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1 Introduction

The AdS/CFT correspondence provides us with a marvellous new tool for the study of
strongly coupled field theories. There is hope and excitement that these developments
might lead to a better understanding of some quantum critical theories occurring in Nature,
for example in superfluid-insulator transitions or in cuprate materials which exhibit high Tc
superconductivity [1–5]. Strong repulsion due to charge is believed to play an important role
in some of these critical theories. Modelling such repulsion on the gravity side leads one to
consider extremal black brane gravitational solutions whose mass essentially arises entirely
from electrostatic repulsion. In fact extremal black branes/holes are fascinating objects in
their own right, and have been at the centre of much of the progress in understanding black
holes in string theory. A possible tie-in with experimentally accessible quantum critical
phenomena only adds to their allure.

With these general motivations in mind, charged dilatonic black branes in AdS space-
times were discussed in [6]. Earlier work on the subject had mostly dealt with the case of the
Reissner-Nordstrom black brane. This is interesting in many ways but suffers, in the context
of our present motivations, from one unpleasant feature. An extremal Reissner-Nordstrom
black hole, which is the zero temperature limit of this system, has a large entropy. This
feature seems quite unphysical, and in the non-supersymmetric case it is almost certainly a
consequence of the large N limit in which the gravity description is valid. It leads one to the
worry that perhaps other properties, for example transport properties like conductivity etc.,
calculated using this brane would also receive large corrections away from the large N limit,
leaving the Reissner-Nordstrom system to be of only limited interest in the present context.1

In the dilatonic case, in contrast, it was found that the extremal electrically charged
brane has zero entropy [6]. Its near-horizon geometry shows that the dual theory in the
infra-red has scaling behaviour of Lifshitz type [11] with a non-trivial dynamical exponent
1/β (where β < 1 is determined by the details of the dilaton coupling to the gauge field), and
with additional logarithmic violations. Departures from extremality give rise to an entropy

1It has recently been suggested that perhaps the large entropy of the Reissner-Nordstrom brane can

be interpreted as arising from some analogue of a “fractionalized Fermi liquid” phase in the boundary

theory [7]. Some support for the existence of such a phase, at least in some AdS/CFT dual pairs, accrues

from explicit lattice models with localised fermions in string constructions, where AdS2 regions arise from

bulk geometrization of the lattice spins [8]. While this is an intriguing possibility, here we adopt the view that

it would be good to find natural models without the large ground-state entropy. Another, complementary

approach to the entropy problem is developed in [9, 10].
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density s growing as a power law s ∼ T 2β, with a positive specific heat. The optical conduc-
tivity, for small frequency compared to the chemical potential µ, is of the form Re (σ) ∼ ω2,
with the power law dependence being independent of the dynamical exponent β.

In this paper, we continue the study of extreme and near-extreme dilatonic black
branes. We find that in the electric case at small frequency and temperature, when ω �
T � µ, the conductivity is Re (σ) ∼ T 2 (with an additional delta function at ω = 0). The
field theory we are studying has a global Abelian symmetry and the conductivity determines
the transport of this global charge. To characterise the field theory better it is useful
to gauge this global symmetry, then turn on a background magnetic field and study the
resulting response. This also corresponds to turning on a magnetic field in the gravity dual.

Once we are considering a bulk magnetic field it is also natural to add an axion in
the bulk theory.2 A particularly interesting case is when the bulk theory has an SL(2, R)
symmetry.3 In this case the behaviour of a system carrying both electric and magnetic
charges can be obtained from the purely electric case using an SL(2, R) transformation. One
finds that the system is diamagnetic. Under an SL(2, R) transformation the dilaton-axion,
λ = a+ ie−2φ, transforms like λ→ ãλ+b

cλ+d . It turns out that the two complex combinations
of the conductivity σ± = σyx±iσxx also4 transform in the same way, σ± → ãσ±+b

cσ±+d , allowing
us to easily determine them. An important check is that the resulting Hall conductivity
at zero frequency is σyx = n

B where n,B are the charge density and magnetic field, and
the longitudinal conductivity at zero frequency vanishes. These results follow simply from
Lorentz invariance in the presence of a magnetic field. An interesting feature of our results
is that the DC Hall conductivity agrees with the attractor value of the axion. This is in
accord with expectations that the axion determines the coefficient of the Chern-Simons
coupling in the boundary theory, which in turn determines the Hall conductivity.

Besides the electric conductivity we also calculate the thermoelectric and thermal
conductivity for a general system carrying both electric and magnetic charges. These are
related to the electric conductivity by Weidemann-Franz type relations which are quite
analogous to those obtained in the non-dilatonic case [13, 14]. As was noted above, the
electric conductivity behaves quite similarly as a function of temperature or frequency in the
dilaton-axion and non-dilatonic cases. The Weidemann-Franz type relations then lead to
the thermoelectric and thermal conductivities also behaving in a similar way in these cases.

We also discuss the attractor flows for the axion and dilaton in these dyonic branes,
and find intricate flow diagrams whose properties are governed by the SL(2, R) symmetry.
In cases with a suitable SL(2, Z) invariant potential, we find that for fixed charges there
can be multiple attractor points, governing different basins of attraction in field space.

2It is reasonable to believe that varying the boundary value of the axion corresponds to adjusting the

value of a Chern-Simons coupling in the boundary theory [12]; we briefly expand on this comment in

section 6.
3This symmetry is expected to only be approximate and would receive corrections beyond the classi-

cal gravity approximation; for instance, in many quantum string theories, it is broken to SL(2, Z) non-

perturbatively.
4The conductivities σxx, σyx, are frequency dependent and complex thus σ± are not complex conjugates

of each other.
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Finally we consider a more general class of bulk theories containing a dilaton-axion but
without SL(2, R) symmetry. For some range of parameters we find that the deep infra-red
geometry is an attractor and changing the asymptotic value of the axion does not lead to a
change in this geometry. Outside this parametric range, however, the attractor behaviour
appears to be lost and a small change in the asymptotic value of the axion results in a
solution which becomes increasingly different in the infrared.

This paper is structured as follows. Section 2 contains a review of the salient points
in [6]. Section 3 contains a discussion of the DC conductivity at finite temperature in the
purely electric case. Section 4 contains a discussion of the case with only a magnetic field
and no charge. This is a warm up for the more general discussion with both electric and
magnetic charges which is analysed for a system with SL(2, R) invariance in section 5. Ad-
ditional discussion of conductivity and other transport coefficients in this case is contained
in section 6. Attractor flows in these systems, both with and without a bare potential for
the dilaton-axion, are discussed in section 7. Some more general systems without SL(2, R)
symmetry are discussed in section 8. Finally section 9 contains some concluding comments.
Supporting material appears in the appendices.

2 Review of earlier results

Here we summarise some of the results of [6]. Consider a four-dimensional system consisting
of a dilaton coupled to a gauge field and gravity with action

S =
∫
d4x
√
−g
(
R− 2(∇φ)2 − e2αφF 2 − 2Λ

)
. (2.1)

Λ = − 3
L2 is the cosmological constant. We will often set L = 1 in the discussion below.

The metric of a black brane has the form

ds2 = −a(r)2 dt2 + a(r)−2 dr2 + b(r)2 (dx2 + dy2) (2.2)

For an electrically charged brane the gauge field is

e2αφF =
Q

b(r)2
dt ∧ dr. (2.3)

The extremal black brane is asymptotically AdS4 and characterised by two parameters,
the charge Q and φ0 - the asymptotically constant value of the dilaton. In the extremal
case, the near-horizon region is universal and independent of both these parameters, due
to the attractor mechanism.5 The metric is of the Lifshitz form [11]6

ds2 = −(C2r)2dt2 +
dr2

(C2r)2
+ r2β(dx2 + dy2), (2.4)

with dynamical exponent

z =
1
β
. (2.5)

5The curvature scale in the near-horizon region is set by the cosmological constant Λ.
6See also [15].
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The near-horizon solution is valid when

r � µ (2.6)

where µ ∝
√
Q is the chemical potential.

The dilaton in the near-horizon region is

φ = −Klog(r) . (2.7)

The constants which appear in the metric and dilaton above are given in terms of α, the
coefficient in the dilaton coupling eq. (2.1):

C2
2 =

6
(β + 1)(2β + 1)

, β =
(α2 )2

1 + (α2 )2
, K =

α
2

1 + (α2 )2 . (2.8)

This class of solutions, but with different asymptotics than those of interest to us, was
discussed in [16] (the solutions there were asymptotically Lifshitz, and have strong coupling
at infinity; for other asymptotically Lifshitz black hole solutions, see [17–26]).

The entropy of the extremal black brane vanishes. For a near-extremal black brane
the temperature dependence of entropy and other thermodynamic quantities is essentially
determined by the near-horizon region. (For a careful discussion of how the global embed-
ding affects the thermodynamics, see appendix A of [27]; see also the recent paper [28] for
a discussion of how the non-extremal branes embed into AdS.).

The bulk theory above is dual to a 2 + 1 dimensional boundary theory which is a CFT
with a globally conserved U(1) symmetry. The electrically charged black brane is dual to
the boundary theory in a state with constant charge density determined by Q.

The black brane geometry can be used to calculate transport coefficients in the bound-
ary theory. In particular, the real part of the longitudinal electric conductivity (Re (σ) ≡
σxx = σyy) at zero temperature and small frequency7 is found to be

Re (σ) = C
ω2

µ2
. (2.9)

Here C is a constant which depends on α and φ0. We note that the frequency dependence
of Re (σ) is universal and is independent of α. The conductivity is dimensionless in 2 + 1
dimensions. This fixes the dependence on µ - the chemical potential- once the dependence
on ω is known.

More generally, at finite temperature and frequency, σ is a function of two dimensionless
variables σ(Tµ ,

ω
µ ). Eq. (2.9) gives the leading dependence when T � ω � µ. We also note

that in the purely electric case the Hall conductivity σxy vanishes.

3 The DC conductivity

In this section we calculate the leading behaviour of the conductivity, σ, when

ω � T � µ. (3.1)
7There is a delta function Drude peak at ω = 0 in addition which we have subtracted.
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Our analysis will closely follow the discussion in section 3 of [6] (which itself used heavily the
results of [29]). We consider a perturbation in Ax, which mixes with the metric component
gxt, impose in-going boundary conditions at the horizon, and then carry out a matched
asymptotic expansion which determines the behaviour near the boundary and hence the
conductivity. We skip some of the details here and emphasise only the central points.8

The leading behaviour of the conductivity in the parametric range eq. (3.1) will turn
out to be

Re (σ) = C ′
T 2

µ2
(3.2)

This is independent of ω. The DC conductivity defined as the limit ω → 0 of the above
formula then just gives eq. (3.2) as the result. Actually there is an additional delta function
contribution at ω = 0; we will comment on this more in the following subsection. C ′ in
eq. (3.2) is a constant that depends on φ0.

We begin by observing that the variable

Ψ = f(φ)Ax (3.3)

satisfies a Schrödinger equation,

−Ψ′′ + V (z)Ψ = ω2Ψ. (3.4)

Here, f(φ) = 2 eαφ is the dilaton coupling, as discussed in eq. (3.10) of [6], and primes
denote derivatives with respect to the variable z, defined as

∂

∂z
= a2 ∂

∂r
. (3.5)

The potential V (z) is given by

V =
f ′′

f
+
a2Q2

b4f2
. (3.6)

In the near-boundary region, Ψ takes the form

Ψ = (D1 +D2) + iω(−D1 +D2)z. (3.7)

The resulting flux is
F ∼ |D1 +D2|2ωRe (σ). (3.8)

We are interested here in a slightly non-extremal black brane. This has a near-horizon
metric

ds2 = −C2
2r

2
(

1− (
rh
r

)2β+1
)
dt2 +

dr2

C2
2r

2
(
1− ( rhr )2β+1

) + r2β(dx2 + dy2). (3.9)

The temperature is
T ∼ rh. (3.10)

8The result of this section has also been obtained in [30], which appeared while our paper was being

readied for publication. Other related papers which appeared recently include [31–36].
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The dilaton is the same as in the extremal case. The near-horizon form of the metric
above is valid for r � µ. The temperature dependence of the conductivity is essentially
determined by the near-horizon region, as long as T

µ � 1. This is similar to what happens
for the frequency dependence when ω

µ � 1.
In the near-horizon region rh is the only scale, as we can see from eq. (3.9). It is

therefore convenient, in the discussion below, to rescale variables by appropriate powers of
rh. We define

r̂ =
r

rh
(3.11)

â2 ≡ a2

r2
h

= C2
2 r̂

2

(
1− 1

r̂2β+1

)
(3.12)

and
∂

∂ẑ
≡ 1
rh

∂

∂z
= â2 ∂

∂r̂
(3.13)

The Schrödinger equation then becomes,

− d2Ψ
dẑ2

+ V̂Ψ =
ω2

r2
h

Ψ (3.14)

where the rescaled potential, V̂ , is dependent on the rescaled variable ẑ alone without any
additional dependence on rh .

