the upcoming experiments are summanizgeeifinal section, together with an outlook
on supersymmetric Higgs bosons.
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2 Elements of quantum field theory
2.1 Notations and conventions

Natural units (formallyi = ¢ = 1) are used everywhere. Lorentz indices are always denotepidak
charactersy, v,.. = 0,1,2,3. Four-vectors for space—time coordinates and particle emanhave the
following contravariant components,

= (zM) = (2°,7), 2°=t,
p=0"=0"p), p’=E=Vp?+m?
Covariant 4-vector components are related to the conieataromponents according to
ay = g a”,

with the metric tensor

1 0 0 O

1o -1 0 o0
(g,uV>_ 0 0 _1 0
0o 0 0 -1

yielding the 4-dimensional squares resp. scalar products,
0,2 = Guv al'a” = a',uafu, a-b= G,'ubu = G,Obo —a-b.

Covariant and contravariant components of the derivativesised in the following notation,

_ 0 _ v vo__ 0 0 __ k __
8;L_8ggﬂ_gltVav 0 _8SUV [6 _607 0 __8k]7
82
Dzauﬁf‘:@—A

The quantum mechanical states of spiparticles with momentunp = (p°,7) and helicityoc =
—s,—s + 1,--- ,+s are denoted in the conventional way by Dirac Kets>. They are normalized
according to the relativistically invariant convention

<po|po’>=2p"(p—p") b0 - 1)

A special state, the zero-particle state or the vacuumentisply, is denoted byp >. It is normalized to
unity,

<0]0>=1. (2)

2.2 Lagrangian formalism

The Lagrangian formalism of quantum field theory allows uadocommodate the following basic fea-
tures:

— space—time symmetry in terms of Lorentz invariance, a$ ageinternal symmetries like gauge
symmetries,
— causality,
— local interactions.
Particles are described by fields that are operators on &g mechanical Hilbert space of the particle

states, acting as creation and annihilation operatorsditicies and antiparticles. In the Standard Model
the following classes of particles appear, each of themritestby a specific type of fields:
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— spin-0 particles, described by scalar fietds),
— spin-1 particles, described by vector fields(z),
— spin-1/2 fermions, described by spinor fieldse).

The dynamics of the physical system involving a set of fiedigsioted here by a generic field variable
is determined by the Lorentz-invariant Lagrangianwhich yields the action

stel = [ d'a£(6(). ®
from which the equations of motions follow as Euler—Lagmaeguations from Hamilton’s principle,
0S5 = S[p+ 09| — S[p] =0. 4)

In particle mechanics with generalized coordinatesand velocitiesj;, the Lagrangiar.(q1, . . . G1, - - . )
yields the equations of motion € 1,...n)

d oL 0L
at 04 Oa; ©
Proceeding to field theory, one has to perform the replacemen
g — o(x), G — uo(x), Llq,- - qnsG1s- - Gn) — L(B(7),0,0(x)) (6)
and obtains the equations of motion as field equations,
oL oL
0y ————=0, 7
h 90.0) 96 0
for each field (or field component), which is indicated hereh®ygeneric variablé.
2.3 Free quantum fields
2.3.1 Scalar fields
The Lagrangian for a free real scalar field, describing rméspinless particles with mags,
1 o M
L= (0u0) = 50 ®)
yields the field equation according to (7), known askie&in—Gordon equation
(O +m?)¢=0. 9)
The solution can be expanded in terms of the complete seangphaves ™+,
1 d3k " .
- - - —tkx t ikx
0ox) = G [ g k) 7 el ) (10

with k0 = 1/ 152 + m2. Constituting a quantum field, the coefficieatand the Hermitian adjoint’ are
operators that annihilate and create one-particle stagesAppendix A),
al (k) 10> = k>

a(k) | > =2k 63k — k") [0> . (11)
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The wave functions of one-particle states are given by thgliardes of the field operator between the
one-patrticle states and the vacuum,

1 . 1 )
<Ok > = g e™, <K@ >= g o, (12)

distinguishing between states of incoming (first) and ougdsecond) particles.

A complex scalar field! # ¢ has two degrees of freedom. It describes spinless partidiash
carry a charge:1 and can be interpreted as particles and antiparticles. @geangian

L= (0.0)(0"¢) —m* ¢l (13)

yields the field equation (9) as above, but in the Fourier egjpa one has to distinguish between the an
nihilation and creation operatots o' for particle states+, k> andb, b' for antiparticle states—, k>,

6) = o [ Tk b)) a4)
Xr) = (27‘(‘)3/2 2k‘0 a e e
where
al(k)|0>= |+,k>, b (k) [0>= |—, k> (15)
a(k) |+, k' >= 2k°83(k — k') [|0>, b(k)|— k' >=2k°83(k —k')[0> .

Whereas wave functions describe free particles withoutesgame limitations, the important con-
cept of thepropagatoror Green functioris required whenever the propagation from a point-like seur
at a given space-time point is considered. Such a Greeridanb{x — y) is a solution of the inhomo-
geneous field equation

(O +m?) D(x —y) = —5*(x —y). (16)
The solution can easily be determined by a Fourier transdtam
Dla—y)= [ S Dig e (17)
yielding Eqg. (16) in momentum space,
(k> —=m*)D(k) =1. (18)
The solution
iD(k) = —— (19)

k2 —m?2 + e
is the causal Green functior the Feynman propagatoof the scalar field. The overall factéris by
convention; the term-ie in the denominator with an infinitesimal> 0 is a prescription of how to treat
the pole in the integral (17); it corresponds to the speaainolary condition of causality faD(xz — y)

in Minkowski space, which means (see Appendix B)

— propagation of a particle fromto x if 20 > 4°,
— propagation of an antiparticle fromto y if 3° > 2°.

In a Feynman diagram, the propagator occurs as an interregl Whereas wave functions (resp. thei
Fourier transformed in momentum space) are always assedaidth external lines representing the phys:
ical particles in a given process. We introduce the follavgnaphical symbol for the scalar propagator:
the momentunk always points into the direction of the arrow which denotesftow of the charge of
the particle (for neutral fields the arrrow is irrelevant).

iD(k)  e--->--e
k
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2.3.2 \ector fields

A vector fieldA, («) describes particles with spin 1. Their stafles > can be classified by momentum
and helicityA = +1, 0 for massive particles, and= =41 for particles with mass zero.

Massive caseFor a given particle mass, the Lagrangian for the free system (‘massive photon’),
N L R T A A 2
L= _Z F‘“VF — 7 m with FMV = 8“ v — 8V ) ( 0)

yields from (7) (withyp — A,) the field equation, known as tiroca equation
[(O+m?) g™ —o"0"] A, = 0. (21)

Special solutions are plane waves A
ft)\) +ikx (22)
with three linearly independent polarization vect@ﬁé), which are transverse and can be chosen ¢
orthogonal and normalized,
Nk =0, NN =gy, (23)

and which fulfil the polarization sum

3

. kky
E 6;(;\) eN = —Guv + 7’;2 . (24)
A=1

The solutions (22) form a complete set, and the fig¢ldcan be written as a Fourier expansion,
d3k (N —ikx T \) * _ikx
Ap(z) = 3/2 Z %0 [ax(k) € (k) e + a)(k) e (k)" e ]. (25)

The coefficients are the annihilation and creation opesaibpatrticle states,
al(k)[0> = |kA>
ax(k) KN > = 2k083(k — k") 6w 0> . (26)

As in the scalar case, the wave functions of one-particlestare given by the amplitudes of the field
operator between the one-particle states and the vacuum,

LRy CIAAL(@)]0 S= ——— Ny (27)

<O|A“($)| kX >= W P (271_)3/2 P

corresponding to incoming and outgoing states. In momerdpace, the wave functions are just the
polarization vectors.

The Feynman propagatoof the vector field,D,, (x — y), is the solution of the inhomogeneous
field equation with point-like source,

[(O+m?) g = 0"0°] Dp(x —y) = g", " (x —y) . (28)

By Fourier transformation,

4 .
D, (x —y) = / ((21T])€4 D, (k) eik@=y) (29)
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one obtains an algebraic equation foy, (k),
[(—k* + m?) g"" + k"kP] D, (k) = g*, . (30)

The solution is the Feynman propagator of a massive vectdr fie

, i kuk,
/LDpl/(k) = m <_gyp + m2 ) . (31)
As for the scalar propagator in (19), the factas by convention, and the-ie term in the denominator
corresponds to the causal boundary condition.

Massless casefor particles withm = 0, like photons, the fieldl,, corresponds to the 4-potential and
the Lagrangian is that of the free electromagnetic field,

1

£:4

F,F* with F,, =0,A, — 0,A,. (32)
The field equations are Maxwell’s equations for the vectdepial,
(Og" —o"9") A, =0. (33)

There are two physical polarization vect@%m for the transverse polarization, wigh'2) - k=0.The
third solution of (33) with a longitudinal polarization wece,, ~ &, is unphysical; it can be removed by
a gauge transformation

Al (x) = Ay(x) + Oux(z) =0 with x(z) = +ietike, (34)

The equation for the propagator of the massless vector filtairfs from (30) settingn = 0:
(—k*g" + k'kP) D,y (k) = K" D, (k) = g, . (35)

This equation, however, has no solution sidce’k, = 0, i.e., k, is an eigenvector ok’#* with eigen-
value0, which means that the determinant/f*” vanishes. It is therefore not straightforward to defin
a propagator for a massless vector field. Since the basionéagauge invariance, the common strateg’
to overcome this problem is to break the gauge symmetry bingdd £ a gauge-fixing term (which
in classical Maxwell theory corresponds to choosing a $igegauge). Such a term, widely used for
practical calculations and corresponding to the classioeéntz gauge, has the following form,

1

2¢
where¢ is an arbitrary real parameter, called a gauge-fixing par@nithe choicet = 1 defines the
Feynman gaugde The accordingly extended Lagrangian

Ly = (8;LAM) ? ) (36)

1 , 1
L= FuwF" - 5

; (9,4)? 37)
modifies the operatak#? in momentum space as follows,

KMo —y KHP é KM kP (38)
and (35) is replaced by the equation,

[~ K2 g™ + (1 %)k”kﬂ D (k) = g", | (39)
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which now has a solution for the massless propagator, namely

kk,

i Dy (k) z

—Gup + (1 =) (40)

T K2 e

It becomes particularly simple in the Feynman gauge fer 1. Note that addindCg, to the Lagrangian
does not have a physical impact since the induced extra terthe propagator are &, and vanish in
amplitudes for physical processes: photons always coogleetelectromagnetic currejit, which is a
conserved current with,, j¥, or equivalentlyk, ¥ = 0 in momentum space.

