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Heavy colored scalar particles, which exist in many models of new physics, can be pair produced at the

LHC via gluon-gluon fusion and possibly form quarkoniumlike bound states. If the scalars are also

charged under the electroweak gauge group, these bound states can then decay into electroweak bosons.

This yields a resonant cross section for final states such as �� that can exceed standard model

backgrounds. This paper studies this process in the Manohar-Wise model of color-octet scalars (COS).

Important threshold logarithms and final state Coulomb-like QCD interactions are resummed using

effective field theory. We compute the resummed cross section for gluon-gluon fusion to COS pairs at

the LHC as well as the resonant cross section for octetonium decaying to ��. The latter cross section

exceeds the standard model diphoton cross section when the COS mass is less than 500 (350) GeV forffiffiffi
s

p ¼ 14ð7Þ TeV. Nonobservation of resonances below these energies can significantly improve existing

bounds on COS masses.
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I. INTRODUCTION

One of the main goals of the Large Hadron Collider
(LHC) is to search for new physics (NP) around or above
the 1 TeV scale. Many new physics models predict heavy
scalars carrying a color charge. Such scalars exist in super-
symmetric theories [1,2], Pati-Salam unification [3,4],
grand unified theories [5–7], chiral color [8], and top color
[9]. Generically, such particles can introduce unwanted
flavor changing neutral currents (FCNC) and the usual
expectation is that these particles must be quite heavy
to avoid experimental constraints on FCNC. However,
these constraints will depend on undetermined Yukawa
couplings, and if suitable restrictions on these Yukawa
couplings are imposed, the additional scalars can be sur-
prisingly light. For example, FCNC constraints can be
naturally avoided if one imposes the minimal flavor viola-
tion [10,11] on the Yukawa couplings of new physics to
standard model (SM) fermions. Manohar-Wise [12] re-
cently proposed an extended scalar sector with color-octet
scalars (COS) that are also electroweak doublets, the
unique representation consistent with minimal flavor vio-
lation1 The existence of color-octet scalars of this type is
weakly constrained by collider phenomenology because
the COS couple most strongly to the third generation of
quarks. Searches for new physics in final states with b �bb �b
yield a rough constraint of mS * 200 GeV, where mS is
the COS mass, assuming that the COS Yukawa couplings
to up- and down-type quarks are roughly equal [14].

Completely model independent constraints are even
weaker. Reference [15] concludes that masses of these
particles could be as low as �100 GeV and still be con-
sistent with precision electroweak fits and collider data.
In a recent paper [16], two of us argued that better

constraints on the masses of COS can be obtained in
searches for bound states of the COS. The COS can be
pair-produced and have a strong attractive potential when
they are in a color-singlet state. If the Yukawa couplings of
the COS to SM fermions are Oð1Þ or smaller, this state can
live long enough to form quarkoniumlike bound states
called octetonium. These bound states can then decay to
pairs of electroweak bosons, e.g., ��, �Z0, WþW�, etc.
Thus the octetonium would appear as a resonance in these
channels which have relatively small SM backgrounds.
The couplings to gluons and electroweak bosons are fixed
by gauge symmetry so the only free parameter in the
calculation of the cross section is the COS mass.
Reference [16] calculated the production cross section
for octetonia via gluon-gluon fusion as well as decay rates
for a number of two-body decays to SM particles. A back
of the envelope comparison of octetonium production via
gluon-gluon fusion followed by decay to �� suggested that
the resonant cross section for this process would exceed the
SM contribution for COS masses of 500 GeVor less. Thus,
better constraints on the COS masses than those found in
Refs. [14,15] could be obtained from null searches in these
channels.
The goal of this paper is to perform a more careful

calculation of the process discussed in Ref. [16] by incor-
porating important QCD corrections that arise in the
calculation of pairs of strongly interacting heavy particles
near threshold. Many of the same issues arise in the
calculation of t�t, squark-anti-squark, and gluino pair

*idilbi@phy.duke.edu
†chul.kim@cern.ch
‡mehen@phy.duke.edu
1Other representations are possible if NP transforms nontri-

vially under the SM flavor group [13].