Very close to the horizon, V̂ goes to zero and we have

ψ ∼ e−iω(t+z) = e−iωte
−i
(
ω
rh
ẑ
)

(3.15)

resulting in the flux
F ∼ ω. (3.16)

From eq. (3.8), eq. (3.16) we see that the conductivity is

Re (σ) ∼ 1
|D1 +D2|2

. (3.17)

Now, consider the region of the near-horizon geometry where

µ

T
� r̂ � 1 . (3.18)

Since the temperature is small eq. (3.1), these conditions are compatible. In this region the
temperature dependent terms in the metric are subdominant and a2 ' C2

2r
2. Eq. (3.13)

then leads to
ẑ = − 1

C2
2 r̂

(3.19)

and eq. (3.6) to a potential,
V̂ =

c

ẑ2
, (3.20)

with the constant
c = 2. (3.21)
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Now since the frequency is even smaller than the temperature, eq. (3.1), ω/T � 1 and
eq. (3.18) and eq. (3.10) imply that

r̂ � ω

rh
. (3.22)

In terms of z this becomes
1
ẑ2
�
(
ω

rh

)2

. (3.23)

It follows that the frequency term in the Schrödinger equation eq. (3.14) is subdominant
compared to the potential term in this region. The resulting solution becomes

Ψ ' ẑ1/2
(a1

ẑν
+ b1ẑ

ν
)

(3.24)

with

ν =

√
c+

1
4
. (3.25)

From the condition r̂ � 1 and eq. (3.19) we see that in this region

|ẑ| � 1. (3.26)

As a result, the first term on the r.h.s. of eq. (3.24) dominates9 giving

Ψ ∼ a1(rhz)
1
2
−ν (3.27)

Here we have used the fact that ẑ = rhz.
We have seen above that once r lies in the region which meets the condition eq. (3.18)

both the temperature and frequency effects can be neglected. Moving outwards towards
the boundary this continues to be true all the way till the near boundary region. This
region is described in Step 1 of section 3.2.2 in [6]. As a result, one gets

D1 ∼ D2 ∼ r
1
2
−ν

h (3.28)

From eq. (3.17), eq. (3.10), eq. (3.21) and eq. (3.25), this gives

Re (σ) ∼ r2ν−1
h ∼ T 2ν−1 ∼ T 2. (3.29)

The dependence on µ then follows from dimensional analysis, leading to eq. (3.2).
Finally we note that it is simple to see that the Hall conductivity continues to vanish

at finite temperature as well.

3.1 The pole in Im (σ) and related delta function in Re (σ)

The real part of σ has a delta function contribution at ω = 0, which arises because the
system has a net charge and it is transported in a momentum conserving manner. A
Kramers-Kronig relation relates the delta function to a pole in the imaginary part of σ. It
will be important to keep track of this pole and the related delta function when we turn

9This would not be true if a1 was suppressed compared to b1 by a power of ω. However, this does not

happen, as we discuss further in appendix A.
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to the discussion of the system in a magnetic field, so let us discuss it in some more detail
here. We will rely on the analysis in section 3 of [6].

As discussed in section 3.1 of [6], following [29], the conductivity is given in terms of
the reflection coefficient R by

σ =
1−R
1 +R

(3.30)

(the extra term in eq. (3.12) of [6] drops out since f ′(0) vanishes like z3 towards the
boundary).

Now in the notation of section 3.2 of [6] close to the boundary Ψ is

Ψ = D1e
−iω(t+z) +D2e

−iω(t−z), (3.31)

giving

σ =
D1 −D2

D1 +D2
. (3.32)

The coefficients D1, D2 can be related to E1, E2 which govern the solution in the not-so
near boundary region. This region is defined in Step 1 of section 3.2.2 in [6] and corresponds
to taking |ω| � z � 1. The coefficients E1, E2 are defined in eq. (3.30) of [6], by

D1 +D2 = E1, D1 −D2 = i
E2

ω
, (3.33)

giving from eq. (3.32)

σ = i
E2

E1

1
ω
. (3.34)

E1 and E2 are obtained by starting from the near horizon region where in-going bound-
ary conditions are imposed and integrating out towards the boundary. The zero temper-
ature, leading order solution in the near-horizon region, is of the form ψ = Cz1/2−ν , as
discussed near eq. (3.32) of [6]. Integrating this out towards the boundary gives E2/E1 to
be real and of order unity in units of the chemical potential. Similarly, at non-zero temper-
ature in the parametric range eq. (3.1), the solution in the near-horizon region eq. (3.18)
is given by eq. (3.27). Integrating out towards the boundary again gives E2/E1 to be real
and of order unity. Thus we learn that near ω = 0

Im (σ) = C ′′
µ

ω
(3.35)

where C is a coefficient of order unity and we have restored the µ dependence on dimensional
grounds. As a result, there is indeed a pole at ω = 0 in Im (σ) and hence a delta function
in Re (σ) at ω = 0.

In the presence of disorder the frequency dependence changes, ω → ω + i/τimp [13],
and the pole acquires an imaginary part. The delta function peak in Re (σ) is therefore
broadened out, as will be discussed further in section 6.

– 8 –
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4 Purely magnetic case

Next, as a warm-up for general dyonic branes, we consider the case of a black brane which
carries only magnetic charge. The action is given by eq. (2.1), but we are now interested
in the case where the gauge field strength is

F = Qmdx ∧ dy. (4.1)

It is easy to see that the equations of motion for the system are invariant under a duality
transformation which keeps the metric invariant10 and takes

φ→ −φ, Fµν → e2αφF̃µν . (4.2)

Here
F̃µν =

1
2
εµνρσF

ρσ. (4.3)

So we see that the duality transformation takes us from the purely electric case eq. (2.3),
to the purely magnetic one eq. (4.1). The value of Qm is

Qm = Q. (4.4)

As a result, the metric for the extremal magnetic case in the near horizon region is
still of the Lifshitz form eq. (2.4). To avoid confusion we denote the dilaton after duality
by φ′ in the subsequent discussion; it is given by

φ′ = K log r (4.5)

where the constants which appear in the metric and in the dilaton continue to be given by
eq. (2.8). The gauge coupling is (g′)2 = e−2αφ′ . From eq. (4.5), eq. (2.8) we see that the
theory now gets driven to strong coupling, (g′)2 →∞, near the horizon, and if a string em-
bedding is possible this would mean that quantum loop effects would get important near the
horizon. By considering a slightly non-extremal black brane such effects can be controlled.

The behaviour of the dilaton can also be understood in terms of the effective poten-
tial [37]. In general, with electric and magnetic charges the effective potential is (from
eq. (2.19) of [6]):

Veff = e−2αφQ2
e + e2αφQ2

m (4.6)

Since after duality, Qe = 0, Qm = Q, we get,

Veff = Q2e2αφ′ (4.7)

so that the minimum does indeed lie at e2αφ′ → 0, or equivalently e−2αφ′ →∞.
In mapping the magnetic case to the boundary theory it is best to think of weakly gaug-

ing the global U(1) symmetry of the boundary theory. Then the magnetic case corresponds
to turning on a constant magnetic field in the boundary theory. The electric-magnetic du-
ality therefore has an interesting consequence. In the electric case, the electric field is a

10This is the Einstein frame metric.
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normalisable mode and corresponds to a state in the boundary theory at constant number
density or chemical potential. In contrast, in the magnetic case, the magnetic field is a non-
normalisable mode and corresponds to changing the Lagrangian of the boundary theory.

The metric in the slightly non-extremal case is also unchanged by duality and hence
given in the near-horizon region by eq. (3.9). We now elaborate on the resulting thermo-
dynamics.

4.1 Thermodynamics

Let us begin by briefly reviewing the purely electric case. From the Maxwell term in the
action

Sem = −
∫
d4x
√
−ge2αφFµνF

µν (4.8)

using standard techniques in AdS/CFT and the definition of Q, eq. (2.3), we learn that
the the charge density n in the boundary theory is

n = 4Q. (4.9)

A purely electric system satisfies the thermodynamic relation

TdS = dE + pdV − µdN (4.10)

From this relation, using electric-magnetic duality, one can obtain the thermodynamic
quantities in the magnetic case. For this purpose it is convenient to take the independent
thermodynamic variables in the electric case to be (E, V, T, n), since these can be mapped
directly to the independent variables (E, V, T,Qm) in the magnetic case. Here Qm is
the magnetic field.11 Since the Einstein frame action is duality invariant (E, V, T ) are left
unchanged in going from the electric to the magnetic case. And from eq. (4.9) and eq. (4.4)
it follows that n → 4Qm. Thus, the four independent variables can be easily mapped to
one another.

Expressing the number N = nV = 4QV = 4QmV we get from eq. (4.10) in the electric
case that

TdS = dE + (p− 4µQ)dV − 4µV dQm. (4.11)

Comparing eq. (4.11) with the standard thermodynamic relation in the purely magnetic
case (as discussed in e.g. Reif, Fundamentals of Statistical and Thermal Physics, 11.1.7)

TdS = dE + pdV +MdH , (4.12)

and noting that the magnetic field is Qm in our notation, we get that the magnetisation is

M = −4µV (4.13)

and the pressure in the magnetic case is

pmag = pel − 4µQ = pel +
MH

V
. (4.14)

11The magnetic field is usually denoted by H or B, but Qm is more natural for us in view of the duality

transformation.
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In the electric case the chemical potential is a function of the energy density ρ, T, n,
µ(ρ, T, n). In the formulae above for the magnetic case, eq. (4.13), eq. (4.14), the chemical
potential should now be interpreted as a function of ρ, T,Qm given by µ(ρ, T, 4Qm).

It is worth discussing the extremal situation in the magnetic case further. The energy
density (see eq. (2.52) of [6]) is given by

ρ = CQ3/2e−3αφ0/2 = C(Veff0)3/4 (4.15)

where we have used the definition of the effective potential in eq. (4.6). The subscript “0”
on Veff indicates that it is to be evaluated at ∞, where the dilaton takes value φ0.

The chemical potential is

µ =
∂ρ

∂n
=

3
8
CQ1/2e−3αφ0/2 =

3
8
C(Qm)1/2e3αφ′0/2 (4.16)

where we have used eq. (4.4) and eq. (4.2). We see from eq. (4.13) that the magnetisation
is opposite to the magnetic field. As a result, the susceptibility for this system is negative,
and the theory is diamagnetic.

Using pel = ρ/2, ([6] eq. (2.53)), the pressure in the magnetic case is

pmag = −ρ = −CH3/2e3αφ′0/2 (4.17)

It seems puzzling at first that that this is negative, since one would expect the boundary
theory to be stable. This turns out to be a familiar situation in magnetohydrodynamics,
see the discussion around eq. (3.10) in [13]. In the presence of a magnetic field the pressure
and spatial components of stress energy are different and related by

T xx = T yy = pmag −
MH

V
. (4.18)

Stability really depends on the sign of T xx, which determines the force acting on the system.
From eq. (4.14), we see that T xx = pel, and is thus positive.12

4.2 Controlling the flow to strong coupling

We saw above, eq. (4.7), that for the magnetic case e2αφ′ → 0 and thus the gauge coupling
g2 = e−2αφ′ gets driven to strong coupling at the horizon. In a string theory embedding
one would expect the string coupling to become large and thus quantum corrections to
become important near the horizon. To control these corrections one can consider turning
on a small temperature and dealing with the near-extremal brane instead. From eq. (4.4),
eq. (3.10), and eq. (2.8) we see that if the temperature is T ∼ rh the coupling at the horizon
is

e−2αφ′ ∼ 1
T 4β

(4.19)

The only other dimensionful quantity in the boundary theory is the magnetic field, so
the dependence on magnetic field can be fixed by dimensional analysis. An explicit bulk
analysis also shows that this dependence is correct. In addition there is a dependence

12In fact this had to be true since T xx, T yy are duality invariant and in the electric case pel = T xx = T yy.
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on the asymptotic value of the dilaton φ′0. It is easy to see that φ′0 only enters in the
combination Qme

αφ′0 with the magnetic field and as (φ′ − φ′0) with the varying dilaton.
This is enough to fixed the φ′0 dependence of eq. (4.19) and we get

e−2αφ′ ∼ e−2αφ′0

(
Qme

αφ′0

T 2

)2β

. (4.20)

For the temperature to be small and the brane to be near-extremal,

T 2 � Qme
αφ′0 . (4.21)

Thus to make e−2αφ′ � 1 we need to adjust the asymptotic value of dilaton and start with
a theory which is at very weak coupling

e−2αφ′0 �
(

T 2

Qmeαφ
′
0

)2β

. (4.22)

Once this is done the coupling will continue to be small all the way to the horizon.

4.3 Dyonic case with only dilaton

Most of this section has dealt with the purely magnetic case. Below we will turn to a
dyonic system with an axion. Before doing so though let us briefly discuss the dyonic case
in the presence of only a dilaton without an axion. From eq. (4.6) we see that the dilaton
now has the attractor value φ∗ with,

e2αφ∗ =
∣∣∣∣ QeQm

∣∣∣∣ . (4.23)

From the equations of motion it then follows that the metric component b2, eq. (2.2), at
the horizon is

b2h ∼
√
Veff(φ∗) ∼

√
|QeQm|. (4.24)

The resulting entropy is then

s ∝ b2h/GN ∼ C
√
|QeQm| (4.25)

where C ∼ L2/GN is the central charge of the AdS4. As has been discussed above the
purely electric case has no ground state degeneracy. Once a magnetic field is also turned
on we see that such a degeneracy does arise. By itself this is not surprising. However, the
resulting entropy formula, eq. (4.25), is quite intriguing and understanding it better should
provide important clues for the microscopic dual of the purely dilatonic case.