The graphical symbol for the vector-field propagator (fothbmassive and massless) is a wavy
line which carries the momentutand two Lorentz indices:

iDy (k) e~
p k v

2.3.3 Dirac fields
Spin-% particles, like electrons and positrons, with masare desribed by 4-component spinor fields,

©
1/)(56) = ( ) : (41)
(x)

The dynamics of the free field is contained in the Dirac Lagiam,
L= ("8, —m) v, (42)
involving the adjoint spinor
=91 = (145, —45, —¢]) - (43)

The Dirac matrices* (u = 0,1, 2, 3) are4 x 4 matrices which can be written with the help of the Paul
matriceso 2 3 in the following way (the Dirac representation),

p=(3 ) #-(2% %)

They fulfil the anti-commutator relations
{777 = A =20 (45)
The Lagrangian (42) yields tHeirac equationas the equation of motion,
(170 —m) ¢ = 0. (46)
There are two types of solutions, corresponding to paréiok anti-particle wave functions,
—ipax

u(p) e and  v(p)e™” (47)

where the spinora andv fulfil the algebraic equations

(#—mulp)=0,  ($+m)v(p)=0. (48)
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Thereby, the notationt = v*a, applying to any 4-vectos,, has been used. The solutions (48) corre
spond to momentum eigenstates with eigenvalteT hey can further be classified as helicity states wit|
helicity o = +1/2 by the requirement

S G uop) =), 5 (57) vo(p) = o v0(p) (49)
with
i=<g g) and ﬁ:%. (50)
The normalization of the spinors is given by
Uy Ug! = 2M o Vg Vgt = —2M Ogg' (51)
Other useful relations are
Y uptly=gtm, > v, T,=p-—m. (52)

Having determined a complete set of solutions of the Dira@a#qgn (46), we can now write the Dirac
quantum field as an expansion in terms of these solutions,

¥(z) = 3/2 Z / 950 [co (k) up (k) e + df(k) v (k) e** ], (53)

where the coefficients are annihilation operateysfor particles andi,, for anti-particles, as well as
creation operatorsI, andd), for particles and antiparticles, respectively. In QEDctlense™ are by
convention the particles and positrons the antiparticl¥sosing the:* field as a concrete example, we
thus have

k) |0>= |e ko>, di(k)|0>= |et ko>

- o - o 54
co(k) e ko' >= 2k 3 (k — k")0pe [0>, do(k) et ko' >= 2k033(k — k') §5or 0> . ®4)

There are four types of wave functions, for incoming and ourtg particles and antiparticles,
1

<O ko > = g () e <c holu(a)lo >= ﬁ vy (k) 7 |
_ 1 . _ 1 ‘
<O0[g(x)]et ko > = R Uo(k)e ™ <o kolih(z)|0 >= Wua(k) etk (55)

In momentum space, dropping tk@r)~3/2 factors and the helicity indices, we describe the situatior
as follows using a graphical notatiok &lways denotes the physical momentum flowing towards ¢
interaction point for incoming and off an interaction pdiot outgoing states),

incoming particle u(k) —>—e
incoming antiparticle v(k) —<—e
outgoing antiparticle v(k) e—<—
outgoing particle u(k) e—>—

The arrows indicate the flow of thgarticle charge. Note that for antiparticles the direction of the mc
mentum is opposite to the arrow at the line.

We still have to determine the propagator of the Dirac fieldicl is the solution of the inhomo-
geneous Dirac equation with point-like source,

(iv"9, —m) S(x —y) = 15*(x —y). (56)
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A Fourier transformation t&'(k),

4 .
Sw—u) = [ g SH e, (57)

transforms the condition (56) into a condition f8(k) in momentum space,
(k—m)S(k) =1. (58)
The solution is a x 4 matrix,

B i (k4 m)
 KF—mtie k2—m2+ie’

i S(k) (59)

where thetie prescription is the causal boundary condition, as for taéas@nd vector field propagators.
We introduce a graphical symbol for the propagator,

1 S(k) —>—e
k

The arrow at the line denotes the flow of tharticle charge; the assigned momenténalways points
into the direction of this arrow. The propagator appearsastarnal line in Feynman diagrams.

2.4 Interacting fields

So far we considered only free fields, which are describeddgrangians that are quadratic in the fielc
variables and yield linear equations of motion. Interattierms contain higher monomials in the fields.
and a full Lagrangian with interaction has the form

L= Lo+ Lint, (60)

whereL is the free field part and;,,; describes the interaction. In general, the resulting inmogal field
equations cannot be solved in an exact way. The conventgirakgy is perturbation theory with the
free fields as starting point, treating the interaction amallsperturbation. This is justified as long as the
interaction is sufficiently weak.

A powerful method for obtaining the perturbative amplitsader physical processes is the expan:
sion in terms of Feynman diagrams. As a concrete and prégticseful example, we consider Quantum
Electrodynamics (QED), the theory of electron/positrod photon interactions. The QED Lagrangian
is given by

NS 1 LV I
Lqep = Y(iIV' 0y — m)Y — ZF’“’FI + Lax + eyt Ay, (61)
where the interaction term
Ling = jM A, with j# = eyt (62)

describes the coupling of the electromagnetic curfgént e1)y*1) to the photon fieldd,,. The new
element is an interaction pointyartex which connects the three fields4h,; and which is obtained by
stripping off the field operators, yieldingy*. Also for the vertex, a graphical symbol is introduced witt

lines connected to a point:
/\I\I\< Z'ef}/#
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Note that the factof is a convention. The lines can be either propagators (iaeor wave functions
(external) in momentum space. They carry momenta which teaftdfil momentum conservation. For-
mally, momentum conservation follows via Fourier transfation from the exponentials in the wave
functions (27,55) and the propagators (29,57) when goimgdmentum space.

Collecting all the information, we give the complete list eéynman rules for QED, with the
photon propagator in the Feynman gauge. For fermions diffdrome (or p, 7), an extra factor for the
different charge appears in the vertex, as indicated in thekiets. Helicity indices are suppressed fo
the wave functions.

NN 6‘2;'-‘{;? photon propagator(= 1)
Q _) 1€
_5_ i% fermion propagator
MA< iev"(Qy) electron—photon vertex
ANNAAND
k — eu(k) incoming photon
€, (k) outgoing photon
[ AV Vo
k—
>—o
b= u(p) incoming fermion
p— v(p) incoming anti-fermion
—>» _ _
p— u(p) outgoing fermion
p— v(p) outgoing anti-fermion
— =

To obtain the transition matrix element, the amplitutle;; for a physical procesg >— |f > (see
Section 3), one has the following recipe.

e For a process with given external particles draw all diagraonnecting the external lines by ver-
tices and propagators. The lowest order corresponds toaghiesginvolving the minimum number
of vertices, which determines the power of the coupling tamts in the matrix element.

¢ Insert the analytical expressions for the wave functiongpagators and vertices from the Feynmai
rules. The arrangement of spinors is thereby opposite tartiogv at a fermion line.

e Impose momentum conservation at each vertex.

e Sum over all diagrams, paying attention to the relative sigich occurs when two fermion lines
are interchanged (according to Pauli’s principle).

Note that the factor§2z)~3/2 from each wave function are omitted so far. They are colteglebally
and reappear in th8-matrix element and the cross section, respectively (&2@&il) We demonstrate
the method for the process of electron—positron annibitainto muon pairse™e™ — pp~. There
is only one Feynman diagram in lowest order, displayed in EigThe analytical expression for the
amplitude according to this diagram is given by

62

Myi = (q)ier"u(p) ( G > u(p)ieyv(q') = i =5 v(g)v"u(p) TP )y v(q). (63)

Q2 + ic Q?

10
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Fig. 1: Lowest-order Feynman graph fete~ — u*p~. The momenta with directions are indicated at each line

SinceQ? = (p + q)* > 4m?, theie term in the photon propagator is irrelevant and can be dihppe

The next-order contribution 81 ;, which is~ e, contains diagrams with closed loops. Exam:
ples are displayed in Fig. 2. Since inside a loop one momergdrae, not fixed by momentum conser-
vation, loop diagrams involve a 4-dimensional integratioer the free momentum (Section 7.2.1).

DAY=t

Fig. 2: One-loop order Feynman graphs fore™ — u™p~ (examples)

3 Cross sections and decay rates

This section provides the kinematical relations necesgargetting from the matrix elements for physi-
cal processes to observable quantities, like cross sectiot decay rates.

3.1 Scattering processes

For a given scattering processa + b — by + by + - - - + b, the S-matrix elementSy; =< f|S|i >
is the probability amplitude for the transition from an ialtstate|a(p,), b(py) > = |i > to a final state
|b1(p1), - - - bn(pn) > = | f > of free particles. Fofi > |f >, one can write

Spi = (2m)* 1P, — Py) My, (2m) 302/ (64)
with the d-function from momentum conservation,
Pi=po+pp=Pr=pi+-+0n, (65)

the (27r)~3/2 factors from the normalization of the external wave funtsicand with the genuine matrix
elementM y; derived from the Feynman graphs for the scattering proddssdifferential cross section
for scattering into the Lorentz-invariant phase space etgém

d3 d3
a0 — Lo Lo
2p7 21791

(66)

11
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is given by
(2m)*
4\/(pa “pp)? — m2mj

The expression in the denominator is the relativisticailyariant version of the incoming flux-normal-
ization factor. As a special example of practical imporggnge give the cross section for a two-particle
final statea + b — by + b in the centre-of-mass system (CMS), whgket p, = 0 = p1 + pa:

do = IMyi? (2m) 72" (P, — Py) do. (67)

do 1 Ipl
dQ  647%s |pa|

| Myil? (68)

with s = (pa + pp)? = (P2 + pY)? and the solid angldQ = sinfd d dy involving the scattering angle
0 = (pa, P1), and the azimutkp with respect to the polar axis given by. For high energies, when the
particle masses are negligible, one has the further sirgaiiéin |7 | = [Py |-

3.2 Particle decays
For a decay process— by + ba + - - - + by, Where|a(pg) >= i >, |bi(p1), - bn(pn) >=|f >, the
(differential) decay width into the phase space elenddnis given by

(277)4 2 —3n 54

In the special case of a two-particle decay with final-stagssasn; = my = m one has the simple

expression

dr 1 [ 4m? 9

dQ ~ 6472 m, L= m2 Ml (70)
4 Gauge theories

The powerful principle of gauge invariance dictates thadtire of the interactions between fermions
and vector bosons as well as the vector boson self-interetilt is the generalization of the Abelian
gauge symmetry found in Quantum Electrodynamics (QED)datim-Abelian case.