PHYSICAL REVIEW D 82, 075017 (2010)

1550-7998=2010=82(7)=075017(12) 075017-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.075017


production [17–21]. There are two classes of corrections
one needs to take into account. First, there are (partonic)
threshold logarithms that appear in any production process
characterized by a large partonic center-of-mass energy
threshold including, e.g., Higgs production or Drell-Yan.
In our previous paper [22], the resummation of these loga-
rithms for the production of a single COS was performed
using soft-collinear effective theory (SCET) [23–25]. There
we showed that the resummation increased the normaliza-
tion of the total cross section by a factor of 2–3 for a COS
with mass in the range 500 GeV–3 TeV. The additional
effect that must be taken into account when two heavy
colored particles are produced is the exchange of
Coulomb gluons between the heavy particles in the final
state. The exchanges scale as �s=v where v is the relative
velocity of the heavy particles. In the threshold region,
v� �s graphs with Coulomb gluons must be resummed
to all orders. The exchange of Coulomb gluons is respon-
sible for the attractive potential between the COS when they
are in a color-singlet state and gives rise to the resonant
enhancement of the cross section when the invariant mass of
the COS pair is close to that of the octetonium bound state.

The outline of the paper is as follows. In Sec. II, we
perform tree-level matching of the amplitude for gg !
SþS� in the Manohar-Wise model onto SCET and heavy
scalar effective theory (HSET). The resulting operator
couples the COS, which are slowly moving and hence
described by HSET fields, directly to the initial state
gluons, which are described by SCET collinear fields. In
Sec. III, we derive a factorization theorem for �ðpp !
SþS�XÞ. The cross section factors into a hard part (pro-
portional to the square of the matching coefficient obtained
in Sec. II), a soft function, and parton distribution functions
(PDFs). Exchange of Coulomb gluons is included in the
QCD Coulomb Green’s function. In Sec. IV, we solve
renormalization group equations for each of the compo-
nents in the factorization theorem. The resummed produc-
tion cross section up to next-to leading logarithm (NLL) is
obtained directly in momentum space using the methods of
Ref. [26]. In section V, we extend our results to the cross
section �ðpp ! SþS� ! ��Þ and compare with the next-
to-leading order (NLO) SM calculation of �ðpp ! ��Þ
obtained using the program DIPHOX [27]. Before continu-
ing, we wish to emphasize the universality of the factori-
zation and resummation. All dependence on the model of
NP is contained in the matching coefficients which enter

the hard part of the cross section. The remaining steps
of the calculation are independent of the model of NP.
With suitable modification of the hard part, the results
of this paper can be applied to any model of NP that
contains COS.

II. MATCHING SþS� PRODUCTION
ON HSET/SCET OPERATORS

At the LHC, the gg initial state gives the dominant
contribution to pair production of COS. The leading order,
Oð�2

sÞ, production processes are shown in the diagrams in
Fig. 1(a). The couplings come from kinetic terms for the
COS,

L S ¼ �1
2S

aðD2ÞacSc � 1
2m

2
SS

aSa; (1)

where Dac
� ¼ @��

ac þ gfabcAb
�. We are interested in

calculating the cross section in the threshold region,
ŝ� ð2mSÞ2, where ŝ the momentum squared of incoming
partons. In this region, the COS are moving slowly, but the
initial state gluons are highly energetic. We integrate out
the large scale mS and the match the diagrams in Fig. 1(a)
onto operators with SCET collinear fields describing the
initial state gluons and the HSET fields describing the
slowly moving COS in the final state. After this matching,
the production of Sþ and S� is accomplished via the
operator depicted in Fig. 1(b) which is

LINT ¼ ��s

2m3
S

ðfkacfkbd þ fkadfkbcÞðYnB
?�
n ÞaðY �nB?