5 The SL(2, R) invariant case

In this section we discuss a theory which has SL(2, R) duality symmetry, in the presence
of an axion, with action13

S =
∫
d4x
√
−g
[
R− 2Λ− 2(∂φ)2 − 1

2
e4φ(∂a)2 − e−2φF 2 − aF F̃

]
. (5.1)

13In our conventions F̃µν = 1
2
εµνρκFρκ and εµνρσ has a factor of 1√

−g in its definition, thereby making

the axionic coupling independent of the metric. We have chosen conventions εtrxy > 0.
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Comparing with eq. (2.1) we see that the gauge coupling function here corresponds to
taking α = −1. We will mostly follow the notation of [38] below (see also [39]) and denote
the complexified dilaton-axion by

λ = λ1 + iλ2 = a+ ie−2φ. (5.2)

It is easy to see that under an SL(2, R) transformation

M =

(
ã b

c d

)
(5.3)

which takes
Fµν → F ′µν = (cλ1 + d)Fµν − cλ2F̃µν (5.4)

and
λ→ λ′ =

ãλ+ b

cλ+ d
(5.5)

while keeping the metric invariant, the equations of motion are left unchanged. (This is
discussed for example in [39] around eq. (18) with (ML)ab → −1). Note that we are
denoting M11 = ã and the axion by λ1 ≡ a to avoid confusion. Also, since M is an element
of SL(2, R)

ãd− bc = 1. (5.6)

Thus starting from the purely electric case where only the dilaton is non-trivial and
carrying out a general duality transformation, we can obtain a dyonic brane with both axion
and dilaton excited. In the discussion below we will follow the conventions established above
of referring to parameters obtained after duality with a prime superscript.

The starting electric brane is characterised by four parameters: a mass M , a charge Q,
and asymptotic values of the dilaton and axion, λ20 ≡ e−2φ0 , λ10 ≡ a0. The axion is radially
constant. The SL(2, R) transformation adds three additional parameters,14 resulting in a
7 parameter set of solutions. Two of these parameters are redundant, though, since the
general dyonic brane solution only has only 5 independent parameters: M ′, Q′e, Q

′
m, λ

′
20, λ

′
10.

This redundancy can be removed by setting λ10 = 0 in the electric case, and also setting
Q = 1.15 In the discussion below we will set λ10 = 0, but not necessarily set Q = 1.

The gauge field can be written in terms of the electric and magnetic charges as follows

F ′ =
(Q′e −Q′mλ′1)

b(r)2
(λ′2)−1dt ∧ dr +Q′mdx ∧ dy (5.7)

It can be seen that Q′e, Q
′
m being constant solves the gauge field equations of motion and

Bianchi identities. From eq. (5.7) we see that

F ′xy = Q′m. (5.8)

Using eq. (5.4) this gives,
Q′m = −cλ2F̃xy = cQ. (5.9)

14det(M) = 1 so there is one constraint among the 4 matrix elements.
15More correctly the scaling symmetry allows one to set |Q| = 1.
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Similarly from eq. (5.7) we see that

λ′2F
′
tr =

(Q′e − λ′1Q′m)
b(r)2

. (5.10)

And eq. (5.4) now gives

F ′tr = (cλ1 + d)Ftr − cλ2F̃tr = dFtr = d
Q

λ2b(r)2
(5.11)

where we have used eq. (5.9) and the fact that λ1 = a = 0 and F̃tr = 0 in the electric case.
Together these imply

Q′e =
(
λ′2
λ2
d+ λ′1c

)
Q. (5.12)

Using eq. (5.5), and relation ãd− bc = 1 then gives

Q′e = ãQ. (5.13)

It is now easy to see that the effective potential, which is given by

V ′eff = (Q′e −Q′mλ′1)2(λ′2)−1 + (Q′m)2λ′2 , (5.14)

is in fact duality invariant and thus equal to its value in the purely electric frame,

Veff =
Q2

λ2
. (5.15)

Thermodynamic quantities of a system carrying electric charge in a magnetic field
satisfy the relation

TdS = dE + pdV − µdN +MdQm (5.16)

We will be particularly interested in the extremal case where the TdS term vanishes.
Writing E = ρV,N = nV we get in this case,(

dρ− µdn+
M

V
dQm

)
V + (ρ− µn+ p)dV = 0 (5.17)

From this it follows that both,

dρ− µdn+
M

V
dQm = 0 (5.18)

and
ρ− µn+ p = 0. (5.19)

We are interested in applying these relations to the dyonic case obtained after duality.
The energy density is duality invariant, since it can be extracted from the Einstein frame
metric which is duality invariant. Thus we get,

ρ′ = ρ = C(Veff0)3/4 = C
[
(Q′e −Q′mλ′10)2(λ′20)−1 + (Q′m)2λ′20

]3/4 (5.20)
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The subscript “0” on Veff and the moduli indicates that the effective potential must be
evaluated at ∞ where the moduli take values λ′20 ≡ e−2φ′0 , λ′10 ≡ a′0. Straightforward
manipulations then give us that

µ′ =
1
4
∂ρ′

∂Q′e
=

3C
8

(Veff0)−1/4

(
Q′e − λ′10Q

′
m

λ′20

)
(5.21)

where we have used the fact that n′ = 4Q′e. The magnetisation per unit volume is

M ′

V
= − ∂ρ′

∂Q′m
= − 3C

2(Veff0)1/4λ′20

[
Q′m(λ′220 + λ′210)− λ′10Q

′
e

]
(5.22)

and the pressure is

p′ = µ′n′ − ρ′ = − C

(Veff0)1/4λ′20

[
(Q′m)2(λ′220 + λ′210)− 1

2
(Q′2e + λ′10Q

′
eQ
′
m)
]

(5.23)

In eq. (5.21)–(5.23) the moduli take their values at infinity. From eq. (5.22) it follows
that the susceptibility is negative, and thus the system is diamagnetic. From eq. (5.23)
we see that the pressure can be positive or negative. The stress energy tensor component
T xx = T yy = ρ/2 and is always positive.

Finally, we discuss the compressibility of this system. This is defined to be

κ = − 1
V

∂V

∂p

∣∣∣
TQmN

(5.24)

The partial derivative on the r.h.s. is to be evaluated at constant temperature T , magnetic
field Qm and total number N = V n. For a system of fermions which has precisely enough
particles to fill an integer number of Landau levels, reducing the volume while keeping
the magnetic field Qm fixed would change the available number of states in the occupied
Landau levels. But since the total number of fermions is not being changed in the process,
and there is a large gap to the next available Landau level, this cannot happen without
significant energetic cost, and as a result the compressibility vanishes. This happens for
example in quantum Hall systems. For our case, from eq. (5.18) eq. (5.19) we have that

∂p

∂V

∣∣∣
TQmN

= n
∂µ

∂V

∣∣∣
TQmN

= n
∂µ

∂n

∣∣∣
TQm

∂n

∂V

∣∣∣
N
. (5.25)

This gives

κ =
1
n2

(
∂n

∂µ

) ∣∣∣
TQm

. (5.26)

From the expression for µ′ eq. (5.21) it is easy to see that (∂µ
′

∂n′ )
∣∣∣
TQ′m

cannot go to infinity

for finite Veff and non-vanishing λ20, and thus the compressibility cannot vanish except
in extreme limits. So the system at hand cannot become incompressible, except when
Veff → 0 and/or e−2φ → 0. We will see that some of the natural attractor flows in SL(2, R)
invariant theories do result in incompressible states of holographic matter.
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6 Conductivity in the SL(2, R) invariant case

We now turn to calculating the conductivity in the SL(2, R) invariant case discussed in the
previous section. The conductivity is defined as follows

jx = σxxFtx + σxyFty (6.1)

jy = σyxFtx + σyyFty. (6.2)

Under a rotation by π/2, which is a symmetry of the system, (x, y)→ (y,−x). Transform-
ing all quantities appropriately in the above equations we learn that

σxx = σyy, σxy = −σyx. (6.3)

Thus there are two independent components in the conductivity tensor. In the discussion
below we will use the notation

σ1 =
σyx
4
, σ2 =

σxx
4
. (6.4)

Below we will use the bulk description to calculate jx, jy, in terms of the boundary
value of gauge fields. From the resulting equations we will find that the two complex
combinations

σ+ = σ1 + iσ2 (6.5)

σ− = σ1 − iσ2 (6.6)

both transform in the same way as the axion dilaton under an SL(2, R) transformation.
Namely

σ± →
ãσ± + b

cσ± + d
(6.7)

under the transformation eq. (5.3). Note that the conductivity components σxx, σyx are in
general complex. Thus σ+ and σ− are not complex conjugates of each other. Starting from
the purely electric case, for which the conductivity has already been obtained above, and
using the transformation properties, eq. (6.7), we can then easily obtain the conductivity
for a general dyonic case.

The electromagnetic part of the bulk action is

Sem =
∫
d4x
√
−g
[
λ2FµνF

µν − λ1FF̃
]
. (6.8)

In the subsequent discussion it is useful to work in a coordinate system where the metric
takes the form

ds2 = a2(−dt2 + dz2) + b2(dx2 + dy2) (6.9)

Asymptotically, the metric approaches AdS4 and a2 = b2 = z−2. In the boundary theory,
the current 〈jx〉 can be obtained by

〈jx〉 =
δ log(Z)
δAx

(6.10)
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The standard AdS/CFT dictionary then tells us that in the bulk,

〈jx〉 = 4 [λ2Fzx − λ1Fty]z→0 (6.11)

(here we have chosen conventions so that εtzxy > 0). Similarly,

〈jy〉 = 4 [λ2Fzy + λ1Fty]z→0 . (6.12)

In this section we will be mainly concerned with using these formula to calculate the
conductivity. For ease of notation in the subsequent discussion we will not specify that the
moduli and field strengths which appear are to evaluated at the boundary, z → 0.

From eq. (6.11), eq. (6.12), eq. (6.1), eq. (6.2) and eq. (6.5) we get

λ2Fzx − λ1Fty = σ2Ftx − σ1Fty (6.13)

λ2Fzy + λ1Ftx = σ2Fty + σ1Ftx. (6.14)

A general SL(2, R) transformation can be obtained by a product of two kinds of
SL(2, R) elements. The first, which we denote as Tb, is of the form(

1 b

0 1

)
(6.15)

And the second, which we denote by S, is(
0 −1
1 0

)
(6.16)

To show that eq. (6.13), eq. (6.14) transform in a covariant way under a general SL(2, R)
transformation when σ± transform as given in eq. (6.7), it is enough to show this for the
transformations Tb, S.

Under Tb the field strength Fµν does not change, eq. (5.4). The dilaton-axion transform
as λ1 → λ1 + b, eq. (5.5), and σ1 → σ1 + b, eq. (6.7). So we see that eq. (6.13), eq. (6.14)
are left unchanged. The l.h.s. of eq. (6.13) can be written as,

[λ2Fzx − λ1Fty] = −λ
2

(F+)ty −
λ̄

2
(F−)ty (6.17)

where F± = F ± iF̃ . Under a general SL(2R) transformation

F+ → F ′+ = (cλ+ d)F+ (6.18)

F− → F ′− = (cλ̄+ d)F−. (6.19)

From this it follows that under S the l.h.s. of eq. (6.13) goes to

[λ2Fzx − λ1Fty]→ Fty. (6.20)

The r.h.s. of eq. (6.13) can be written as

r.h.s. = σ2Ftx − σ1Fty =
1
2i

[σ+ (Ftx − iFty)− σ− (Ftx + iFty)] . (6.21)

– 17 –



J
H
E
P
1
0
(
2
0
1
0
)
0
2
7

Under a general SL(2, R) transformation this becomes

r.h.s. → 1
2i

[(
ãσ+ + b

cσ+ + d

){
(cλ1 + d) (Ftx − iFty)− cλ2

(
F̃tx − iF̃ty

)}
−
(
ãσ− + b

cσ− + d

){
(cλ1 + d)(Ftx + iFty)− cλ2

(
F̃tx + iF̃ty

)}]
(6.22)

From eq. (6.7) after some algebra it then follows that under S

r.h.s. → 1
σ+σ−

[σ2(λ1Ftx + λ2Fzy) + σ1(λ1Fty − λ2Fzx)] (6.23)

Using eq. (6.13), eq. (6.14) this becomes,

r.h.s. → 1
σ+σ−

[σ2(σ1Ftx + σ2Fty) + σ1(σ1Fty − σ2Ftx)] = Fty (6.24)

Thus the l.h.s. and r.h.s. of eq. (6.13) transform the same way if the conductivity transforms
as given in eq. (6.7). A similar result can be obtained for eq. (6.14) thereby establishing
that eq. (6.7) is the correct transformation law for σ±.

Similarly, some algebra shows that if σ transforms as in eq. (6.7) the r.h.s. of eq. (6.13)
becomes,

σ2Ftx − σ1Fty →
1

σ2
1 + σ2

2

[σ2(λ1Ftx + λ2Fzy)− σ1(λ2Fzx − λ1Fty)] (6.25)

Upon using eq. (6.13) this gives

σ2Ftx − σ1Fty → Fty (6.26)

which is indeed equal to the transformation of l.h.s. , as seen in eq. (6.20). Similarly
eq. (6.14) can also be shown to be covariant under S. This proves that eq. (6.13), eq. (6.14)
transform in a covariant manner under SL(2, R).