4.1 Abelian gauge theories — QED

QED can be derived by the requirement that the gld@b@l) symmetry of the Lagrangian for the free
charged fermion field, i.e., the symmetry of

Lo=1(VOu—m)¥ (71)
under the phase transformation
V(@) = Y (x) = () (72)

for arbitrary real numbers, can be extended to a symmetry under local transformatidreyen —
a(z) is now an arbitrary real function. This necessitates thegree of a vector fieldl,, and the
minimal substitutiorof the derivative inl, by thecovariant derivative

Oy — D,y = 0, —ied,, (73)
yielding a Lagrangian that is invariant under the local gatrgnsformations

U(z) = P(z) = @ y(a),

12
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Au(e) = A @) = Ay(e) + -~ uale) (74)

which form the electromagnetic gauge grolifl). As an immediate consequence, the invariant Le
grangian describes an interaction of the vector field withalectromagnetic current (62),

L=19(iv"Dy—m) = Lo + e Py Ay = Lo+ Lint - (75)
The vector field4,, itself is not yet a dynamical field since a kinetic term isl stilssing. Such a term
can easily be added invoking the expression well known friassical electrodynamics,

1
La= ~1 F,,F"  with the field strengths F},, = d,A, — 0, A, , (76)

which is invariant under the local gauge transformation).(74, thus becomes the photon field obeying
Maxwell’s equations.

4.2 Non-Abelian gauge theories

The three basic steps yielding QED as the gauge theory ofébhr@nagnetic interaction:
() identifying the global symmetry of the free Lagrangian,
(if) replacingd,, via minimal substitution by the covariant derivatiig, with a vector field,
(i) adding a kinetic term for the vector field,

can now be extended to the case of non-Abelian symmetriaslass$.
(i) The given non-interacting system is described by a rpigitiof fermion fields with mass:,
U = (Y1,19,...1,) T, and the free dynamics by the Lagrangian
Lo=V (0, —m)¥ with W= (¢y,...10,). (77)
Ly is invariant under global transformations
U(z) = Ulad,...a™M)¥(z), (78)

with unitary matriced/ from ann-dimensional representation of a non-Abelian Lie graumpf rank
N, depending onV real parametera!,...o". Physically relevant cases afe = SU(2) andG =
SU(3), where the fermion fieldg, . . . ¢, form the fundamental representations with- 2 andn = 3,
respectively.

The matriced/ can be written as follows,
U(a1’ ' ”aN) — ¢ila' Tt +aNTy) : (79)
with the generators of the Lie group,, . . . Ty. These Hermitian matrices form the Lie algebra
[Taa Tb] =1 fabc T. (80)

with the structure constani$,. as real numbers characteristic for the group. Conventigribk gener-
ators are normalized according to
1
ﬁaﬂwziah (81)

(i) The global symmetry can now be extended to a local symyri@t converting the constants
a® in (79) to real functionsv*(x), a = 1,... N, and simultaneously introducing a covariant derivative
in (77), via

Oy — D, = 0, —igW,, (82)
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involving a vector fieldW ,, together with a coupling constagt(the analogue of in QED). SinceD,,
acts on thex-dimensional column, the vector field is & x n matrix and can be expanded in terms of
the generators,

W, (z) =T, Wj(r) (summationovera=1,...N). (83)

In this way, a set ofV fields W (x), the gauge fields, enters the Lagrangian (77) and inducesenac-
tion term,

Lo—L=Ly+ Ling Wwith Ling =g VYW, ¥ = gUy*T, U W]

I

(84)

which contains the interaction & currents;j’ = g¥~+#T, ¥ with the gauge fieldsV ;.

The local gauge transformation that leav&énvariant, involves the matrit/ = U(al(x),...)
and reads as follows,

UV UV =UV,

W, » W, =UW, U - é(@MU)U_l . (85)
The gauge transformation for the vector field looks more liamivhen written for the components and
expanded for infinitesimal®(x):

1

We— W' =W+ g On + fabe Whae. (86)

The derivative term corresponds to (74) in the Abelian cmelast term is of pure non-Abelian origin.
Note: The construction works in the same way for a multipfetaalar fieldsb = (¢1, ... ¢,)7, with

Lo = (0,2)1(0"®) —m?d'® — L= (D,®)(D'd)—m?dTd. (87)

(iii) The kinetic term for thé¥ fields can be obtained from a generalization of the electgmaiic
field strength tensoF),, in (76),

Fu =T,F, =9,W, - 0,W, —ig[W,, W, (88)
with the N components
Ffl, = 0,W5 = 0,W,i + gfare Wi W (89)
Under the gauge transformation (85) the field strength istoamed according to
F. —F,=UF,U". (90)
As a consequence, the trdte(F ,, F*”) is gauge invariant,
Tr(F',, F*") = Tt(UF,, U ' UF*U ) = To(U'UF,, U UF*) = Te(F,, F*),  (91)

and provides the non-Abelian analogue of (76) for the kintetim of the gauge fieldd’?,
1 1 1 a a, LV
EW = —5 TI'(FMVFM ) = _Z F;,LVF m (92)
The quadratic part ofy, describes the free propagation of thé fields, but there are also cubic and
quartic terms describing self-interactions of the vectelds that are determined exclusively through th

gauge symmetry:

1 a a a,V 14 a
L == OIS = 0,W}) ("W — 9 W)
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- g Fabe (B2 — 8, W) WhH W
2
g C L e,V
— 7 fabefade Wh W Whewe . (93)

In the gauge field Lagrangiausy and. 4, the vector fields are strictly massless. Mass tel@%qﬁ/gW“’“
are not invariant under gauge transformations and thusdimelak the gauge symmetry.

5 Formulation of QCD

Quantum Chromodynamics (QCD), the gauge theory of the gtirtieraction, is formulated following
the principle of the previous section for the specific castefsymmetry grougs = SU(3). The basic
fermions are quarks in three different colour states, fogihe fundamental representation of the groug
They are described by triplets of fermion fieldis= (q1, ¢2,¢3)” for each quark flavor, d,.... The
colour groupSU (3) has eight generatofg,, which in the triplet representation

Ta:§)\a7 a=1,...8, (94)
are expressed in terms of eightx 3 matrices, the Gell-Mann matrices,. The covariant derivative,
acting on the quark triplet¥,

D VA
D, =0, —igs 7GW (95)

and the field strengths
G4, = 0,GY — 0,G% + gs fare GLGS (96)

involve eight gauge fields, the gluon field, and the coupling constant of QCD, the strong couplin
constanty,, which is commonly expressed in terms of the finestructunsizmt of the strong interaction,

2
_9s
as = 97)
The Lagrangian of QCD (for a given species of quarks) can dasily be written down according to the
rules of Section 4 (see also Ref. [6]),

Lqcep =¥ (iv" Dy, —m)¥ + L

7 (5~ s, t)\fl a 1 a a, v

=V (iv"0, —m)¥ + g, ¥y ?\I/GM — ZG’“’G MY (98)

It involves the interaction of the quark currents with theayi fields as well as the triple and quartic
gluon self interactions as specified in (93), graphicallgptiiyed as Feynman rules for QCD in Fig. 3.
There is also a gauge-fixing term in the Lagrangian for eaabrgfield (not explicitly written here),
which can be chosen in the same way as for the photon field )ry{8@ling the same form for the gluon

propagators as for the photon propagaor in (40).

The quark mass: appears in QCD as a free parameter for a given colour triftiés. different
for different quark flavours; its origin is of electroweaktma and will be discussed in the subsequer
section.

Note that the Lagrangian above considers only a singleapetilavour. For the realistic physical
situation of six flavours, one has to introduce a colourétifidr each flavouy = u, d, . . . t and to perform
a summation ovey, with individual masses.,,.
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k

e Quark-Gluon-Vertex: a ‘wp‘< igs(Ta) k"
l

e Quark-Propagator: e—m—e ing:g:_k = ¢_ni+i6

e Gluon-Propagator: &« QQQQQm %

c
e Triple-Gluon-Vertex: a wpﬁ
b

a d

e Quartic-Gluon-Vertex: M

b C
Fig. 3: Propagators and interactions in QCD

6 Formulation of the electroweak Standard Model

The fundamental fermions, as families of leptons and quaittsleft-handed doublets and right-handed
singlets, appear as the fundamental representations gfebe.SU (2) x U(1),

Ve Uy v,
e ) M ) T y €RrR, MR, TR
L L L
U c t
( d > y ( s ) ’ < b > y UR, dRa CR, SR, tR7 bR (99)
L L L

They can be classified by the quantum numbers of the weakiisdsp;, and the weak hyperchargé
Left-handed fields havé = % and thus form doublets, right-handed fields are singletis Wit 0. The
Gell-Mann—Nishijima relation establishes the relationttidse basic quantum numbers to the electri

chargeQ:

Q=1 + % (100)

The assignment of the quantum numbers to the fundamentainiegnd quark fields is contained in
Table 1 for the fermions of the first generation (identicaltfee second and third generation).

This structure can be embedded in a gauge invariant fieldytefahe unified electromagnetic
and weak interactions by interpretisg/ (2) x U (1) as the group of gauge transformations under whic

Table 1. Quantum numbers isospify, and hypercharg& for the left- and right-handed leptons and quarks
together with the electric chargg

v e |er| up, dp | ur | dgr
I3 | +1/2 -1/2| O | +1/2 -1/2 0 0

Y | -1 -1 | -2 | +1/3 +1/3| +4/3 | -2/3
Q 0 -1 -1 | +2/3 -1/3 | +2/3 | -1/3
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the Lagrangian is invariant. The group has four generators,
To=1,(a=1,2,3) and Ty=Y, (101)
whereY is the Abelian hypercharge, atig are the isospin operators, forming the Lie algebra
Lo, Ip) = i€ape Ic,  [la, Y] =0, (102)

This electroweak symmetry has to be broken down to the el@etgnetic gauge symmetty(1)epn,
otherwise thelW*, Z bosons would be massless. In the Standard Model, this is bipriee Higgs
mechanism in its minimal formulation requiring a single gdield which is a doublet und&U (2).