�n;�Þb

� ðSþ�
v Yy

vÞcðS��
v Yy

vÞd þOð�2
sÞ; (2)

where n and �n are light cone vectors satisfying n2 ¼
�n2 ¼ 0, n � �n ¼ 2, and Ba;�

n;? is a leading n-collinear

gluon field strength tensor, defined by Ba;�
n;? ¼

i �n�g
��
? Gb

n;��W ba
n ¼ i �n�g

��
? W y;ba

n Gb
n;��. B

a;�
�n;? is related

toBa;�
n;? by exchanging n and �n.W ab

n is a collinear Wilson

line in the adjoint representation

W ab
n ðxÞ ¼ P exp

�
ig

Z x

�1
ds �n � Ak

nðs �n�ÞTk

�
ab
: (3)

In Eq. (2), the heavy scalar fields are described by the
HSET Lagrangian

L HSET ¼ S�av ðv � iDsÞacScv � 1

2mS

S�av ðD2
sÞacScv; (4)

FIG. 1. Feynman diagrams for leading order color-octet pair production in full QCD (a) and effective theory (b).
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where v� is the velocity and Ds is the covariant derivative
including only the soft gluon field. The HSET Lagrangian
can be obtained from Eq. (1) by making the substitution

SaðxÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2mS

p ðe�imSv�xSavðxÞ þ eimSv�xS�av ðxÞÞ; (5)

dropping all terms in which the large phase does not
cancel, and expanding to Oð1=mSÞ. Note that we have
decoupled soft gluons from the collinear and heavy fields
by performing field redefinitions, so the soft Wilson lines

Y ab
v ðxÞ ¼ P exp

�
ig

Z x

�1
dsv � Ak

sðsv�ÞTk

�
ab
;

v� ¼ n�; �n�; v�

(6)

appear in the operator in Eq. (2)
We find it useful to classify operators by the irreducible

representation of color carried by the initial and final states.

The possibilities are enumerated by applying 8 � 8 ¼ 1 �
8S � 8A � 10 � 10 � 27 to the initial and final states, and

demanding that total color be conserved. There are eight
operators that can contribute to COS pair production via

gluon-gluon fusion, and we will denote them by ðRi; RfÞ ¼
ð1;1Þ; ð8S; 8SÞ; ð8S; 8AÞ; ð8A; 8SÞ; ð8A; 8AÞ; ð10; 10Þ; ð10; 10Þ,
and ð27; 27Þ [28], where Ri and Rf denote the irreducible

representations of initial and final states, respectively.
Using this operator basis the interaction Lagrangian in
Eq. (2) is

L INT ¼ X
m

Cmð�ÞOmð�Þ; (7)

where each operator is given by

O mð�Þ ¼ 1

2m3
S

EðmÞ
abcdðYnB

?�
n ÞaðY �nB?

�n;�ÞbðSþ�
v Yy

vÞc

�ðS��
v Yy

vÞd: (8)

Here the color factors EðmÞ
abcd ¼ E

ðRi;RfÞ
abcd are [28]

Eð1Þ
abcd ¼ Eð1;1Þ

abcd ¼
1

8
�ab�cd; Eð2Þ

abcd ¼ E
ð8S;8SÞ
abcd ¼ 3

10
ffiffiffi
2

p Dk
baD

k
cd; Eð3Þ

abcd ¼ E
ð8S;8AÞ
abcd ¼ 1

2
ffiffiffiffiffiffi
10

p Dk
baF

k
cd;

Eð4Þ
abcd ¼ E

ð8A;8SÞ
abcd ¼ 3

10
ffiffiffi
2

p Fk
baD

k
cd; Eð5Þ

abcd ¼ E
ð8S;8AÞ
abcd ¼ 1

2
ffiffiffiffiffiffi
10

p Fk
baF

k
cd;

Eð6=7Þ
abcd ¼ Eð10;10Þ=ð10;10Þ

abcd ¼ 1

4
ffiffiffiffiffiffi
10

p
�
�ac�bd � �ad�bc � 2

3
Fk
baF

k
cd � ðDk

acF
k
bd þ Fk

acD
k
bdÞ

�
;

Eð8Þ
abcd ¼ Eð27;27Þ

abcd ¼ 1

6
ffiffiffi
3

p
�
�ac�bd þ �ad�bc � 1

4
�ab�cd � 6

5
Dk

baD
k
cd

�
;