Since a general dyonic system can be obtained by starting from a purely electric one
and carrying out an SL(2, R) transformation, we can now obtain the conductivity for the
general dyonic case using eq. (6.7). We will follow the conventions of the previous section
and refer to quantities in the electric frame without a prime superscript and in the dyonic
frame with a prime superscript. In the purely electric case we have σxy = σyx = 0. Thus
σ = iσxx/4. Also, it is enough to consider the case with the axion set to zero, λ1 = 0, in
the electric frame. Thus λ = iλ2. Then using eq. (6.7) we get

σ′xx =
σxx

d2 + c2
(
σxx

4

)2 (6.27)

and

σ′yx = 4
ãc(σxx4 )2 + bd

d2 + c2(σxx4 )2
. (6.28)

To complete the analysis one would like to express the SL(2, R) matrix elements which
appear on the r.h.s. of eq. (6.27), eq. (6.28) in terms of parameters in the dyonic frame.
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As discussed in the previous section, the most general dyonic case can be obtained by
starting with a purely electric case with axion set to zero and Q = 1. From eq. (5.13),
eq. (5.9) we see that with Q = 1

Q′e = ã, Q′m = c. (6.29)

The invariance of the effective potential gives, from eq. (5.14), eq. (5.15),

λ−1
20 = (Q′e −Q′mλ′10)2(λ′20)−1 + (Q′m)2λ′20. (6.30)

This allows the asymptotic value of the dilaton in the electric frame to be expressed in
terms of quantities in the dyonic frame. Using this and eq. (5.12) we learn that d is

d =
Q′e − λ′10Q

′
m

(Q′e − λ′10Q
′
m)2 + (Q′m)2(λ′20)2

. (6.31)

And then, finally, using the relation ãd− bc = 1 gives

b =
λ′10Q

′
e −Q′m(λ′210 + λ′220)

(Q′e − λ′10Q
′
m)2 + (Q′m)2(λ′20)2

. (6.32)

6.1 More on the conductivity

The formulae obtained for the conductivity eq. (6.27) eq. (6.28) are valid in general. Let us
discuss the resulting behaviour of the conductivity at small frequencies and temperatures
in the parametric range eq. (3.1) more explicitly.

To start it is useful to state the parametric range eq. (3.1) in a duality invariant manner.
The SL(2, R) transformation with b = c = 0, ã = 1/d is a scaling transformation. Starting
with the purely electric case, this SL(2, R) transformation yields Q′e = Qe/d,Q

′
m = 0.

From eq. (5.21), eq. (5.5), it follows that the chemical potential and dilaton transform as

µ′ = µd,
√
λ′2 =

√
λ2/d, (6.33)

so that µ
√
λ2 is invariant under the rescaling. This combination can in fact be expressed

in terms of the effective potential, which is duality invariant, as µ
√
λ2 ∼ (Veff0)1/4. The

frequency ω and temperature T are duality invariant.16 Thus the duality invariant way to
state the parametric range of interest is

ω � T � (Veff0)1/4. (6.34)

In the purely electric case, the conductivity to leading order is

σxx = C ′
T 2

µ2
+ iC ′′

µ

ω
(6.35)

Under the rescaling discussed in the previous paragraph, σ′xx = σxx/d
2. From this and

eq. (6.33) it follows that C ′ is independent of φ0 while C ′′ ∝ (λ2)3/2. Both Re (σxx) and
Im (σxx) have corrections, which result in a fractional change of order ω2,

Re (σxx) = C ′
T 2

µ2

(
1 +O(ω2)

)
, Im (σxx) = C ′′

µ

ω

(
1 +O(ω2)

)
. (6.36)

16The duality invariance of the temperature follows from that of the Einstein frame metric.
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Plugging eq. (6.35) into the transformation laws eq. (6.27), eq. (6.28), gives the conductivity
for the general dyonic case.

Let us consider the Hall conductance first. When the magnetic field is non-zero, c 6= 0
and the pole in the imaginary part of σxx will dominate the low frequency behaviour. As
a result, we get

σ′yx = 4
ã

c
+O(ω2) (6.37)

From eq. (6.29), eq. (4.9) we see that the leading behaviour is

σ′yx =
n′

Q′m
(6.38)

where n′, Q′m are the charge density and the magnetic field respectively. This result in fact
just follows from Lorentz invariance.

Intuitively, one would expect that the DC value of the Hall conductivity agrees with
the coefficient of the Chern-Simons term of the dual field theory in the far infra-red, which
in turn should be given by the value of the axion close to the horizon in the bulk. From (5.5)
it follows that the axion after the duality transformation is given by

λ′1 =
ãcλ2

2 + bd

c2λ2
2 + d2

(6.39)

Near the horizon in the electric case λ2 →∞; thus, the attractor value of the axion is

λ′1∗ =
ã

c
(6.40)

which is indeed proportional to the value of the Hall conductance eq. (6.38) (the factor of
4, which is the proportionality constant, follows from eq. (6.13), (6.14)).

Actually, it turns out that the O(ω2) terms in eq. (6.37) can also be calculated reliably
in terms of C ′, C ′′. From eq. (6.28) and eq. (6.35) we get that

σ′yx =
n′

Q′m

[
1 + ω2

(
−4
(
T 2C ′

C ′′µ3

)2

+
64d

µ2n′(Q′m)2(C ′′)2

)
+O(ω4)

]
(6.41)

Next let us consider the longitudinal conductivity. From eq. (6.27) we get,

σ′xx = −i 16
(Q′m)2

ω

C ′′µ

[
1 + i

C ′

C ′′
ωT 2

µ3
+O(ω2)

]
(6.42)

Here C ′, C ′′ are the coefficients as given in eq. (6.35) and µ is the chemical potential in
the electric theory. We see that the longitudinal conductivity vanishes as ω → 0. This
result also follows from Lorentz invariance in the presence of a magnetic field. We also see
that the imaginary part does not have a pole after the duality transformation; this shows
that there is no delta function at zero frequency in the real part of σxx. The absence of
this delta function again is to be expected on general grounds, since in the presence of the
background magnetic field, momentum is not conserved.
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It is worth comparing our results with the general discussion of conductivity for a
relativistic plasma in [13]. From general reasoning based on linear response in magnetohy-
drodynamics it was argued in [13] (see also [14]) that at small frequency

σxx = σQ
ω
(
ω + iγ + iω2

c/γ
)

(ω + iγ)2 − ω2
c

(6.43)

and

σxy = −
(
n′

Q′m

)
γ2 + ω2

c − 2iγω
(ω + iγ)2 − ω2

c

(6.44)

Here σQ, γ, ωc depend on the magnetic field Q′m, T and charge density n′. γ is the damping
frequency and ωc is the cyclotron frequency. Expanding in a power series for small ω gives

σxx = −i
σQω

γ

[
1 +

iγω

γ2 + ω2
c

+O(ω2)
]

(6.45)

and

σxy =
n′

Q′m

[
1 +

ω2

γ2 + ω2
c

]
(6.46)

Comparing with eq. (6.41), eq. (6.42) we see that17

γ

γ2 + ω2
c

=
C ′T 2

C ′′µ3

1
γ2 + ω2

c

=
64d

n′Q′2mC
′′ − 4

(
T 2C ′

C ′′µ3

)2

σQ
γ

=
16

(Q′m)2C ′′µ
(6.47)

These three relations determine σQ, γ, ωc in terms of the parameters of our calculations.
To express the answer in terms of the dyonic duality frame variables we should bear in
mind that d is given in terms of the charges etc in eq. (6.31), µ

√
λ20 ∼ (Veff0)1/4, and λ20

is given in eq. (6.30). Also while C ′ is independent of λ20, C ′′ ∝ λ3/2
20 .

The equations in (6.47) are valid for small temperature eq. (6.34) and arbitrary n′, Q′m.
It is easy to solve them and obtain σQ, γ and ωc in a small T expansion. While we do not
present the results in detail, let us note that one finds at small T and also small magnetic
field Q′m that σQ, γ, ωc scale as,

σQ ∝ T 2, γ ∝ (Q′m)2T 2, ωc ∝ Q′m. (6.48)

This qualitative behaviour is in agreement with the results of [14, 40] for the Reissner-
Nordstrom black brane at small ω and Q′m.

17Our convention for σxy differs from that of [14] by a sign.
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6.2 Thermal and thermoelectric conductivity

There are two transport coefficients related to the conductivity, the thermoelectric coeffi-
cient α and the thermal conductivity κ. Both should be thought of as tensors. These are
defined by the relations, (

~J
~Q

)
=

(
σ α

αT κ

)(
~E

−~∇T

)
(6.49)

where ~E is the electric field, ~∇T is the gradient of the temperature, ~J is the electric current
and ~Q is the heat current.

It is easy to see, using the second law, that Qi is given by18

Qi = T ti − µJ i (6.50)

where T ti is a component of the stress energy tensor and ~J is the electric current.19

In AdS/CFT the source term corresponding to the electric field is a non-normalisable
mode of the bulk gauge field Ai, while the source corresponding to a thermal gradient
∇iT corresponds, to a combination of the non-normalisable mode for the metric compo-
nent git and Ai. By turning these on and calculating the response we can calculate the
thermoelectric and thermal conductivities.

6.2.1 The thermoelectric conductivity

The thermoelectric coefficient α can be determined by calculating the heat current ~Q

generated in response to an electric field in the absence of a temperature gradient. In
AdS/CFT we turn on a non-normalisable mode for Ai and calculate the resulting value
for Qi. We will take the time dependence to be of the form e−iωt throughout. To begin
we consider the SL(2, R) case eq. (5.1) but in fact our results will be quite general and we
comment on this at the end of the subsection.

For a metric

ds2 = −a2dt2 +
dr2

a2
+ b2(dx2 + dy2) + 2gxtdxdt+ 2gytdydt (6.51)

and with action given by eq. (5.1) we find that the xt component of the trace-reversed
Einstein equations gives

Rxr = 2λ2(−FrtFtxgtt + FryFxyg
yy + FrxFxtg

xt + FrtFxtg
yt + FrtFxyg

yt) (6.52)

with

Rxr = −iω∂r(g
xxgtx)

2gttgxx
. (6.53)

18Ambiguities in the definition of the heat current can arise because entropy is not conserved. However

they enter in higher orders and are not important in linear response theory.
19Some of the literature, e.g., [13], defines transport coefficients in terms of currents where a magnetisation

dependent term is subtracted out. It is straightforward to relate our answers to those obtained after such

a subtraction.
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The standard procedure to calculate the stress tensor in terms of the extrinsic curva-
ture [41, 42] gives

Ttx = [a∂rgtx − 2gtx] (6.54)

where the right hand side is to be evaluated close to the boundary as r →∞.
While we skip some of the steps in the analysis below, it is easy to see that close to the

boundary, the leading behaviour on the r.h.s. of eq. (6.52) comes from the first two terms.
Thus, we get close to the boundary from eq. (6.53), eq. (6.52)

− iω∂r(g
xxgtx)

2gttgxx
' 2λ2

(
−FrtFtxgtt + FryFxyg

yy
)

(6.55)

Substituting eq. (5.7) for the field strength then yields,

Ttx =
2
iω

[
−2

(Q′e − λ′10Q
′
m)

a
E′x + 2λ′2Q

′
mF
′
rya

]
(6.56)

Some of the notation we have adopted here is potentially confusing. The superscript
prime here denotes a dyonic configuration with both electric and magnetic charge as in
the previous sections. In particular, the variable λ′10 denotes the asymptotic axion in the
system with both electric and magnetic charge. The variable a in the equation above stands
for the redshift factor in the metric.

Using the relation between the variable r used above and z used in eq. (6.9) we see
that

λ′2F
′
ry = − 1

a2
λ′2F

′
zy = − 1

a2

(
j′y
4
− λ′10E

′
y

)
(6.57)

where on the r.h.s. we have also used eq. (6.12).
To complete the calculation we need to express Ttx in terms of boundary theory coor-

dinates. This requires us to multiply the r.h.s. of eq. (6.56) by a factor of a. After doing
this we get in the boundary theory

Ttx =
1
iω

[
−4
(
Q′e − λ′10Q

′
m

)
E′x − j′yQ′m + 4λ′10Q

′
mE
′
y

]
(6.58)

Finally using the relation

Qx = T tx − µJx = −Ttx − µJx = TαxxEx + TαyxEy (6.59)

gives

α′xx =
(n′ − 4λ′10Q

′
m)

iωT
+
Q′m
iωT

σ′yx −
µ′

T
σ′xx (6.60)

α′xy =
1
iωT

[σ′yyQ
′
m − 4λ′10Q

′
m]− µ′

T
σ′xy (6.61)

where we have used the relation n′ = 4Q′e. By symmetries α′yy = α′xx, α
′
yx = −α′xy.