According to the general principles of constructing a gaimgariant field theory with spontaneous
symmetry breaking, the gauge, Higgs, fermion and Yukawss jidithe electroweak Lagrangian

Lew=Lo+Lyg+Lr+ Ly (203)

are specified in the following way.

Gauge fields.SU(2) x U(1) is a non-Abelian group with generatofg, Y, wherel, (a = 1,2, 3) are
the isospin operators and is the hypercharge. Each of these generalized chargesosiatesl with a
vector field: a triplet of vector fields/,;’>* with I; » 3, and a singlet field3, with Y. The isotripletiV’¢
and the isosingleB,, lead to the field strength tensors

WS, = 0, W — 0, W + ga eape WIWE,

j%

B, = 0,8, — 0,B,. (104)

Since the gauge group is semi-simple and contains two fadtwere are two independent gauge couplin:
constants, denoted hiy for the non-Abelian factofU (2) and byg; for the Abelian facto/(1). From
the field tensors (104) the pure gauge field Lagrangian

1 a v,a 1 174
Lo=—swawee - Lp,p (105)

is constructed, which is invariant under gauge transfaonatcomposed of (85) and (74). Explicit mass
terms for the gauge fields are forbidden because they vigkatge invariance. Masses for the vecto
bosons of the weak interaction will be introduced in a secsteg below by breaking the electroweak
symmetry spontaneously with the help of the Higgs mechanism

Fermion fields and fermion—gauge interactions. Since the representations of the gauge group a
different for fermions with different chirality, we have thstinguish between the left- and right-handec
fields. We use the generic notation for the chiral fields,

L= L+7s
2 2

The left-handed fermion fields of each lepton and quark famith generation index are grouped into
SU(2) doublets and the right-handed fields into singlets,

, j ,
i=< i*) i (107)

with the component index = + denotingu-type fermions {) andd-type fermions {). Each left- and
right-handed multiplet is an eigenstate of the weak hy@egdl” such that the relation (100) is fulfilled
(see Table 1). The covariant derivative

Y = Y, Yr= (U (106)

Y 1
DI =0, —igIP"WS +ig 5 Bu with Ik = 50a =0 (108)
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induces the fermion—gauge field interaction via the miniguddstitution rule,
Lp=> G1iV"Diy] + > b, iv" Dy, (109)
J 3o
where the indey runs over the three lepton and quark generations (99). Matehe covariant deriva-

tives are different for th& and R fields.

Mass terms are avoided at this stage. They would mix left+iyind-handed fields as, for example,
in me(erer + erer) and hence would explicitly break gauge invariance. Theyhalintroduced later
with the help of gauge-invariant Yukawa interactions of iienions with the Higgs field. Note that in
the genuine Standard Model neutrinos are considered asassssid there are no right-handed neutrin
fields.

Higgs field and Higgs interactions.Here we describe how spontaneous breaking ofthi€2) x U(1)
symmetry can be obtained, leaving the electromagneticegaulggroud’(1).,, unbroken. For this aim,
a single isospin doublet of complex scalar fields with hypargeY = 1,

_ [ 9" (@)
o) = %) ) (110
is introduced and coupled to the gauge fields via minimaltitubien as indicated in (87),
Ly = (Du®)!(D"®) —V(®), (111)

with the covariant derivative fof = % andY =1 given by

Duzﬁu—z‘gg%ﬂfl‘}—i—i%Bu. (112)

The Higgs field self-interaction enters through the Higgeptial with constantg? and ),
V(®) = —p? dTd + % (DTD)2. (113)

In the ground state, the vacuum, the potential has a mininﬁmnM,A > 0, the minimum does not
occur for® = 0; instead,V is minimized by all non-vanishing field configurations wii® = 2,2 /.
Selecting the one which is real and electrically neutiab, = 0, with

Y 10
a=n+5=(4 o) (1)
one gets th&#acuum expectation value
1 0 . 20
<P>=— with v=—F. 115
7(0) ¥ (119)

Although the Lagrangian is symmetric under gauge transdtions of the fullSU(2) x U(1) group,
the vacuum configuratior: ® > does not have this symmetry: the symmetry has spemtaneously
broken < & > is still symmetric under transformations of the electromet@ subgroud/(1)e.,, which
is generated by the chardg thus preserving the electromagnetic gauge symmetry.

The field (110) can be written in the following way,

B o+ ()
o) = < (v + H(z) + ix(x)) /2 ) ’ (116)
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where the components™, H, x have vacuum expectation values zero. Expanding the patémfi3)
around the vacuum configuration in terms of the componeetdsyia mass term fdif, whereas)™, and

x are massless. Exploiting the invariance of the Lagrandlacomponents™, x can be eliminated
by a suitable gauge transformation; this means that theyrgrkysical degrees of freedom (called Higgs
ghosts or would-be Goldstone bosons). Choosing this péatigauge where™ = x = 0, denoted as
the unitary gauge, the Higgs doublet field has the simple form

1 0
®(z) = 7 ( v+ H(z) ) , (117)
and the potential (113) reads
2 2 M2 M2 M2
V = u2H? + %H?’ n f?fﬂ = Shm 4+ SR S (118)

The real fieldH (z) thus describes physical neutral scalar particles, thedHtiggons, with mass
My = uv?2, (119)

as well as triple and quartic self interactions with cougdirproportional ta\/7. The couplings to the
gauge fields follow from the kinetic term of (111) and giveeris trilinear HW W, H Z Z and quadrilin-
earHHWW, HH Z Z vertices.

In order to solve the mass problem for the fermions, Yukawarattions between the Higgs
field and the fermion fields are introduced in addition to gettharged fermions massive. The gauge
invariant Yukawa term in the Lagrangian, for one family gdtlens and quarks, is a compact expression i
terms of the doublet&;, = (v1,1.)", QL = (ur,dr)” and the Higgs fieldd and its charge-conjugate
PC = ige® = (¢, —¢~)T with ¢~ as the adjoint of™,

[,y = —Gl ZL(I) lR - Gd @L(I) ClR - Gu @L(I)c UR + h.c. (120)
It reads explicitly in terms of the Higgs field componentsgjL1

Ly =— G (EL¢+ZR + ZR¢_ vy + ZL¢OZR + ZR¢O*ZL)
— Gq(ar¢Tdr + dp¢~ur + dp¢"dp + dr ¢ dy)
— Gy (—Tpotdr — dr ¢ ur + Tr ¢’ up + UL o™ ug). (121)

The fermion mass terms follow from thepart of ¢° in (117), relating the individual Yukawa coupling
constants; 4, to the masses of the charged fermions by

v
my =Gy ﬁ : (122)
In the unitary gauge (117) the Yukawa Lagrangian becomegplarly simple:
— m+ —
Ly = —me¢f¢f_27f¢f¢fH' (123)
f f

As a remnant of this mechanism, Yukawa interactions betwiemassive fermions and the physical
Higgs field occur with coupling constants proportional te farmion masses.

In the realistic case of three generations, one has to ta@atount flavour mixing in the quark
sector (in the lepton sector, lepton number is conservedflasdur mixing is absent in the minimal
model). Quark-family mixing is induced by Yukawa interacis with the Higgs field as before, but the
Yukawa couplings are now matrices in generation space withptex entries(z,, = (G;‘j), Gy = (G%),
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and the generalization of (121) for the quark sector readsliasvs, with the notatiorQ’ = (u? ,d% )T
for the three left-handed doublets’ [= u, ¢, t andd’ = d, s, b]:

‘C?/uarks _ _ ng @i@ d;% _ G;‘] @z@c u% + h.c. (124)

The mass term is obtained from replacidy its vacuum configurationp —< ® > from (115),
v v
V2 V2

This bilinear term in the quark fields can be diagonalizechwliie help of four unitary matriceB’L‘{R
(¢ = u, d), yielding the mass eigenstates

ng Eid{z — G HL“%% + h.c. (125)

aiL,R = (VLu,R)ik U]Z,Ra ~iL,R = (VLd,R)z‘k d’i,m (126)
as well as thei- andd-type quark masses as diagonal mass matrices,
v
V2

Introducing the mass eigenstates in the fermion—gaugeabg@gn (109) does not change the flavour
diagonal terms, i.e., the kinetic term and the interactemms with the neutral gauge bosons, becaus
of the unitarity of the transformations (126). Also the Yulainteraction of the physical Higgs field
with the quarks, when expressed in terms of the quark massetha mass eigenstates, retains its struc
ture as given in (123). The only modification occurs in thedlavchanging quark interaction with the
charged vector bosons in (109) where the insertion of thesreagenstates for the left-handed quarl
fields introduces the unitary CKM matrix,

diag(mg) = VG, V}%T ., qg=u,d. (127)

VEVET = Vekur . (128)

Given the constraints from unitaritycky has four independent physical parameters, three realsang
and one complex phase.

For neutrino masses zero, no generation mixing in the leggotor occurs. Itis, however, possible
to augment the Standard Model by introducing also rightdlednneutrinos and neutrino mass terms it
analogy to those of the-type quark sector allowing for lepton-flavour mixing as Wwerhe general
treatment of lepton masses and mixing would, however, gormbyhe scope of these lectures (for ¢
discussion of neutrino masses see Ref. [7]).

Physical fields and parameters.The gauge invariant Higgs—gauge field interaction in thetidnpart
of (111) gives rise to mass terms for the vector bosons in dnediagonal form

1 2 1 2 2 W3”u
> (Zo) 2w+ (3) (WE B ( S > ( - > S 29

The physical content becomes transparent by performingrsfsrmation from the field&/;, B, (in
terms of which the symmetry is manifest) to the physical &eld

1
+ _ 1 . 2
W, = ﬁ (Wu F ZWM) (130)
and
I . cos Oy sin Oy WS
( Ay ) a ( —sinfy  cosfw ) ( B, ) (131)
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In these fields the mass term (129) is diagonal and has the form

0 0 A+
M3, W+W bt = (A,L,Z ) ( 0 M2 ) ( P ) (132)

with

1 1
My = zgov, Mz =

5 @ +giv. (133)

2
The mixing angle in the rotation (131) is determined by

cos by = 92 = Mw . (134)

Voi+e Mz
Inserting the rotation (131) into the interaction partdf in (109) and identifyingA,, with the photon
field which couples via the electric chargdo the electrone can be expressed in terms of the gaug
couplings in the following way:

e=—992 o g=_°F - _° (135)

) g2 p y g1
. /g% 4 g% sin Oy cos Oy

The relations above allow us to replace the original set cpatersys, g1, \, ©2, G s by the equivalent
set of more physical parametersMy,, Mz, My, my, Voxkwm, Where each of them can (in principle)
be measured directly in a suitable experiment. At preséingaeameters are empirically known with the
exception of the mass of the Higgs bosafy;.

Gauge interactions. The fermion—gauge interactions are part of the fermionggdragrangian (109);
expressed in the physical field and parameters, they appéatesactions of the electromagnetic curren
Jém, the weak neutral current{, and the weak charged curreft, with the corresponding vector
fields,

Lrg = Jl A+ o Zy + Th Wi+ I8 W (136)
with the currents

JéLm =€ Z Qf Effyuwfa
f lg

B
Ne = QCOSHW Z Dp(0y" = agy sy,

o= | X vy 3wt | a3)
2 i=1,2,3 i,j=1,2,3

In analogy to the notation for the quark fields in (124), tigtde families are labelled by = e, p, 7 for
the charged leptons and = v., v, v, for the corresponding neutrinos. The neutral current dogpl
constants in (137) are determined by the chapgeand isospinlg of fr,

vf = Ig - QQf Sin2 Qw,
af =11 . (138)

The quantitiesV;; in the charged current are the elements of the CKM matrix 1&8ich describes
family mixing in the quark sector. Owing to the unitarity Gfky, the electromagnetic and the weak
neutral current interaction are flavour-diagonal. Heneepilir-changing processes resulting from neutre
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current interactions can only occur at higher order; they raediated by loop contributions and are
consequently suppressed by additional powers of the finetate constant.

Besides the fermion—gauge interactions, the non-Abelieuctsire of the gauge group induces
self-interactions between the vector bosons. These galfiteractions are contained in the pure
gauge-field part (105) of the Lagrangian. Expressing thediél} and B, in (104) resp. (105) by the
physical fieldsA,,, Z,,, andWMjE yields a self-interaction term with triple and quartic cbogs, which
by use of the notatiod,, = 0,A, — 0, A,, Z,, = 0,2, — 0,Z, can be written in the following way,

Lo sar =€ [(0, W, — 8,,Wlf) W™ HAY + W,jW,j F" + h.c]
+ e cot Oy [(8, W, — OVW/;L) W—HZY + VVJW; Z" + h.c.]
— &*/(4sin® Ow) (W, W,F = W, W,HWIW, + h.c]
— /A (WA, — WA )(WHAY — WV AH)
—e*/4 cot®* Ow WS Z, - W) Z,) (W HZ" =W ZH)
+¢e*/2 cot O (WA, = WIA)WHZY =WV ZH) + h.c. (139)
In the Standard Model the coefficients of the self-coupliags exclusively determined by the gauge

symmetry. Deviations from these values could only be of stamdard origin, e.g., as remnants frorr
new physics at some higher mass scale.

7 Electroweak parameters and precision observables

Before predictions can be made from the electroweak th&weynput parameters have to be determine
from experiments. As specified in the previous section, aeaient choice is the set of physical param-
eters given by the particle masses and the electromagreetjicg e, which is commonly expressed in
terms of the fine-structure constamt= ¢?/4r, a very precisely known low-energy parameter. Apar
from the flavour sector with the fermion masses and mixindes@nly three independent quantities are
required for fixing the input for the gauge sector and the fenmgauge interactions. Conveniently, the
vector-boson massédyy z anda are selected (equivalent ig, g2, v).

7.1 Lowest-order relations

In the unitary gauge (117), the propagators of itiieand Z have the form as given in (31) for massive
vector fields, but with a finite widtl' according to a Breit—-Wigner shape for unstable patrticles,

) kyk

iD,, (k) = : —Gup + —2 | . 140
p() k2_M5V7Z_“ZMW7ZFW7Z< gp ) ( )

In processes with light fermions as external particles,klig terms are negligible since they are sup-

pressed by powers ofi; /My, 7. The widths become important around the poles, i.e., wheweitor

bosons can be produced on-shell, like:ire~ annihilation or in Drell-Yan processes in hadron—hadro

collisions.

A very precisely measured low-energy parameter is the Feomstant -, which is the effective
4-fermion coupling constant in the Fermi model, obtaineshifrthe muon lifetime to be [8F =
1.16637(1) - 1075 GeV 2.

Muon decay is described in the Standard Model in lowest dygexchange of 8 boson between
the fermionic charged currents, as shown in Fig. 4. Congigtef the Standard Model at the muon mas:
scale much smaller tham/y,, where the momentum in thid” propagator can be neglected, with the
Fermi model requires the identification

Gr g5 e? e?

= = = = : 141
V2  8M3,  8sin?Ow M2, 8sin® Oy cos? Oy M2 (4D
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Fig. 4: Muon decay lowest-order amplitude in the Standard Model

which allows us to relate the vector boson masses to the p#east, G, sin? 6y and to establish also
the My,—M 7 interdependence in terms of precise low-energy parameters

M2 TQ
M3 (1 - W) = =A%, A =37.2805GeV. (142)
W M2 V2GE

Moreover, it yields the vacuum expectation value expregségims of the Fermi constant, also denotec
as the Fermi scale,

v = (V2Gp) "2 = 246 GeV . (143)

The relation (141) can be further exploited to express thienabzation of the NC couplings in (137) in
terms of the Fermi constant,

g2 2\3
— = (V2GrM3%):. 144
2 cos Oy (\/— F Z) (144)
In this way, the NC vector and axial vector coupling constasft each fermion species to thie are
determined and can be used to calculate the variety of ddislesyat theZ resonance, likéZ width and
partial widths,

FZ:ZF(Zﬁff), I'(Z— ff)= i\g—i(v?—kafc) (145)
f

and a series of asymmetries, such as forward—backward aslyrasnfrom the cross sections integratec
over the forward € ) and the backwards(z) hemisphere,

App = ——2 =" A Ay, (146)

App="2""R— 4, (147)
oL +OR
all of them being determined by the ratios
Ay = 2u%s (148)
F= UJ% + a?p

with the coupling constants;,ay given in (138). The asymmetries are particularly sensitiveéhe
electroweak mixing anglgn? Ay .
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7.2 Higher-order contributions
7.2.1 Loop calculations

These lowest-order relations given above, however, tutrtabe significantly insufficient when con-
fronted with the experimental data, which have been medsuita extraordinary accuracy during the
LEP and Tevatron era and require the inclusion of terms lebyba lowest order in pertubation the-
ory. The high experimental precision makes the observad@esitive to the quantum structure of the
theory which appears in terms of higher-order contribigianvolving diagrams with closed loops in
the Feynman-graph expansion. These loop diagrams coirtaeneral, integrals that diverge for large
integration momenta, for example in the self-energy diagréor a propagator, typically

s 1 N
/dq(CJ?—m?)[(qup)Q—m%] /q4 e (149)

Nevertheless, the relations between physical observabdest as finite and testable predictions, owing
to the virtue of renormalizability. The possibility to per such higher-order calculations is based o
the formulation of the Standard Model as a renormalizabsntium field theory preserving its predictive
power also beyond the tree level. Renormalizability isebgrguaranteed by local gauge invariance o
the basic Lagrangian.

The first step to deal with the divergent integrals is a metioodegularization, which is a pro-
cedure to redefine the integrals in such a way that they bedioite and mathematically well-defined
objects. The widely used regularization procedure for gaheories is that of dimensional regulariza-
tion which is Lorentz and gauge invariant: replace the disimm4 by a lower dimensio® where the
integrals are convergent (see Appendix C),

/ d¢ — AP / dPq. (150)

Thereby, an (arbitrary) mass parameids introduced to maintain the mass dimensions of the inkegra

The divergences manifest themselves in terms of poles idithension~ 1/(4 — D). In renor-
malizable theories these divergences can be absorbed la#ie parameters of the Lagrangian, like
masses and coupling constants. Formally this procedultedaanormalization, is done by introducing
a counter term for each parameter [for example— m? 4+ dm? for a mass parametet] which cancels
the singularities; the finite part of the counter terms, h@vgis not a priori fixed and has to be definec
by a renormalization scheme. The selection of a renorntadizacheme defines the physical meanin(
of each parameter and its relation to measurable quantifiesse relations are then independenfof
and thus one can sét — 4.

In pure QCD, considering quarks as massless, the only basameter is the strong coupling
constant,. Since there is no intrinsic mass scale, the frequently ssedme is thé/S scheme [9],
where the counter term far, consists only of the singular pole part (together with a ersal numerical
constant). The coupling is then defined for the chosen mads gin (150), the renormalization scale,
and thus becomes a scale-dependent quantity, the runnimpdjrag constanty, (1) (see Ref. [6]).

The Lagrangian of the electroweak Standard Model involwgtea few free parameters which
are not fixed by the theory but have to be taken from experimief@ED and in the electroweak theory,
classical Thomson scattering and the particle masses tgtahacales where the parameters can b
defined. A distinguished choice for the basic parametetsuis given by the fundamental chargand
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the masses of the particlel[, My, My, my, and a common choice for the renormalization is the or
shell scheme: the mass parameters coincide with the polewm@sponding propagators (pole masses
and the charge is defined in the classical limit. The on-shell scheme herémels the counter terms in

the following way (see, e.g., Ref. [10] for details):

e The mass counter terfmn?, for any free mass parameter, is determined by the condition
om? = %(m?), (151)
where XY is the self-energy of the corresponding particle, scherallyi depicted in (149) and
yielding a dressed propagator
1

P2~ (m? + m?) + 5(p?)
which by mass renormalization now includes also the masatederm. The condition (151)
ensures that? still remains the pole of the propapatér.

e The counter terme for the electric charges — e + de, is determined by the requirement that
be the electron—photon coupling in the classical limit, ifer the electron—photon vertex for real
photons k% = 0, and for low photon energy,

(152)

e k

-«
A k—0 .
po T e
e

de is essentially given by the charged-light-fermion conttibn to the photon vacuum polarization
at zero momentuni]”(0),

~ ~/

which has a finite parf\ae = I17(0) — I17(M2) yielding a shift of Ao ~ 0.06 in the elec-
tromagnetic fine-structure constamt— «(1 + Aa). A« can be resummed according to the
renormalization group, accommodating all the leading fitigas of the typen™ log™ (Mz /my)
from the light fermions. The result is an effective fine-stte constant at th# mass scale

Q 1
M2) = ~ —
oM2) = T8 = 129
It corresponds to a resummation of the iterated 1-loop vacpolarization from the light fermions

to all orders. A« is an input of crucial importance because of its univengaitd remarkable
numerical size [11, 12].