We have considered the action eq. (5.1) in the analysis above, but it is easy to see that
the relations eq. (6.60), eq. (6.61) stay the same for the more general case

S =
∫
d4x
√
−g
[
R− 2Λ− 2(∂φ)2 − h(φ)(∂λ1)2 − λ2F

2 − λ1FF̃
]
, (6.62)
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with h(φ) and λ2 being general functions of φ.
The results above are quite analogous with those in [14], which studied transport

properties in the AdS Reissner-Nordstrom case. It is instructive to compare the cases
with and without a dilaton-axion. Consider first the purely electric case. We have seen
earlier that the thermodynamics in the extremal limit for the cases with and without a
dilaton are quite different, since the entropy vanishes in the presence of a dilaton. Despite
this difference, we have also seen that the electric conductivity at both small and large
frequency and small and large temperature qualitatively agree. In this subsection, we find
that the relation between the thermoelectric and electric conductivities is essentially the
same in the two cases. Thus, the thermoelectric conductivity also agrees qualitatively
in the two cases. Once a magnetic field is turned on, in the presence of an axion the
thermodynamics of the extremal situation continues to behave differently from the extremal
Reissner-Nordstrom case, with vanishing entropy, while we saw in the previous subsection
that the electrical conductivity is still quite similar. Here we see that the thermoelectric
conductivity gets additional contributions due to the presence of the axion, but these only
affect the imaginary part and not the dissipative real part at non-zero frequency. Thus,
the thermoelectric conductivity continues to be quite similar.

6.2.2 Thermal conductivity

Next we turn to the thermal conductivity. It is easy to see using a Kubo formula that the
thermal conductivity κij is related to the retarded two-point function of the heat current
Qi [14],

κij = −〈Qi, Qi〉
iωT

. (6.63)

Using the definition of Qi eq. (6.50) one then gets

〈Qi, Qj〉 =
〈
(T ti − µJi),−µJj)

〉
+ 〈T ti , T tj 〉 − µ

〈
Ji, (T tj − µJj)

〉
− µ2 〈Ji, Jj〉 . (6.64)

Now it is easy to see from the rules of AdS/CFT that〈(
T ti − µJi

)
, Jj
〉

=
〈
Jj , (T ti − µJi)

〉
so that the first and third terms on the r.h.s. can be related to each other. Further using
the definition of thermoelectric and electric conductivity,〈(

T ti − µJi
)
, Jj
〉

= (−iωT )αij , 〈Ji, Jj〉 = (−iω)σij (6.65)

then gives
〈Qi, Qj〉 = iωµT (αij + αji) + iωµ2σij + 〈T ti , T tj 〉. (6.66)

As we will see in appendix B
〈T ti , T tj 〉 =

ρ

2
δij (6.67)

where ρ is the energy density. Substituting the last few equations in eq. (6.63) then finally
gives the relation

κij = −µ(αij + αji)−
µ2

T
σij +

i

2ωT
ρδij . (6.68)
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We note that this relation follows essentially from the Kubo formula and is valid in
general. For the case where there is no magnetic field we get from eq. (6.60) and eq. (6.68)

Re (κxx) =
µ2

T
Re (σxx). (6.69)

This is a Weidemann-Franz like relation, and is analogous to those obtained in the non-
dilatonic case studied in [13, 14]. At low temperature and frequency, we have seen in
section 3 that Re (σ)xx ∼ T 2

µ2 , leading to a linear behaviour of thermal conductivity

Re (κxx) ∼ T. (6.70)

The derivation of eq. (6.67) is discussed in appendix B. We note that the result
in eq. (6.67) is independent of momentum, and is therefore a contact term. Often in
AdS/CFT calculations such contact terms are simply discarded. We do not delve into this
issue here any further except to note that [14] discusses it and does subtract this term
from the final answer.

6.3 Disorder and power-law temperature dependence of resistivity

So far we have neglected the effects of disorder. In this subsection we attempt to include
some of these effects and discuss the resulting consequences. Disorder can be incorporated
in a phenomenological way by adding a small imaginary part to the frequency, follow-
ing [13], ω → ω + i/τ . We focus on the resulting effects on electric conductivity in the
discussion below.

To begin, consider the purely electric case. The conductivity, at small frequency, is
given by eq. (6.35)

σxx =
C ′T 2

µ2
+ iC ′′

µ

(ω + i/τ)
, (6.71)

with σxy = 0. For very small frequencies, ω � 1/τ the disorder will dominate the imaginary
part of σxx and we get,

σxx ' C ′′µτ +
C ′T 2

µ2
. (6.72)

The first term on the r.h.s. is a Drude-like contribution to the conductivity which is pro-
portional to the relaxation time τ . For small disorder, µτ � 1 and we see that first term
on the r.h.s. of eq. (6.72) is large.20 In the theory without disorder Im (σxx) has a pole
and Re (σxx) has a corresponding delta function at ω = 0. We see from eq. (6.72) that
after adding disorder, the pole and the delta function have both disappeared as expected,
leaving a large, but finite, Drude-like contribution in Re (σxx).

Now consider the purely magnetic case obtained by carrying out an S transformation,
eq. (6.16) on the purely electric case. Since ã = d = 0 we see from eq. (6.28) that σ′yx = 0
and since c = 1 from eq. (6.27) that the resistivity,

ρ′xx =
1
σ′xx

=
σxx
16

. (6.73)

20C′′ which is dimensionless is O(1).
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Thus the large Drude-like contribution in σxx discussed above turns into a large resistivity
in the magnetic case, scaling with the relaxation time τ . In addition we see that the
resistivity now grows as T 2 with increasing temperature.

The S duality transformation is also a symmetry of the purely dilaton theory, which
does not have an axion, for all values of the coupling α defined in eq. (2.1). Thus our results
apply to these cases as well. More generally, see e.g. [30], once an additional potential is
added for the dilaton-axion, one expects that the conductivity in the purely electric case
can vary with temperature in ways different from the T 2 dependence we have found. This
will then result in a different dependence for the resistivity in the purely magnetic case.
In particular, we expect that one can obtain a linear dependence ρxx ∼ T reminiscent of
strange metal behaviour in this manner.

6.4 SL(2,R) and SL(2, Z) in the boundary theory

It is natural to ask about how the SL(2, R) symmetry is implemented in the boundary
theory. The gauge symmetry in the bulk corresponds to a global symmetry in the boundary.
To implement the SL(2, R) in the boundary one needs to gauge this global symmetry [43].
This is because, starting with a state which carries only electric charge in the bulk, one gets
after a general SL(2, R) transformation a system with both electric charge and a magnetic
field. Now, the magnetic field corresponds to a non-normalisable deformation and therefore
requires a change in the boundary Lagrangian. Once the global symmetry is gauged in
the boundary theory, there is a boundary gauge field aµ, and the required change in the
boundary Lagrangian can be identified as turning on a background magnetic field.

6.4.1 Tb

The SL(2, R) symmetry is generated by the two elements Tb and S discussed in (6.15)
and (6.16). Under Tb the axion shifts, λ1 → λ1 + b. It is natural to identify this with
a change in the coefficient of the Chern-Simons term for the gauge field in the boundary
theory [12]. In fact, this cannot be the whole story. The reason is that, even for abelian
gauge fields, the Chern-Simons term must appear with a quantised coefficient [43]. In
defining the Chern-Simons term on a three-manifold Σ3, one chooses an extension of the
gauge field to a four-manifold Σ4 with ∂Σ4 = Σ3, and writes∫

Σ3

A ∧ dA =
∫

Σ4

F ∧ F . (6.74)

Of course, to avoid arbitrariness in the definition, (6.74) must yield an answer which is
independent of the choice of Σ4 and the extension of the gauge field — or more precisely,
the action S(A) should depend on this choice only up to shifts by integer multiples of 2π,
so that eiS is invariant. This condition leads to a precise quantisation of the coefficient of
the Chern-Simons term.

Now, this poses a mystery, because in our system the Hall conductance takes arbitrary
rational values (once we relax the full SL(2, R) symmetry to the more realistic SL(2, Z)).
However, this does not require violation of the quantisation condition. Rather, consider a
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(toy, boundary) Lagrangian of the form

S =
1

4π

∫
d3x

(
k εµνρAµ∂νAρ −

1
2π
aµεµνρ∂νAρ

)
. (6.75)

This is the sort of Lagrangian that one finds in effective field theory descriptions of the
quantum Hall effect; Aµ is to be identified with the “emergent” gauge field (so the elec-
tromagnetic current is Jµ = 1

2π εµνρ∂
νAρ) and aµ is the external electromagnetic field.

Integrating out Aµ, one finds an effective Lagrangian for aµ which gives fractional Hall
conductance, and is roughly a Chern-Simons theory at level 1/k [44]. Identifying Jµ with
the global current in our boundary theory, and aµ with the boundary gauge field, we
see how “effective” fractional Hall conductances can arise in a theory with well-quantised
Chern-Simons terms. The generalisation to describe arbitrary fractional quantum Hall
states is discussed in, for instance, [44].

6.4.2 S

The S transformation is more complicated. It action in the boundary theory has been
discussed in [43]. In 2 + 1 dimensions (at least in the absence of charged matter) the gauge
field aµ is dual to a scalar φ. The dual scalar theory has a global symmetry, φ → φ + c.
The S transformation requires gauging this global symmetry and turning on a magnetic
field for the resulting dual gauge field. This prescription for implementing S also roughly
agrees with the discussion in [13] in which the S duality acts by turning electrically charged
particles into vortices. Electrically charged particles of the gauge field aµ are vortices under
the global symmetry for φ. Gauging the global symmetry corresponds to turning on a gauge
field which couples (via local couplings) to these vortices.

In the bulk, SL(2, R) invariance means that the theory comes back to itself with a differ-
ent electric and magnetic field and altered dilaton-axion. This means in the boundary too,
starting with the gauge theory containing the gauge field aµ and carrying out the SL(2, R)
transformation should give back the same gauge theory with the new magnetic field and
couplings corresponding to the new dilaton-axion and in a state with the new charge.

6.4.3 SL(2,R) vs SL(2,Z)

In string theory, one does not expect that the SL(2, R) symmetry is exact. Instead it will
be broken to an SL(2, Z) subgroup generated by the elements Tb=1, S. It is this SL(2, Z)
subgroup which should be an symmetry (in the sense described above) of the boundary
theory as well. The breaking of SL(2, R) to SL(2, Z) occurs due to stringy or quantum
corrections in the supergravity action; it can also be understood as being related to charge
quantisation. In any case, at the level of bulk solutions, if the supergravity approximation
we are working with here is good, at large values of the charges the supergravity will
have an approximate SL(2, R) symmetry and the approximation we make discussing the
full SL(2, R) is a good one. This means our conductivity and thermodynamic calculations
using the SL(2, R) to relate situations with different electric and magnetic charges should be
accurate, and the SL(2, R) transformations in the boundary theory should be approximately
valid. One can always restrict consideration to SL(2, Z) transformations acting on the
electrically charged brane with minimal charge, to get a more accurate picture.
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7 Attractor behaviour in systems with SL(2, Z) symmetry

In this section, we discuss the structure of attractor flows in the dilaton-axion plane. We
begin by discussing the flows governed by the action (5.1), and then consider a more
general action which includes an SL(2, Z) invariant potential for the dilaton-axion. The
main feature of interest here is that the SL(2, Z) symmetry acts to relate different attractor
flows to one another; in the field theory, this would mean that different RG trajectories
are related by the modular group. In the system without a potential, the endpoints of
the flows have rational σxy and vanishing longitudinal conductivity, while in the system
including a potential, we find (at fixed charges) different basins of attraction for distinct
attractors: some at rational values of λ1 and strong coupling, and others at λ ' i.

In addition to the intrinsic interest of the subject, we are motivated to study the
action of SL(2, Z) on these flows because SL(2, Z) (or more properly, its subgroup Γ0(2))
has been argued to organise the phase diagrams of real systems of charged particles in
background magnetic fields. Discussions in the context of the fractional quantum Hall
system can be found in [45–48], and a nice review appears in [49]. Needless to say, it would
be very interesting to modify our system to give incompressible phases and analogues of
Hall plateaux, but we do not pursue this here. Discussions of holography and the quantum
Hall system can be found in [12, 50–54].

Before proceeding, we should emphasise that there is an obvious difficulty with con-
trolling the RG flows of greatest interest in our system. With a magnetic field turned on,
the IR-attractor lies along the real axis in λ, at strong coupling. To the extent that one can
trust the analysis it is attractive for both the dilaton and axion directions. More correctly,
close enough to the fixed point, supergravity breaks down and corrections would have to
be included to study the nature of the RG flow in more detail. In this section, we will
simply take the attractor flows at face value.

7.1 Attractor flows in the SL(2,R) invariant theory

One wide class of attractor flows in the SL(2, R) invariant case are easily determined, as
follows. The flows in the original electric solutions of [6] are extremely simple, involving
logarithmic variation of the dilaton (running to weak coupling at the horizon). Using
the SL(2, R) transformation properties of the dilaton-axion (5.5), one can translate these
dilaton trajectories into more non-trivial dilaton-axion trajectories, governing the flow to
dyonic black holes in the extremal limit. A plot displaying these trajectories for various
O(1) ratios of Qe/Qm appears in figure 1. It is clear from the nature of the SL(2, R)
duality, which relates the axion to e−2φ, that the axion is attracted to its fixed-point value
in a power-law manner.