(153)

The loop contributions to the electroweak observablesaiorall particles of the Standard Model spec-
trum, in particular also the Higgs boson, as, for exampléhénvector-boson self-energies

w Z
W e
H H

The higher-order terms thus induce a dependence of thewaltdes on the Higgs-boson maasy,
which by means of precision measurements becomes ingiatessible, although still unknown from
direct searches. For more details see Ref. [13] and refeseherein.

In the M S schemegm? only absorbs the divergent part B{m?). The remaining finite part depends on the renormaliza
tion scaleu, and in that scheme the mass becomgsdependent parameter, the running mas$:), which is different from
the pole mass.

25



W. HOLLIK

7.2.2 \ector boson masses and Fermi constant
The implementation of higher-order terms can be done in gpaatrway for thdV’—Z mass correlation,

M2 A2
My (1-—-%) = : 154
w ( M3 ) 1—Ar (154)
EW
W self-energy Wy, vertex correction box diagrams

Fig. 5: Loop contributions to the muon decay amplitude

Therein, the contributions from the loop diagrams to the mdiecay amplitude, schematically depictec
in Fig. 5, are summarized by the quantiv = Ar(m;, My), which at one-loop order depends log-
arithmically on the Higgs-boson mass and quadraticallyhentbp-quark mass. The calculation Af

is complete at the two-loop level [14] and comprises theiteaterms also at the three- and four-loop
level [15]. The prediction of\fy from (154) is shown in Fig. 6 [16].

August 2009
T

T T I T T T T
1 —LEP2 and Tevatron (prel.)
80.51 - LEP1 and SLD

68% CL

S

(D)
Sgoai{ [}z

2

e

8031
150 175 200
m, [GeV]

Fig. 6: Standard Model predictions for the dependenc#fgf on the masses of the top quark and Higgs boson

7.2.3 Observables at the Z resonance

The NC couplings dressed by higher-order terms can also lieemvin a compact way, replacing the
lowest-order couplings (138) by effective couplings [13],

gl = vor (1] —2Q; sin®6)y), o = 7 I, (155)
which comprise the higher-order contributions in termshefform factorp s (m;, My ) and the effective
mixing anglesin® Ggﬁ(mt, Mjpr), being now a fermion-type dependent quantity. Again, tlependence
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onm, is quadratic, whereas they dependidi only logarithmically. Nevertheless, the leptonic effeeti
mixing angle is one of the most constraining observableshi®mass of the Higgs boson, as shown it
Fig. 7 [16]. Like for Ar, the calculation is complete at the two-loop level [17] and@emented by 3-
and 4-loop leading terms [15].

0l

Ay ——| 0.23099 + 0.00053

0b
A —v— 0.23221 + 0.00029
Ay 4 0.23220 + 0.00081
Qe ———%——— 02324 +0.0012
Average - 0.23153 £ 0.00016

103 x°/d.of:11.8/5

>
Q
2

T
= 10 = Ao = 0.02758 + 0.00035

BRm=172.7 £2.9 GeV
0.23 0.2‘32 0.2I34

. 2 lept
Sin“0

Fig. 7: Standard Model predictions for the dependenceinf 62‘}1%” on the mass of the Higgs boson and the
experimental o-range from averaged measurements done at LEP and SLC
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Fig. 8: Measurements and Standard Model predictionsfot= (g, — 2)/2
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7.2.4 Muon magnetic moment
The anomalous magnetic moment of the muon

9“2_ 2 (156)

a, =

provides a precision test at low energies. The experimeesalt of E 821 at Brookhaven National Lab-
oratory [18] has reached a substantial improvement in acguit shows a deviation from the Standarc
Model prediction by 3—4 standard deviations depending eretfaluation of the hadronic vacuum polar-
ization from data based ar e~ annihilation as shown in Fig. 8 [12]. For a recent review seé R9].

7.3 The vector-boson self-interaction

The success of the Standard Model in the correct descripfitme electroweak precision observables i
simultaneously an indirect confirmation of the Yang—Milisusture of the gauge boson self-interaction.
For conclusive confirmations direct experimental investan is required. At LEP 2 (and higher en-
ergies), pair production of on-shdll” bosons allows direct experimental tests of the trilineastae
boson self-couplings and precidéy measurements. From LEP 2, an error of 33 MeWp, has been
reached. Further improvements have been obtained fronetlaron with currently 31 MeV uncertainty,
yielding the world average for thi&” massMy, = 80.399 + 0.023 GeV [16].

Pair production ofi’ bosons in the Standard Model is described by the amplitudedban the
Feynman graphs in Fig. 9 (in Born approximation) and higireier contributions [20].

Fig. 9: Feynman graphs far"e™ — W W~ in lowest order

Vs =189 GeV: preliminary
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| ./
; ’
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= 10 ;7 g
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+@ Y,
L ]
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S ) v, exchange
T
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Fig. 10: Cross-section foe™ e~ — W+ W ~, measured at LEP, and the Standard Model prediction

Besides the-channely-exchange diagram, which involves only tHé-fermion coupling, the-channel
diagrams contain the triple gauge interaction between d¢iotov bosons. The gauge self-interactions ¢
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the vector bosons, as specified in (139) are essential fohigheenergy behaviour of the production
cross-section in accordance with the principle of unigafeviations from these values spoil the high-
energy behaviour of the cross-sections and would be visiid@ergies sufficiently above the productior
threshold. Measurements of the cross sectiorefar- — W at LEP have confirmed the prediction
of the Standard Model, as visualized in Fig. 10 [16].

7.4 Global fits and Higgs boson mass bound

The Z-boson observables from LEP 1 and SLC together Witlp and the top-quark mass from LEP 2
and the Tevatron, constitute the set of high-energy quesiéntering a global precision analysis. Globa
fits within the Standard Model to the electroweak precisiatadontain\/y as the only free parameter,
yielding the results [16] shown in Fig. 11 and an upper limitte Higgs mass at the 95% C.L.&afy <
157 GeV, including the present theoretical uncertainties ef$tandard Model predictions visualized as
the blue band [16] in Fig. 12. Taking into account the lowerlesion bound of 114 GeV fab/y from
the direct searches via renormalizing the probabilitytstilie 95% C.L. upper bound to 186 GeV [16].
For similar analyses see Ref. [21].

The anomalous magnetic moment of the muon is practicallgpeddent of the Higgs boson mass
hence its inclusion in the fit does not change the boundi/gn but it reduces the goodness of the overal
fit.

Measurement Fit |O™*-0|/gmeas
0 1 2 3
m, [GeV] 91.1875%0.0021 91.1874
r,[GeV]  2.4952+0.0023 24959 M
Opg (D] 41.540£0.037  41.478 |
R, 20.767£0.025  20.742 |m—
AY 0.01714 £0.00095 0.01645 mmm
Ry 0.21629 + 0.00066 0.21579 |mmm
R, 0.1721+0.0030  0.1723
AR 0.0992 £0.0016  0.1038 |————
Ay 0.0707 +£0.0035  0.0742 |
A, 0.923 +0.020 0.935 jmm
A, 0.670 + 0.027 0.668
A(SLD) 0.1513+0.0021  0.1481 —m
my [GeV]  80.399:0.023  80.379 jmmm
w [GeV] 2.098 £ 0.048 2.002 1
m, [GeV] 173.1£13 1732 1
August 2009 0 1 2 3

Fig. 11: Experimental measurements versus best-fit Standard Matets

7.5 Perspectives for the LHC and the ILC

In the LHC era, further improved measurements of the eleetalx parameters are expected, especiall
on thel’ mass and the mass of the top quark, as indicated in Table 2acueacy on the effective mix-

ing angle, measureable from forward—backward asymmetsidisnot exceed the one already obtained
in ete collisions [22]. The detection of a Higgs boson would go glanith a determination of its mass

with an uncertainty of about 100 MeV.
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Fig. 12: x? distribution from a global electroweak fit fl ;7

At a future electron—positron collider, the Internatiohéhear Collider (ILC), the accuracy on
Myy can be substantially improved via the scanning ofd¢he™ — W+ W ~ threshold region [23]. The
GigaZ option, a high-luminosity factory, can provide in addition a significant reduction loé errors
in the Z boson observables, in particular for the leptonic effectivixing angle, denoted byin? 6.4,
with an error being an order of magnitude smaller than thegureone. Moreover, the top-quark mast
accuracy can also be considerably improved. The numberoHeeted in Table 2.

An ultimate precision test of the Standard Model that woudpiossible in the future scenario
with GigaZ [24] is illustrated in Fig. 13. The figure displayse 68% C.L. regions foi/y andsin? f.q
expected from the LHC and ILC/GigaZ measurements; the squnallirangles denote the Standard Mode
predictions for a possible, experimentally determinedygdiboson mass with the sides reflecting thi
parametric uncertainties frofda and the top-quark mass (fdxa, a projected uncertainty diAa =
5-107° is assumed). If the Standard Model is correct, the two arétstire theory prediction and the
future experimental results have to overlap. The centralegachosen in Fig. 13 are just examples; thi
main message is the development of the uncertainties.

Table 2: Present experimental accuracies and expectations faefatlliders

Error for Now  Tevatron/LHC LC GigaZ
My [MeV] 23 15 10 7

sin? Qg 0.00016 0.00021 0.000013
Mmiop [GEV] 1.3 1.0 0.2 0.13
MHiggs [GeV] - 0.1 0.05 0.05
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Fig. 13: Perspectives for Standard Model precision tests at futliielers

8 Higgs bosons

The minimal model with a single scalar doublet is the simplesy to implement the electroweak sym-
metry breaking. The Higgs potential of the Standard Modeéwiin (113) involves two independent
parameters: and A\, which can equivalently be replaced by the vacuum expectataluev and the
Higgs boson masa/;, as done in (118). The vacuum expectation valug determined by the gauge
sector, as explained in (129) and (148)y is independent and cannot be predicted but has to be tak
from experiment. Thus in the Standard Model the miss of the Higgs boson appears as the only fre
parameter that is still undetermined as yet. Expressedrmstef M ;, the Higgs part of the electroweak
Lagrangian in the unitary gauge reads as follows:

M? M2, M2,

1
i w My g2 My o3 Mg o
Ly 2(8uH)(8 H) 5 - -y H
M?2 H\? _ H
+ <MV2VWJW“+TZZMZ“> <1+7> = > mp sy <1+7>, (157)
f

involving interactions of the Higgs field with the massivenfidlons and gauge bosons, as well as Higg
self interactions proportional td/.