All of the fixed points in this case lie on the real λ axis, with rational values of λ1 (and
hence σxy) and vanishing σxx. Because of the extreme value of the dilaton at infinity, these
states are also incompressible. This is happily rather similar to the flows in the quantum
Hall system, but the underlying physics of our charged fluid is quite different.
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Figure 1. Attractor flows for various O(1) values of Qe/Qm, in the case without a bare scalar
potential. The trajectories run from r = 100 to r = 10−5, along the direction indicated by the
arrows. The various semi-circles arise for values of Qe/Qm varying from 2 (for the largest one)
to 2/7 (for the smallest one); the incomplete semi-circle would hit the real axis at λ1 = −1 if we
extended the figure. The initial value of the axion is very close to 0, but flows which would go to
the left of the vertical axis have been shifted (via the Tb=1 transformation λ1 → λ1 + 1) to appear
in the figure. The initial dilaton value is fixed by an appropriate SL(2, R) mapping of the value of
λ2|r=100 in the electric solution.

7.2 Attractor flows in the presence of a potential which breaks SL(2,R)
to SL(2,Z)

In the flows of interest in more realistic systems, there are also RG fixed points at other
fixed points of subgroups of SL(2, Z) in the upper half plane. To find additional fixed
points in our case, we must add a bare scalar potential. This modifies the effective potential
governing the attractor flow as in e.g. (2.37)-(2.39) of [6]. Here, we discuss the most natural
class of SL(2, Z)-invariant potentials (which do, however, break SL(2, R) to SL(2, Z)).

Our dilaton-axion kinetic terms can be derived from the Kähler potential

K = −log
(
−i(λ− λ)

)
. (7.1)

It is then natural to try and derive an SL(2, Z)-invariant potential by choosing an appro-
priate superpotential W and using the supergravity formula

V = eK
(
GλλDλWDλW − 3|W |2

)
. (7.2)

Here, G is the Kähler metric derived from K, and W must transform as a section of
a particular line bundle over the dilaton-axion moduli space, whose first Chern class is
determined by K [55].
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In fact, the superpotentials which are allowed by this requirement, and satisfy in
addition the physically sensible condition of vanishing at weak coupling (where we know
that potentials slope to zero in realistic string compactifications), have been discussed
extensively in earlier literature [56]. Defining

q = e2πiλ (7.3)

they take the rough form

W =
1

η(q)2
f(j(q)), (7.4)

where j is the famous j-invariant modular function

j(q) =
1
q

+ 744 + 196884 q + · · · (7.5)

and
η(q) = q1/24 Π∞i=1 (1− qn) . (7.6)

Because j has a pole at weak coupling j(q) ∼ 1
q , one should choose f to die quickly enough

as j →∞ near weak coupling to satisfy the requirement V → 0 as gs → 0.
One simple choice [56], which suffices to add an interesting new critical point near

λ ' i in our attractor flows, is the choice

W =
1

η(q)2

1
j(q)1/3

. (7.7)

With this choice, the scalar potential takes the form

V (λ) = e−πλ2
|η̃(q)|12

λ2|E4(q)|4

(∣∣∣E4(q) +
π

3
λ2(3E2(q)E4(q)− 4Ẽ4(q))

∣∣∣2 − 3 |E4(q)|2
)
. (7.8)

Here, E2 and E4 are the Eisenstein functions

E2(q) = 1− 24
∞∑
n=1

nqn

1− qn
, E4(q) = 1 + 240

∞∑
n=1

n3qn

1− qn
(7.9)

and
Ẽ4(q) =

3
2πi

∂τE4(q) , η̃(q) = q−1/24η(q). (7.10)

The main feature of interest in the potential (7.8) for us, is that it has a minimum
at λ = i (in addition to runaway minima close to i∞, and a singularity at e

2πi
3 ). It will

turn out that at least in some cases, this translates into a critical point in the full effective
attractor potential for dyonic dilaton black holes, when the bare potential (7.8) is added
to the action S in (5.1).

To see this, let us remind ourselves of the class of attractors described in [6], eqs.
(2.37)-(2.39). In the presence of a bare potential V1, in addition to the effective potential
Veff arising from the gauge kinetic function in a charged black hole background, one can
find AdS2 ×R2 attractor points if there exist a bh and λ∗ such that:

∂λVeff(λ∗) + b4h ∂λV1(λ∗) = 0 , (7.11)(
3
L2
− V1(λ∗)

)
b4h = Veff(λ∗) . (7.12)
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Consider now a family of actions:

Sε = S − ε
∫
d4x
√
−gV (λ) (7.13)

with V the modular-invariant potential discussed above. That is, we modify the action in
(5.1) by adding the potential (7.8), with strength ε (or, in terms of the discussion above,
V1 = εV (λ)).

Suppose (as is actually the case) that the potential V (λ) has an AdS minimum at some
point in field space. It is clear that at sufficiently large values of ε, at any finite bh, the
potential term will dominate over the gauge kinetic function in determining the properties
of an attractor geometry. Then, the first equation above just becomes the condition for a
critical point of V (λ), while the second equation can be solved for bh. Of course at any
finite ε, the attractor will be slightly shifted from the minimum of V (λ) by the effects of
the gauge kinetic function.21

On the other hand, it is also clear that for small b(r), the gauge kinetic contributions
to the attractor potential dominate over the contributions of the bare potential. This is
because one of them scales like 1/b2, while the other scales like b2. Therefore, one can
expect to find our Lifshitz-like attractors with b → 0 at the horizon, even in the presence
of the bare potential V .22

In fact, we find that at moderate values of ε, the resulting system exhibits multiple
attractor points at fixed charges. That is, for reasonable choices of ε, and a fixed Qe, Qm,
one finds both the attractor point at λ = Qe/Qm, and an attractor very close to λ = i.
We give some representative values of the moduli at the new attractor point near λ∗ ' i

for various O(1) values of Qe/Qm and for ε = 144 in table 1.23 The standard attractors
at λ = Qe/Qm also exist in all of these cases, and the λ-plane is divided into different
domains which flow to one attractor or the other.

8 Attractor behaviour in more general system without SL(2, R)

symmetry

In this section, we study a more general theory which does not have SL(2, R) symmetry.
The action we study has one parameter α 6= −1,

S =
∫
d4x
√
g

(
R− 2Λ− 2 (∂φ)2 − 1

2
e4φ (∂λ1)2 − e2αφF 2 − λ1FF̃

)
(8.1)

21It is important that the minimum of V under discussion be an AdS minimum; if it is a dS minimum, then

for sufficiently large ε the overall effective cosmological term changes sign in the vicinity of the minimum,

and our discussion would be radically modified.
22This would not necessarily be true if V diverged sufficiently strongly at the attractor point, but in

fact V vanishes along the real λ axis — this was actually one of our conditions for reasonableness of the

potential, since the real axis is SL(2, Z) dual to weak coupling.
23ε = 144 is a convenient choice, because Mathematica naturally defines the j-function in a way that

differs from the standard definition by a factor of 1728.
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Qe
Qm

λ1∗ λ2∗ bh

2 6.2× 10-3 1.004 0.76

1 7.7× 10-3 1.000 0.86
2
3 7.1× 10-3 0.997 0.97
1
2 6.2× 10-3 0.996 1.08
2
5 5.3× 10-3 0.995 1.19
1
3 4.6× 10-3 0.994 1.29
2
7 4.1× 10-3 0.994 1.38

Table 1. Precise locations of the new attractor points near λ ' i, and values of bh (the value of
b(r) at the horizon), for various values of Qe/Qm.

We will analyse the attractor mechanism for dyonic black branes in this theory.24

The effective potential is now given by

Veff(φ, λ1) = e−2αφ (Qe − λ1Qm)2 + e2αφQ2
m, (8.2)

where Qe, Qm are the electric and magnetic charges. The extremum of the potential arises
at

λ1 = λ1∗ =
Qe
Qm

, e2αφ → −∞. (8.3)

We work in the coordinate system eq. (2.2) below. If the axion takes its attractor value
λ1∗ at r → ∞, it is constant everywhere and the resulting solution is that of a purely
magnetically charged dilatonic brane. This has a near horizon metric given in eq. (2.4) and
the near-horizon dilaton

φ = K log(r), (8.4)

with the constants C2, β,K taking values given in eq. (2.8).

To investigate if this magnetic solution is an attractor, we take the asymptotic value of
the axion at infinity to be slightly different from its attractor value and study the resulting
solution. As we will see below, in the ranges α > 0 and α ≤ −1 we find attractor behaviour,
with the axion settling down to its attractor value exponentially rapidly in r (except for the
special case α = −1 discussed in section 6, section 7, where the attractor is power-law in na-
ture). In the range −1 < α < 0 we find that there is no attractor behaviour. Instead, start-
ing with a value for the axion at infinity which is slightly different from its attractor value,
one finds that the solution increasingly deviates from the purely magnetic case for small
enough r. We have not been able to find the end point of the attractor flow in this case.

24Of course other parameters in the action eq. (8.1) could have also been varied from their values in the

SL(2, R)-invariant case. We do not carry out a full analysis of the resulting set of theories here, but the

limited class we do study already exhibit rather interesting phenomena.
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8.1 Attractor behaviour for α > 0, α < −1

The axion equation of motion is

∂r

(
e4φa2b2∂rλ1

)
=

4e−2αφQ2
m

b2
(λ1 − λ1∗) (8.5)

Putting in the solution for φ, a2, b2 in the near horizon region of the purely magnetic case
gives

∂r

(
r4K+2β+2∂rλ1

)
=

D

r2β+2αK
(λ1 − λ1∗) (8.6)

where D > 0 is a constant.
Define the variable x as

x =
1

|4K + 1 + 2β|
1

r4K+1+2β
(8.7)

In terms of x eq. (8.6) becomes a Schrödinger-type equation,

∂2
xλ1 = D̃x−P (λ1 − λ1∗) (8.8)

where D̃ > 0 is a constant and

P =
4K − 2αK + 2
4K + 1 + 2β

. (8.9)

By rescaling x the constant D̃ can be set to unity.25 To avoid notational clutter, we
continue to refer to this rescaled variable as x below. Also, to simplify things, we henceforth
take (λ1−λ1∗)→ λ1, i.e., from now on we use λ1 to denote the deviation of the axion from
its attractor value. This gives

∂2
xλ1 = x−Pλ1 (8.10)

There are two separate cases of interest.

8.1.1 Case A

The first case arises when
4K + 1 + 2β > 0 (8.11)

Here we see from eq. (8.7) that x→∞ as r → 0. When

P < 2 (8.12)

a solution to eq. (8.10) can be found in the WKB approximation. It is of the form

λ1 ∼ e−S , (8.13)

with

S =
x1−P/2

1− P/2
. (8.14)

25This does not work for the case P = 2 which arises when α = 0,−1. The α = −1 case has SL(2, R)

invariance and has been extensively discussed above. The α = 0 case needs to be dealt with separately

because here the dilaton does not enter in the gauge kinetic energy or the effective potential.
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We see that as x → ∞, S → ∞ and λ1 → 0, so the axion goes to its attractor value in
the near horizon region exponentially rapidly. In finding the solution we have neglected
the backreaction of the axion on the other fields; this is now seen to be a self-consistent
approximation. Since the other fields vary in a power law fashion with r, the backreaction
of the axion on them is small.

Substituting for the constants from eq. (2.8) in the conditions eq. (8.11) eq. (8.12), we
find that the solution eq. (8.13) is valid in the range

α > 0, or α < −2. (8.15)

8.1.2 Case B

The second case arises when
4K + 2 + 2β < 0 (8.16)

Now the variable x→ 0 as r → 0.
A solution to eq. (8.10) can be found in the WKB approximation when

P > 2. (8.17)

It is again of the form given in eq. (8.13), with S being

S =
x1−P/2

P/2− 1
. (8.18)

The conditions, eq. (8.16), eq. (8.17) are valid when α lies in the range

− 2 < α < −1. (8.19)

8.2 No attractor when −1 < α < 0

Our discussion above left out the region −1 < α < 0. In this region, we will see below that
there is no attractor behaviour.

First, consider the case when 4K + 1 + 2β > 0 and P > 2, which corresponds to
−2/3 < α < 0. In this case, we see from eq. (8.7) that x → ∞ in the near horizon region
where r → 0. As discussed in appendix C there is only one solution to the axion equation
which does not blow up as x→∞. It takes the form

λ1 = c0 + c1x
p, p < 0 . (8.20)

Here c0, c1 are two non-vanishing constants. Since c0 does not vanish in this solution λ1

does not vanish as x→∞ and thus the axion does not reach its attractor value.
Next consider the case when 4K + 1 + 2β < 0 and P < 2, which corresponds to

−1 < α < −2/3. Here x → 0, when r → 0. In this case there is a solution in which the
axion attains its attractor value as x→ 0. As discussed in appendix C this takes the form,
for small x,

a = c1x+ c2x
p, p > 1 . (8.21)
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However, since the approach to the attractor value is a power-law in x and thus in r,
one now finds that the resulting back-reaction of the axion in the equations of motion for
the other fields cannot be neglected, and in fact in some cases dominates over the other
contributions. Thus, again, the resulting solution will deviate significantly from the purely
magnetic case, leading to a loss of attractor behaviour.

In this last case especially, one might hope to find a fully corrected solution which rep-
resents the end point of the attractor flow, in which all fields behave in a power-law fashion
near the horizon, and in which the back-reaction of the axion is completely incorporated.
A reasonably thorough analysis, which we have included in appendix D, however failed to
find any purely power-law solution of this kind.