8.1 Empirical bounds

The existence of the Yukawa couplings and the couplings éovéittor boson$V and 7 is the basis
for the experimental searches that have been performeldnomtiat LEP and the Tevatron. At e~
colliders, Higgs bosons can be produced by Higgs-strahitorg Z bosons and by vector boson fusion
(mainly WW) as displayed in Fig. 14.

et Ve
\%

-~ H
\W%

(§] Ve

Fig. 14: Processes for Higgs boson productiorire™ collisions
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At LEP energies, Higgs-strahlung is the relevant procesg Idwer limit at 95% C.L. resulting
from the search at LEP is 114.4 GeV [8]. From searches at thetbm [25] (see Fig. 15 for various
mechanisms) the mass range from 162 GeV to 166 GeV has belenlet¢95% C.L.).

Fig. 15: Processes for Higgs boson production at hadron colliders

Indirect determinations oMy from precision data yield an upper limit and have alreadynbee
discussed in Section 7.4. As a general feature, it appeatrshid data prefer a light Higgs boson.

8.2 Theoretical bounds

There are also theoretical constraints on the Higgs mass\fexuum stability and absence of a Landat
pole [26—28], and from lattice calculations [29, 30]. Exfilperturbative calculations of the decay width
for H — W*W~,ZZ in the largeMy limit, (H — VV) = Ky - T(O(H — VV) up to 2-loop
order [31] have shown that the 2-loop contribution excebddtloop term in size (same sign) fofy >
930 GeV (Fig. 16 [32]). This result is confirmed by the calculatif the next-to-leading order correction
inthe1/N expansion, where the Higgs sector is treated a@@+) symmetrico-model [33]. A similar
increase of the 2-loop perturbative contribution with; is observed for the fermionic decay width [34],
T(H — ff)) = K;-TO(H — ff)), but with opposite sign leading to a cancellation of the dplo
correction forMy ~ 1100 GeV (Fig. 16). The lattice result [30] for the bosonic Higgsdy in Fig. 16
for M = 727 GeV is not far from the perturbative 2-loop result; the difiece may at least partially be

interpreted as missing higher-order terms.

1A5_|||||||||||||||||

14

1.3

Ky, K;

12
L Lattice —= x

11}

1o} B

| trlee level | ~q
400 600 800 1000 1200
My (GeV)

Fig. 16: Correction factord{y-, Ky from higher orders for the Higgs decay widths — V'V (V = W, Z) and
H — ffin1-and 2-loop order

The behaviour of the quartic Higgs self-coupling as a function of a rising energy scalg
follows from the renormalization group equation
dx 1
dt 16w

2
(122024 6Xg2 —3gt +---), tzlog%, (158)
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with the g-function dominated by the contributions frakmand the top-quark Yukawa coupling in the
loop contributions to the quartic interactions,
H~ CH

. <
. N
H- ~H

Owing to the second diagram, the first term in (158)¢) increases withQ) and diverges at a critical
scale, the Landau pole, which moves towards lower valueséweasing masa/y. The requirement
of a perturbative, small coupling(Q) up to a scale\ thus yields an upper bound fad;;. In order to
avoid unphysical negative quartic couplings from the nggabp-loop contribution, a lower bound on
the Higgs mass is derived. In combination, the requiremteatt the Higgs coupling remain finite and
positive up to a scald yields constraints on the Higgs ma&s$y, which have been evaluated at the
2-loop level [27,28]. These bounds aii; are shown in Fig. 17 [28] as a function of the cut-off scale
A up to which the standard Higgs sector can be extrapolateglalltwed region is the area between the
lower and the upper curves. The bands indicate the theaketicertainties associated with the solutior
of the renormalization group equations [28]. Itis inteirggto note that the indirect determination of the
Higgs mass range from electroweak precision data via iadiedrrections is compatible with a value of
My whereA can be extended up to the Planck scale.

600 m, = 175 GeV —
= ]
o o, (M) = 0.118 ]
o 400 —
= L _
200 =

0 1 | [ | [ | [ | [ | N

103 10® 109 101° 1019 1018
A [GeV]

Fig. 17: Theoretical limits on the Higgs boson mass from the absehad.andau pole and from vacuum stability

8.3 Future searches

For the coming experimental searches at the LHC, it is ingmbtio have precise and reliable predictions
for the production and decay rates. Higgs bosons can be geddirough various mechanisms at the
partonic level. The main partonic processes for Higgs bgsoduction are depicted in Fig. 15, and the
corresponding production cross sections are shown in Bi§3d]. The largest cross section arises frormn
gluon—gluon fusion. The experimental signal, howevergi®dnined by the product

o(AB — H) - BR(H — X) (159)

of the production cross section AB — H) from initial-state partonsd, B and the branching ratio
BR(H — X) for the decay of the Higgs boson into a specific final sfatsee Fig. 19 for the branching
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ratios [36]). A light Higgs boson, well below tH& 17 threshold, decays predominantly irttoquarks,
owing to the largest Yukawa couplings in the kinematicallpvaed fermionic decay channels. This
signal, however, is experimentally unaccessible becausecovered by a huge background of QCD-
generated-quark jets. Therefore, in the low mass range, the rare debagnelH — ~~ has to be
selected reducing the total number of events considerib$pite of the large production cross section
and makes Higgs detection a cumbersome business. For laggsesMy 2> 140 GeV, the decay
modesH — WW,ZZ — 4f make detection relatively easy. The vector-boson fusianoél (third
diagram of Fig. 15) with subsequent leptonic de¢ay- 77~ is a promising alternative.
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Fig. 18: Cross sections for Higgs boson production at the LHC
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Fig. 19: Branching ratios for Higgs boson decays
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For completeness we list the (lowest-order) expressionthéodominant Higgs decay rates into fermion
and vector-boson pairs,

_ GFMHm? 4m3¢ )
I(H = ff)= NCW 1—M—£[ with No =3forf=¢q, Ng=1forf=1¢,
GFMI?} M‘%
T(H = VV) = R : -V V=W2Z 160
( ) 6mv2 vizy), zv Y ( ) (160)
with
Ry, = R(l‘z), Ry = 2R(.’L’W), R(iL‘) = \/m(l —4x + 121’2) . (161)

As an exercise, these formulae can easily be derived froniithg and HV'V vertices in (157) with the help of
the Feynman rules of Section 2 and the general expressidhdavidth in (70).

8.4 Supersymmetric Higgs bosons

Among the extensions of the Standard Model, the Minimal 8&ypemetric Standard Model (MSSM) [37]
is a theoretically favoured scenario as the most predi@taraework beyond the Standard Model. A light
Higgs boson, as indicated in the analysis of the electrovpeakision data, would find a natural expla-
nation by the structure of the Higgs potential. For a reviemMEBSM Higgs bosons see Ref. [38].
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Fig. 20: Example of the Higgs boson mass spectrum in the MSSM

The five physical Higgs particles of the MSSM consist of i@#-even neutral bosons’, H°, a
C P-odd A° boson, and a pair of charged Higgs particlés. At tree level, their masses are determine
by the A° boson mass)/ 4, and the ratio of the two vacuum expectation valuggy, = tan 3,

My, = M3+ My,

1
Mo o = 5 (ME, + M7+ \/ (M2 + M2)® — 4MZM? cos? m) : (162)

These relations are sizeably modified by higher-order garttons to the Higgs boson vacua and prop-
agators. A typical example of a spectrum is shown in Fig. 28ed on the EyNHIGGS code [39]. In
particular the mass of the lightest Higgs bogdhis substantially influenced by loop contributions; for
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large M 4, the h? particle behaves like the standard Higgs boson, but its isaspendent on basically
all the parameters of the model and hence yields anotherrpdvpeecision observable. A definite pre-
diction of the MSSM is thus the existence of a light Higgs osdth mass below~ 140 GeV. The
detection of a light Higgs boson could be a significant himtsigpersymmetry.

The structure of the MSSM as a renormalizable quantum figdrthallows a similarly complete
calculation of the electroweak precision observables @henStandard Model in terms of one Higgs
mass (usually taken a&/4) andtan 3, together with the set of SUSY soft-breaking parametergdixi
the chargino/neutralino and scalar fermion sectors [40}.updated discussions of precision observable
in the MSSM see Ref. [41] .
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Fig. 21: TheW mass range in the Standard Model (lower band) and in the M3®lglef band) respecting bounds
are from the non-observation of Higgs bosons and SUSY pestic

As an example, Fig. 21 displays the range of predictionsMey in the Standard Model and in
the MSSM, together with the present experimental errorsthadexpectations for the LHC measure-
ments. The MSSM prediction is in slightly better agreemeitih ¥he present data favly, although not
conclusive as yet. Future increase in the experimentalracguhowever, will become decisive for the
separation between the models.

Especially for the muonig — 2, the MSSM can significantly improve the agreement between th
ory and experiment: one-loop terms with relatively lighdlse muons, sneutrinos, charginos and neutral

nos,
K ~0
J

X
- H
Ha¥

-

»

-

Y

in the mass range 200-600 GeV, together with a large valtiengf can provide a positive contribution
Aa,,, which can entirely explain the differeneg§™ — aﬁM (see Ref. [42] for a review).

The MSSM vyields a comprehensive description of the pretisiata, in a similar way to the
Standard Model. Global fits, varying the MSSM parameterse lieeen performed to all electroweak
precision data [43] showing that the description within Kh®SM is slightly better than in the Standard
Model. This is mainly due to the improved agreementdpr The fits have been updated recently for the
constrained MSSM (cMSSM), including also bounds from> s+ and from the cosmic relic density.
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The x2-distribution for the fit parameters can be shown [44] agalistribution for the lightest Higgs
boson mass\/y, displayed in Fig. 22. The mass rangé, = 1101?0 GeV obtained from this fit is
in much better agreement with the lower bound from the diseetrch than in the case of the Standar:
Model.

CMSSM
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inaccessible  excluded

[ LEP
F  excluded

P I n n n |
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A‘[h [GGV} J[nggs [GE‘V]

Fig. 22: y2-distribution for cMSSM fits, expressed in termsidf,

9 Outlook

In spite of the success of the Standard Model in describirzggee lvariety of phenomena, at a high leve
of accuracy on both the theoretical and the experimental ieére is a list of shortcomings that motivate
the quest for physics beyond the Standard Model.

A rather direct augmentation is enforced by the need formoesodating massive neutrinos. The
Standard Model in its strictly minimal version is incomgetith respect to a mass term for neutrinos
Neutrino mass terms can be added [7] without touching ondiselarchitecture of the Standard Model.

Besides this rather immediate modification one is confihrttewever, with a series of basic conceptua
problems:

— the smallness of the electroweak scate 1//Gr compared to the Planck scalép; ~ 1/v/Gx
(thehierarchy problerhand the smallness of the Higgs boson mags8@f), which is not protected
against large quantum corrections@fMp; );

the large number of free parameters (gauge couplingsuwa@xpectation value)/y, fermion
masses, CKM matrix elements), which are not predicted brg tmabe taken from experiments;

the pattern that occurs in the arrangement of the fermicgser
the quantization of the electric charge, or the values@hifpercharge, respectively;
the missing way to connect to gravity.

Moreover, there are also phenomenological shortcomiiigsissing answers to the questions about

— the nature of dark matter that constitutes the largestifrmof matter in the Universe,
— the origin of the baryon asymmetry of the Universe.

The class of models based on supersymmetry, briefly addrésshe last subsection 8.4, can at leas
provide partial answers, e.g., for dark matter, the furtingfication of forces and hierarchy of mass
scales, new sources of CP violation, and can be relateding $treory as a candidate for a microscopic
theory of gravity. The LHC experiments may soon shed lighbonunanswered questions, or may alsc
surprise us with answers to questions we did not ask.
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Appendices
A Canonical commutation relations
The commutators between the canonically conjugate vasadp), P, in quantum mechanics,

[Qj, Pyl = 6k, [Q4,Qk]l = [P}, Px] =0, (A1)
are translated in quantum field theory to commutators foreadgc) field operatop(z) = ¢(¢, ) and
its conjugate canonical momentum

oL
II(x) =
“) = 50.0)
derived from the basic Lagrangiahfor the system. This procedure, known as canonical field tifuan

zation, is specified by the equal-time commutation relatiavhere the discrete indicgsk in (A.1) are
replaced by the continuous indic@sz’:

[¢(t7f)7ﬂ(t7f/)] = 253( _‘/)7 [¢(t7f)7¢(t7f/)] = [H(tvf)vﬂ(tvf/)] =0. (A.3)

For fermionic field variables)(x) the commutators have to be replaced by anti-commutators.

(A.2)

A.1 Scalar field

We illustrate the method of canonical quantization chapsire scalar field as a specific example. Stari
ing from the Lagrangian (13) for a general, complex, fredasdeeld, we find the canonical field mo-
menta via (A.2) to be

oL

— 0%t = o =
6,0 00 0

oL

56 — o =¢ =1". (A.4)

Accordingly, the canonical commutation relations are gilg
[b(t, @), ' (¢, 7")] = i 6°(F — &),
[¢(taf)a¢(taf/)] = [¢(taf)a¢(taf/)] =0. (A5)

These relations can equivalently be expressed in termg@ithihilation and creation operatars, o', bt
in the Fourier expansion of the scalar figlt) in (14). They fulfil the following canonical commutation
relations in momentum space and can be interpreted as thoaebntinuous set of quantized harmonic

oscillators, labelled bfi, with frequenciesy = k0 = \/ 152 + m?2 and with the relativistic normalization:
[a(k), a(k")] = [b(k),b(k)] =0, [al(k),al (k)] = [bT(k), b (K")] = 0,
la(k),at(K)] = 2k°6°%(k — k'),  [b(k), bl (k)] = 2k° 6°(k — k'),
[a(k), b(K")] = [a(k), bT (K')] = [a' (), b(K")] = [a (k), b' (K')] = 0. (A.6)

Since we do not make use of the formulation of quantizatiospace-time, but use instead the creatiol
and annihilation operators, which are closer to the phi/gicture of particles and particle states, we list
the commutators for the vector and spinor fields only in mammarspace.

A.2 \Vector field

For the vector field (25) the annihilation and creation ofmega ), aT)\ carry helicity indices in additon to
the momenta. Otherwise the commutation rules are analdgdbe scalar case:

lax(k), ay (K")] = [a}(k),al, (K")] = 0,
[ax(k), al, (K)] = 2k° dan 8% (k — &), (A7)
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A.3 Dirac field

The Dirac field (53) involves fermionic annihilation and atien operators,,, dg,c:f,,d:f, for each mo-
mentumk and helicityo. According to the antisymmetry of fermionic states, all coatators applying
to bosonic states in the canonical quantization above lwalve teplaced by anti-commutators:

{eo(k), cor ()} = {ch(k),ch ()} =0, {eo(k),cl, (K)} = 20 8,0 83 (K — K),
{do (k), dor (K')} = {df,(k), d {do (k), dl, (K')} = 2K0 8,00 63 (K — '>
0.

0,
{co(k), dor (K)} = {ch(k), L, (K)} = {co(k),dl, (K)} = {cb(k), dor (')} = (A.8)

B Green functions and causality

We demonstrate, for the example of the scalar field, howthgrescription in the Fourier representation
of the Feynman propagator leads to causal behaviour otjedantiparticle propagation in space-time.
Making use of the time-ordered product of any two field queestiA(z) and B(x),

TA(z)B(y) = ©(2° —y°) A(x)B(y) + ©(y° — ") B(x)Aly), (B.1)
one can define the 2-point function for a (complex) scalad fi€k) in the following way:

<0|T¢(x)¢! (y)|0> = Oz — ) <0|¢(2)o" ()0 >
+ 0y’ — 2°%) <0|¢'(y)o(z)[0> . (B.2)

Invoking the Fourier expansion far and ¢! in terms of creation and annihilation operators (14), on
can see that (B.2) describes particles created at ¢itnand annihilated at time® if z° > ¢°, and
anti-particles created at tim€ and annihilated at timg® if ° > 2°.

On the other hand, starting from the Fourier integral (1% performing thek® integration by
means of a contour integral in the complex plane, one obthmsxpression

d4k efik(mfy)
D — —
(x =) / (2m)* k2 —m?2 + e

_ / &k iR (E=7) / dk? e
(2m)? 21 (K0)2 — k2 — m?2 + ie
: 3 -
I Oy
(2m)?

. 3 N
1 2)3 % iR (@) ik (20 —y°) ‘
2m 2k

which can be written in the following way:

(B.3)

—2

- 1 dgk —ik(x— ik(x—
iD(x—y) = —/— [e Fe=1) 920 — y°) + e*E W 0,0 — 20) o/

(2m)3 ) 2k
This is identical to (B.2) when the Fourier representatibf) for ¢ is inserted. Hence one has the identity
<0[Tp(2)¢(y)|0> = i D(x ~y), (B.4)

which connects the Green function of the Klein—Gordon eqoawith the 2-point function of the quan-
tized scalar field and thus with the particle/antipartiadd@aept obeying causality. As a byproduct, it alsc
explains the extra factarin the propagator (19).
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C Loop integrals and dimensional regularization

In the calculation of self-energy diagrams the followingeyof loop integrals involving two propagators
appears when the integration is dondirdimensions, denoted by, after removing a numerical factor:

o = ——Bo(¢” : C.1
g / Bm)D 2 —ml + iell(k + @ — i ie]  T6m2 0 m2) €1

With help of the Feynman parametrization

1
1
— = d C.2
ab /0 v [az + b(1 — x)]? (€.2)
and after a shift in thé-variable, By, can be written in the form
: 1 4-D D

1 7 d“k
Bo(q? =/ d . (c3
1672 o(g”, ma, m2) /0 v (2m)P / (k2 — 22¢% + 2(q% + m? — m3) — m? + ie]? (€3)

The advantage of this parametrization is a simpléntegration where the integrand is only a function
of k2 = (k)2 — k2. In order to transform it into a Euclidean integral we pemidhe substitutior?

=ik, k=kp, dPk=1id kg (C.4)
where the new integration momentump has a positive-definite metric:
k2= —k%, kL= (k%)% 4+ (kEH2 (C.5)

This leads us to a Euclidean integral over,

i 1 M4—D deE
—— By=1 d C.6
T x@ﬂ”/@%+@ﬁ (C.6)
where
Q = 2*¢* — x(¢> + mi — m3) +mi —ie (C.7)

is a constant with respect to the-integration. Thiskg-integral is of the general type

/ deE
(k% + Q)"

of rotational-invariant integrals in &-dimensional Euclidean space. They can be evaluated u3ing
dimensional polar coordinates (with the substitutign= R),

dPkp 1/ /00 D4 1
—— = =249 dRRz ' ——— .
/@%+Qw 2] P (R+Q)"
yielding

QT (C.8)

,U,47D / de.E B M47D . I'(n— %)
@em)P ) (k2 +Q)»  (4m)P/2 I'(n)

The singularities of the initially 4-dimensional integgare now recovered as poles of fhéunction for
D = 4 and values: < 2.

2Theie-prescription in the masses ensures that this is compatilitethe pole structure of the integrand.
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Although the Lh.s. of (C.8) as &-dimensional integral is sensible only for integer valuésx the
r.h.s. has an analytic continuation in the variable it is well defined for all complex value® with
n—L2+#£0,-1,-2,...,in particular for

D=4—c withe>0. (C.9)

For physical reasons we are interested in the vicinitypoE 4. Hence we consider the limiting case
e — 0 and perform an expansion arouftd = 4 in powers ofe. For this task we need the following
properties of th@'-function atz — 0:

D)= — 7+ O),
r(—1+x):—§+y— 1+ O@). (C.10)
with Euler’s constant
y=-T"(1)=0.577... (C.11)

For the integralB, we evaluate the integrand of theintegration in (C.3) with help of (C.8) as follows:

ME F(%) —e/2  _ 1 2 Q
(47r)2—€/2 . ) -Q = 1672 (E — v+ logdnm — log F) + Ofe)
1
= 62 <A —log %) + O(e). (C.12)

Since theO(e) terms vanish in the limi¢ — 0 we can skip them in the following. Insertion into (C.3)

with @ from (C.7) yields

@ +m2 —m3) +m? —ie
i '

The remaining integration is elementary and the result caexXpressed in terms of logarithms. The

explicit analytic formula can be found, for example, in R&D].

1 2.2
Bo(q®, m1,ma) = A —/ di log 9"~ 2 (C.13)
0

In the expression (C.12) above we have introduced the aialbiev
2
A =——vy+logdr (C.14)
€

for the pole singularity combined with the two purely nurcatiterms that always go together in dimen-
sional regularization. In th&/ .S renormalization scheme, the counter terms required farrealization
cancel just thesé terms appearing in the calculation of amplitudes at the lewgl.
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