8.3 Comments

Let us conclude this section with some comments.
In the cases where we did get attractor behaviour above, we saw that the axion ap-

proached its attractor value exponentially rapidly in the near-horizon region. This exponen-
tial behaviour is intriguing from the point of view of a dual field theory. The radial direction
r is roughly the RG scale in the boundary theory and a power-law dependence on r of a
field in the bulk is related to the anomalous dimension of the corresponding operator in the
boundary. In contrast an exponential dependence, of the kind we find here, leads to a beta
function for the dual operator in the boundary in which the RG scale appears explicitly.

The exponentially rapid approach also means that in cases where we do get attrac-
tor behaviour, the black brane in the near-horizon region can be taken to be the purely
magnetic dilatonic brane up to small corrections. This means the behaviour of the dyonic
black brane at small temperature and frequency in these cases is given by that of the dy-
onic brane with the asymptotic axion set to its attractor value, up to small corrections.
For example, from eq. (6.31) we see that when λ1∞ = λ1∗ the SL(2, R) matrix element d
vanishes. The conductivity can then be read off from eq. (6.41), eq. (6.42) keeping this in
mind. Similarly the thermoelectric and thermal transport coefficients can also be found
easily from eq. (6.60), eq. (6.61).

9 Concluding comments

We have analysed charged dilatonic branes in considerable detail in this paper, focusing
on their thermodynamics and especially their transport properties. Our results show that
many of the transport properties are quite similar to those of the Reissner-Nordstrom case.
This is true despite the fact that the Reissner-Nordstrom and dilaton cases differ signif-
icantly in their thermodynamics: while the Reissner-Nordstrom brane has a macroscopic
ground-state entropy, the dilatonic black brane has vanishing entropy at extremality.

More concretely, in [6] it was already noted that the optical conductivity at zero
temperature and small frequency has the behaviour Re (σ) ∼ ω2, and this behaviour is
independent of the parameter α which governs the dilaton coupling, eq. (2.1). In particular,
it is the same as in the Reissner-Nordstrom case which has α = 0 [57, 58]. In this paper we
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find something analogous for the DC conductivity at small temperature, which goes like26

Re (σ) ∼ T 2, and is independent of α again. In the presence of a magnetic field, the DC
Hall conductivity is σyx = n

B , where n,B are the electric charge density and the magnetic
field, while the DC longitudinal conductivity vanishes, as required by Lorentz invariance.
The DC Hall conductance is related to the attractor value of the axion. In more detail,
the frequency dependence fits the form derived from general considerations of relativistic
magnetohydrodynamics in [13]. These features in the presence of a magnetic field, being
general in their origin, also agree with the Reissner-Nordstrom case. We also found that the
thermoelectric and the thermal conductivities of the dyonic case satisfy Weidemann-Franz
like relations which relate them to their electrical conductivity. In this respect too then
the dyonic system behaves in a manner quite analogous to the Reissner-Nordstrom case.27

The overall picture, then, is that the charged dilatonic brane behaves like a charged
plasma. The electrical conductivity, which is suppressed at small temperature and grows
like T 2, suggests that strong repulsion prevents the transmission of electric currents in
this system. The spectrum is not gapped in the conventional sense above the ground
state, since this would lead to a conductivity vanishing exponentially quickly at small
temperature. Rather, the system has a “soft” gap, resulting in a power-law vanishing as
T → 0.28 It should be pointed out that the entropy density s also scales in a power-law
fashion as s ∼ T 2β, and since β < 1, it decreases more slowly near extremality (as T → 0)
than the charge conductivity. This makes physical sense: only some fraction of all the
degrees of freedom can carry charge and contribute to electrical conductivity.

A case we investigated in considerable detail was the one with an SL(2, R) symmetry.
Here, the complex conductivities σ± transform like the dilaton-axion under an SL(2, R)
transformation. Once quantum corrections to the bulk action are included (or charge
quantisation is imposed), one expects this symmetry to be broken to an SL(2, Z) subgroup.
The transformation law for σ± is an elegant result, and one has the feeling that its full
power has not been exploited in the discussion above. Perhaps suitable modifications of
the bulk theory, with an additional potential for the dilaton-axion preserving the SL(2, Z)
symmetry and/or with disorder put in, might prove interesting in this respect. These
modifications might lead to similarities with systems exhibiting the quantum Hall effect,
and the transformation law of the conductivity could then tie in with some of the existing
discussion in this subject on RG flows between different fixed points characterised by the
various subgroups of SL(2, Z) [45–49]. We briefly explored the addition of a modular-
invariant potential in section 7, but it seems likely that a deeper investigation of the case
with potentials could be fruitful. Such an investigation, in the case of electrically charged

26There is an additional delta function strictly at ω = 0.
27It is worth pointing out that, in contrast to these similarities, the viscosity of a near-extremal dilaton-

axion system is much smaller than in the Reissner-Nordstrom case. In both cases the famous relation

η/s = 1/4π [59] is satisfied. However, the vanishing entropy of the extremal dilaton-axion system makes its

viscosity much smaller.
28Strictly speaking, our calculations break down at extremality, so these comments apply for temperatures

much smaller than the chemical potential, but not very close to zero. The precise condition can be obtained

using reasoning analogous to eq. (4.22) in the magnetic case.
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dilatonic black branes, was recently undertaken in [30, 31].29

We have not shown that the dilaton-axion theories considered here can arise in string
theory. However, the Lagrangians we consider are quite simple and generic, and as discussed
above many of our results are quite robust. These facts suggest that an embedding in string
theory should be possible. String embeddings of Lifshitz solutions have been described
in [26, 60, 61], and simple generalisations of those ideas may well suffice to capture our
geometries as well (since the near-horizon physics is governed by a Lifshitz-like metric).

Our main focus in this paper was on cases where there is no bare potential for the
dilaton-axion (i.e., where it corresponds to an exactly marginal operator in the dual field
theory). However, we did briefly discuss addition of a modular-invariant potential in sec-
tion 7, and one would expect that the models which arise in string theory would generically
have some potential. As we saw in section 7, if this potential has a sufficiently weak depen-
dence on the moduli, our analysis will still go through with only small corrections (since the
gauge kinetic function is favoured by extra powers of 1/b(r) as compared to the bare poten-
tial, and b becomes very small in the near-horizon region in our Lifshitz-like near-horizon
geometries). Of course, in the landscape of vacua, one expects there to be many more
theories where the dilaton-axion dependence of the potential is not small. How different
will these cases be? It is clear from the study of simple model cases, e.g. in [31] and also
in the very thorough treatment of dilatonic branes in [30], that the exponents governing
the power law dependence of the optical conductivity on frequency or the DC conductivity
on temperature, can be modified from the values we found by the presence of a potential.
Different power laws can also be found by considering U(1) gauge fields on probe branes in
Lifshitz-like backgrounds [60]. So the precise exponents we have found are, unfortunately,
not likely to be universal results for gravitational systems. However, the feature that these
dependences are power-laws might itself be one of considerable generality. In gravitational
systems, one expects that the far infrared of extremal branes is characterised by an attrac-
tor geometry, with an emergent scale invariance up to possible logarithmic corrections. As
a result, the frequency and temperature dependences should be governed by power-laws
determined by the scaling dimensions of the operators of interest.

We are not aware, at the moment, of condensed matter systems or model Hamiltonians
which give rise to such a power-law behaviour in the conductivity.30 It would be quite
interesting to construct or find such examples, and attempt to relate their behaviour to
the kinds of gravitational systems studied here.

29We note that in theories where the dilaton has an axion partner (e.g. supersymmetric theories), poten-

tials which are exponentials in e−2φ are more natural than simple exponentials in φ, because of the axion

shift symmetry (which is typically valid to all orders in perturbation theory). The potential we investigated

in section 7 has this form near weak-coupling, but this has not been the case for most potentials investigated

in the literature on this subject.
30The systems we are considering here do not have any disorder. In the presence of disorder such power

laws are well known to arise [62]. We thank P. Raichaudhuri and N. Trivedi for related discussions.
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A Some details in the calculation of DC conductivity

In this appendix we carry out a more careful examination of the Schrödinger equation
eq. (3.14) and show that the coefficient a1 in eq. (3.24) is of order unity and not suppressed
by a power of ω.

The potential V (z) is given by eq. (3.6). In the scaling region where r � µ, after a
suitable rescaling the metric and dilaton are given by eq. (3.9), eq. (2.7), with coefficients
given in eq. (2.8). The constantQ2 which appears in the potential takes the value (eq. (2.12)
of [6])

Q2 =
6

α2 + 2
. (A.1)

We use the notation
ω̂ =

ω

rh
(A.2)

below.
At the horizon, where a2 vanishes, the potential has a first order zero and for

r̂ − 1� 1 (A.3)

it takes the form
V = A(r̂ − 1), (A.4)

where A is a coefficient of order unity. Also in this region the variable ẑ eq. (3.13) is given
by

ẑ =
∫
dr̂

â2
' 1
B

ln(r̂ − 1) (A.5)

where B is again a coefficient of order unity.
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We begin in the very near horizon region where

|r̂ − 1| � ω̂2

A
. (A.6)

In this region the potential is subdominant compared to the frequency in the Schrödinger
equation and as a result, the solution with the correct normalisation to obtain the required
flux is eq. (3.15)

ψ = e−iω̂ẑ (A.7)

(there is an additional e−iwt factor but it will not be important in the discussion of this
section and we will omit it below).

Now suppose one is close enough to the horizon so that eq. (A.6) is met, but not too
close, so that

|ŵẑ| '
∣∣∣∣ω̂ ln(r̂ − 1)

B

∣∣∣∣� 1. (A.8)

Then the exponential in eq. (A.7) can be expanded and the solution in this region becomes

ψ ' 1− iŵẑ. (A.9)

The condition eq. (A.8) is
r̂ − 1� e−

B
ω̂ (A.10)

which is compatible with eq. (A.6) for ω̂ � 1.
Next consider the region

1� r̂ − 1� ŵ2

A
. (A.11)

In this region the frequency term in the Schrödinger equation is now subdominant compared
to the potential term. Moving even further away from the horizon the frequency will
continue to be unimportant all the way to the region µ� r̂ � 1 where the coefficient a1 is
defined. So it is enough to understand the solution in the region eq. (A.11) for establishing
that the coefficient a1 is unsuppressed by further powers of ω.

By carrying out a change of variables

x ≡ e
Bẑ
2

√
4A
B2

=

√
(r̂ − 1)4A

B2
, (A.12)

where in obtaining the last equality we have used the relation eq. (A.5), we can recast the
Schrödinger equation in the region eq. (A.11) in the form

− x2d
2ψ

dx2
− xdψ

dx
+ x2ψ = 0. (A.13)

This is closely related to the standard Bessel equation. From eq. (A.12) and eq. (A.11) we
see that in this region

x� 1. (A.14)

The solution to eq. (A.13) then takes the form,

ψ = C0 + C1 ln(x) = C0 + C̃1ẑ. (A.15)
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Now notice that eq. (A.9) and eq. (A.15) are of the same form. There is in fact a good
reason for this. As we will see below we can extend the solution from the region eq. (A.10)
where eq. (A.9) is valid to the region eq. (A.11) where eq. (A.15) is valid by neglecting both
the potential and the frequency dependent terms in the Schrodinger equation. Neglecting
these terms gives a free Schrödinger equation at zero energy,

d2ψ

dẑ2
= 0, (A.16)

with the solution which agrees with eq. (A.9), eq. (A.15).
The coefficients C0 and C̃1 can therefore be fixed by equating eq. (A.9) and eq. (A.15)

giving
C0 = 1, C̃1 = −iω̂ (A.17)

In the region eq. (A.11) it follows from eq. (A.5) that

|C̃1z| ∼ |ω̂ ln(r̂ − 1)| ≤ |ω̂ ln(ω̂)| � 1, (A.18)

where the last inequality follows from the fact that ω̂ � 1. Thus to good approximation
we can take

ψ = C0 = 1 (A.19)

in this region.
We see therefore that the solution is of order unity in this region (without any power

law suppression by a factor of ω̂). And it follows then that going further away from the
horizon to the region where µ/T � r̂ � 1 the coefficient a1 will also be of order unity.

To complete the argument let us discuss how to extend the solution from the region
eq. (A.10) to eq. (A.11). Choose a point with coordinate

r̂1 − 1 = c1
ω̂2

A
. (A.20)

Here c1 is a constant which does not scale with ω̂ and meets the condition c1 � 1 so that
the condition eq. (A.6) is met. Since ω̂ � 1 and c1 does not scale with ω̂ we see that
eq. (A.10) is also met and this point lies in the region eq. (A.10). Next choose a second
point with coordinate

r̂2 − 1 = c2
ω̂2

A
, c2 � 1 (A.21)

such that r̂2 � 1. This point lies in the region eq. (A.11). Using eq. (A.5) we see that the
change in ẑ in going from r̂1 to r̂2 is

δẑ =
1
B

ln
(c2

c1

)
(A.22)

and is independent of ω̂.
For the frequency dependent term in the Schrodinger equation to be neglected in the

process of continuing the solution from r̂1 to r̂2, the condition

ω2(δẑ)2 � 1 (A.23)
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must be met. Since ω̂ � 1 we see that this is true. Similarly for the potential dependent
term to be negligible the condition

V (z)(δẑ)2 ∼ (r̂ − 1)(δẑ)2 ∼ ω̂2(δẑ)2 � 1 (A.24)

must be met. This condition is also true, thereby completing the argument.

B The relation 〈T ti , T tj 〉 = ρ
2
δij

Here we discuss how eq. (6.67) is obtained. In AdS/CFT the metric is dual to the boundary
stress tensor. So eq. (6.67) is obtained by doing a bulk path integral with a fixed boundary
metric and then obtaining the two-point function from it. It is well known that after using
the equations of motion, the resulting answer is obtained in terms of the extrinsic curvature
of the boundary. In the SL(2, R) invariant case we are dealing with here, this calculation is
particularly simple since the metric is invariant under SL(2, R). Thus one can work in the
purely electric case which is a considerable simplification. This gives the result eq. (6.67)
as we will see shortly. Transforming to the dyonic frame then keeps the result unchanged
since the energy density is invariant.

To calculate eq. (6.67) in the purely electric case we go back to eq. (6.54) but now are
more careful since a non-normalisable mode for gtx is also turned on. This requires the
first subleading corrections in a2, b2 to be kept,

a2 = r2

(
1− κ2ρ

r3

)
(B.1)

b2 = r2 + · · · (B.2)

Here we have reinstated the factors of κ2; the action eq. (5.1) has an overall factor of 2κ2

in front of it. We are also working in units where radius of AdS space is set to unity L = 1.
The ellipses on the r.h.s. of the equation for b2 indicate corrections which fall sufficiently
fast and can be neglected in the calculation below. Keeping these corrections in eq. (6.54)
leads to

〈Ttx〉 =
(

1
2κ2

)[
a3∂r

(gtx
a2

)
+ 2gtx(∂ra− 1)

]
(B.3)

=
(

1
2κ2

)[
a3∂r

(gtx
a2

)
+ 2

gtxκ
2ρ

r3

]
(B.4)

Eq. (6.55) then becomes

∂r

(gtx
a2

) a2

b2
+
gtx
a2

(
a2

b2

)′
=

2
iω

(
a2

b2

)[
2λ2 − FrtFtxgtt

]
(B.5)

Leading to

〈Ttx〉 = −ρgtx
2r3
− 4
iω

(
Q′eE

′
x

a

)
(B.6)

Now differentiating with respect to gtx and converting to gauge theory variables gives
eq. (6.67) for i = j = x. In the absence of a magnetic field there is no cross-talk between
the gxt and gyt perturbations so 〈Ttx, Tty〉 = 0, which is the second relation contained
in eq. (6.67).
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C Further analysis of the attractor behaviour of the axion for α 6= −1

Here we provide a more detailed analysis of some of the results discussed in section 8.
For the case where 4K + 2 + 2β > 0 and P > 2, which was discussed in section 8.2,

the equation for the axion eq. (8.10) has two solutions in the near-horizon region where
x→∞. Both solutions can be expressed as a power series in x. The first is

λ1 = c1x+ c2x
α + · · · . (C.1)

For the second term on r.h.s. to be subdominant compared to the first when x→∞

α < 1. (C.2)

Substituting eq. (C.1) in eq. (8.10) and equating powers of x gives,

α = 3− P. (C.3)

Requiring that condition eq. (C.2) is met gives,

P > 2 (C.4)

which is indeed true. This solution blows up as x→∞.
The second solution to eq. (8.10) is

λ1 = c0 + c1x
α + · · · , (C.5)

with the condition,
α < 0. (C.6)

Substituting in eq. (8.10) and equating powers of x gives

α = 2− P, (C.7)

so that eq. (C.6) is again met. Equating coefficients determines c1 in terms of c0.
In summary we learn that for the axion to be non-zero (i.e. away from its attractor

value) and for it to not blow up at the horizon, it must be of the form eq. (C.5) with c0

non-vanishing. Thus, λ1 does not vanish as x→∞ and we do not get attractor behaviour
in this case.

Next consider the case where 4K+2+2β < 0 and P < 2, also discussed in section 8.2.
Now x→ 0 at the horizon. An analysis, very similar to the one above, shows that there is
a solution to the axion equation eq. (8.10) of the form

λ1 = c1x+ c2x
α + · · · . (C.8)

with α > 1. In this solution λ1 → 0 and does indeed reach its attractor value at the
horizon. However, as was discussed in section 7.2 one must examine the backreaction due
to the varying axion on the other equations of motion.
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One of the Einstein equations is

∂2
r b

b
= −(∂rφ)2 − 1

4
e4φ(∂rλ1)2 (C.9)

In the purely magnetic dilaton black brane the axion contribution vanishes and the l.h.s. is
balanced by the first term on the r.h.s. with both terms scaling like 1/r2. From the solution
for the axion eq. (C.8) and eq. (8.4) and eq. (8.7) we see that the second term on the r.h.s.
of eq. (C.9) scales like 1

r2r4K+4β+2 . It is easy to see using eq. (2.8) that 4K + 4β + 2 > 0
and therefore the axion contribution always dominates for small enough r. This establishes
that the axion backreaction cannot be neglected.

D An attempt to find power-law near-horizon solutions for α 6= −1

In this appendix, we study the theory described by the action (8.1) and attempt to find
purely power-law near-horizon solutions for α 6= −1.

The equations of motion for the system can be obtained following section 6 of [37].
Using our usual metric ansatz:

ds2 = −aR(r)2 dt2 + aR(r)−2 dr2 + b(r)2 (dx2 + dy2), (D.1)

we obtain a one-dimensional action,

S =
∫
dr

(
2− (a2

Rb
2)
′′ − 2a2

Rbb
′′ − 2a2

Rb
2(∂rφ)2 − 1

2
e4φa2

Rb
2(∂ra)2 − 2

Veff

b2
+

3b2

L2

)
(D.2)

The equations of motion arising from this action are:

2∂r
(
a2
Rb

2∂rφ
)

=
∂φVeff(φ, a)

b2
+ e4φa2

Rb
2 (∂ra)2 , (D.3)

∂r

(
e4φa2

Rb
2∂ra

)
= 2

∂aVeff(φ, a)
b2

, (D.4)

∂2
r b

b
= −(∂rφ)2 − 1

4
e4φ(∂a)2 , (D.5)

∂2
r

(
a2
Rb

2
)

= −4Λb2 . (D.6)

We look for solutions of the following form:

ds2 = −C2
R (r − rh)2 dt2 + C−2

R (r − rh)−2 dr2 + C2
β (r − rh)2β (dx2 + dy2

)
,

eφ = Cφ (r − rh)K , λ1 = a = Ca (r − rh)γ + a∗ (D.7)

where CR, Cβ, Cφ, Ca are constants, and a∗ ≡ λ1∗ is the attractor value for axion given
by (8.3), which minimises the effective potential

Veff(φ, a) = e−2αφ (Qe − aQm)2 + e2αφQ2
m . (D.8)

– 43 –



J
H
E
P
1
0
(
2
0
1
0
)
0
2
7

Substituting this ansatz into the above equations of motion yields,

2(1 + 2β)C2
RC

2
βK (r − rh)2β =−2αC−2

β C−2α
φ C2

aQ
2
m (r − rh)−2αK+2γ−2β

+2αC−2
β C2α

φ (r − rh)2αK−2β

+C4
φC

2
RC

2
βC

2
aγ

2 (r − rh)4K+2β+2γ , (D.9)

γ(4K+2β+γ+1)C4
φC

2
RC

2
β (r−rh)4K+4β = 4Q2

mC
−2
β C−2α

φ (r − rh)−2αK , (D.10)

β(β − 1) (r − rh)−2 =−K2(r−rh)−2−
γ2C4

φC
2
a

4
(r−rh)4K+2γ−2,(D.11)

(2β + 2)(2β + 1)C2
R (r − rh)2β =−4Λ (r − rh)2β . (D.12)

We now seek to determine if a solution for the coefficients CR, Cφ, Ca, Cβ and exponents
β, γ,K exists that solves the above equations for general values of α 6= 0,−1.

For the attractor mechanism to work, the dilaton and axion must flow to minima of
the effective potential. In terms of our power law ansatz,

∂aVeff = −Qme−2αφ(Qe − aQm) = Q2
mC
−2α
φ Ca (r − rh)−2αK+γ , (D.13)

∂φVeff = −2αC−2α
φ C2

a (r − rh)−2αK+2γ +Q2
mC

2α
φ (r − rh)2αK . (D.14)

Requiring ∂aVeff → 0 and ∂φVeff → 0 as r → rH then results in the inequality

γ > 2αK > 0 . (D.15)

We first consider the metric equation (D.11). To satisfy this equation in the near-
horizon region where r → rh, we must impose the following inequality:

4K + 2γ ≥ 0 (D.16)

We next consider the axion equation of motion (D.10). Note that if the coefficient on
the l.h.s. vanishes, i.e., 4K+ 2β+γ+ 1 = 0, we must also take into account the subleading
behaviour for the axion. We, therefore, separately consider case A) 4K + 2β + γ + 1 6= 0
and case B) 4K + 2β + γ + 1 = 0. (Assuming β 6= −1/2,−1, 0, 1, the inequality (D.15)
implies all other coefficients are nonzero.)

Case A: 4K + 2β + γ + 1 6= 0.

Eq. (D.10) gives the relation

4K + 4β = −2αK . (D.17)

We must separately consider the case where (D.16) is a strict inequality, and the
special case where 4K + 2γ = 0.

Case A-1: 4K + 2β + γ + 1 6= 0 with 4K + 2γ > 0.

We consider the dilaton equation of motion (D.9). From eq. (D.17) and the inequal-
ity (D.16), the l.h.s. of (D.9) always dominates the first term and third terms on the
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r.h.s. of (D.9) in the r − rh → 0 limit. Therefore, l.h.s. must be balanced with the
second term on the r.h.s. , which gives

4β = 2αK (D.18)

For α 6= −1, (D.17) and (D.18) admit no solution.

Of course, for α = −1 the power-law solution exists. This is consistent with the
results of section 6, section 7 – for α = −1, the Lagrangian has an SL(2,R) duality
symmetry, so starting from the purely electric (or purely magnetic) case with no
axion, we can construct dyonic black brane solution where the flow of the axion is
governed by a power-law using SL(2,R) duality transformations.

Case A-2: 4K + 2β + γ + 1 6= 0 with 4K + 2γ = 0.

In this case,

γ = −2K > 0 (D.19)

and all terms in the dilaton equation (D.9) have exponent equal to 2β except the
second term on the right hand side, whose exponent is 2αK−2β. If this second term
were to dominate the others, we would not be able to satisfy the dilaton equation
(unless α = 0). Therefore, we require that the exponent of the second term is greater
than or equal to 2β, i.e.,

4β ≤ 2αK . (D.20)

Using (D.17) with K < 0 and α 6= −1, this implies

α < −1 . (D.21)

On the other hand, (D.15) and (D.19) give

α > −1 , (D.22)

which is a contradiction. Again, we do not find a power-law solution.

Case B: 4K + 2β + γ + 1 = 0.

In this case, we have to consider the sub-leading correction in the axion equation (D.4)
instead of (D.10). Again we consider separately the cases when (D.16) is an equality
or a strict inequality.

Case B-1: 4K + 2β + γ + 1 = 0 with 4K + 2γ > 0.

By (D.15), the second term on the r.h.s. of the dilaton equation (D.9) is always greater
than the first term, and since 4K + 2γ > 0, the l.h.s. is always greater than the third
term on the r.h.s. of (D.9). Therefore, the term on the l.h.s. must be balanced with
the second term in the r.h.s. , yielding

2β = αK . (D.23)
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Using 4K + 2γ > 0, matching the coefficients of the metric equation (D.11) gives

β(β − 1) = −K2 (D.24)

Using these two results (D.23) and (D.24) and 4K + 2β+ γ + 1 = 0, we can solve for
nonzero K and β in terms of α:

K =
2α

α2 + 4
, β =

α2

α2 + 4
, γ = −3 + 8

1− α
α2 + 4

(D.25)

However, for any real α,

4K + 2γ = −6(α+ 2/3)2 + 16/3
α2 + 4

< 0 , (D.26)

which is in contradiction with the assumption that 4K + 2γ > 0. Therefore, there is
no power-law solution in this case.

Case B-2: 4K + 2β + γ + 1 = 0 with 4K + 2γ = 0.

These two conditions imply that

β = −1 + 2K
2

, γ = −2K (D.27)

We now attempt to solve for the coefficients in the metric equation (D.11). We obtain:

γ2C2
aC

4
φ/4 = −β(β − 1)−K2 = −2(K + 1/2)2 − 1/4 < 0 (D.28)

Therefore, (D.11) cannot be satisfied and there is no power law solution.

The above analysis seems to be fairly exhaustive, and we conclude that no power law
solution exists for α 6= −1. The special cases of β = −1/2,−1, 0, 1 were not studied — it
would be interesting to see if one of these special cases permits a power law solution for
some other values α. It is also conceivable that for other values of α, the axion approaches
the attractor value as a power law in r − rh with additional logarithmic corrections. We
do not, however, explore such possibilities here.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.
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