(9)

where Da
bc ¼ dabc, Fa

bc ¼ Ta
bc ¼ �ifabc, and we set

Nc ¼ 3, where Nc is a number of colors. All the color
factors satisfy the orthonormality relation EðiÞ

abcdE
ðjÞ
abcd ¼

�ij. At tree level the Wilson coefficients in Eq. (7) are
ðC1; C2; C8Þ ¼ ��sð6; 6

ffiffiffi
2

p
;�6

ffiffiffi
3

p Þ, and C3 ¼ C4 ¼ C5 ¼
C6 ¼ C7 ¼ 0. In general, these color factor EðR1;R2Þ

abcd are
defined to be [28]

EðR1;R2Þ
abcd ¼ EðR2;R1Þ�

cdab ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimR1

p CR1

�abC
R2�
�cd; (10)

where CR
�ab ¼ hR;�jabi are the Clebsch-Gordon coeffi-

cients between two different color spaces ðR;�Þ and ða; bÞ.
The EðR1;R2Þ

abcd vanish unless the two irreducible representa-
tions R1 and R2 have the same dimension.

III. FACTORIZATION FOR COS
PAIR PRODUCTION

For single COS production at threshold [22], the only
degrees of freedom after integrating out the hard scale are
the collinear initial state partons, soft partons, and a single
heavy COS. The interactions of the heavy COS with the
initial state collinear partons via soft gluon exchange are

equivalent to a timelike soft Wilson line. The resulting
factorization theorem is a convolution of two PDFs and
soft function multiplied by hard Wilson coefficients. The
factorization formula for COS pair production at threshold
is similar, but Coulomb gluon exchanges between two
COS in the final state must also be taken into account.
These can be resummed to all orders using the QCD
Coulomb Green’s function,

GRðx;x0; EÞ ¼
�
x

�������� 1

HR � E

��������x0
�

¼ X
n

c R
n ðxÞc R�

n ðx0Þ
En � E� i	

; (11)

where HR is the nonrelativistic Hamiltonian including the
Coulomb potential in a specific irreducible representation,

R, that for a pair of COS must be 1, 8S, 8A, 10, 10, or 27. In
the second equality of Eq. (11), we havewritten the Coulomb
Green’s function in terms of the wave functions, c R

n ðxÞ, of
eigenstates with energy En. Our strategy for extracting the
dependence of the cross section on the full Coulomb’s Green
function is to calculate the cross section for energy eigen-
states and then use the second identity in Eq. (11) to infer the
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dependence on the full Couloumb’s Green’s function. We
will also take into account the finite width of the COS by
making the replacement E ! Eþ i�S.

The cross section in the threshold region for producing
COS pairs is given by

�tðpp!SSXÞ¼ X27
Rf¼1

�Rf
ðpp!SSXÞ

¼ X
Rf;�

1

2s

X
m;k

X
X

Z d3q

ð2�Þ3
1

2q0
ð2�Þ4

��ðPnþP �n�q�pXÞjMðRf;�Þ
m;k j2;

¼ X
Rf;�

�

s

X
m;k

X
X

�ðq2�M2
kÞ

�jMðRf;�Þ
m;k j2jq¼PnþP �n�pX¼pnþp �n�pXS

; (12)

where P
�
n; �n are the incoming protons’ momenta, p

�
n; �n are

the momenta of the partons, Mk is a bound state mass,

and the matrix elementsMðR;�Þ
m;k are defined to beMðR;�Þ

m;k ¼
hOðR;�Þ

k XjCmOmjPnP �ni. Here the state jOðR;�Þ
k i is a COS

pair in the color state ðR;�Þ and k refers to all other
quantum numbers. The subscript m denotes the ðRi; RfÞ
quantum numbers of the SCET operators and the summa-
tion is nonvanishing when the SCET operator’s Rf is the

same as the final state’s R. For example, if we consider the
final state with R ¼ 8S, m can be either m ¼ 2 ð8S; 8SÞ or
m ¼ 5 ð8A; 8SÞ.

The statesX in Eq. (12) consist of nð �nÞ-collinear and soft
partons, so the final state momentum and the phase space
integral can be rewritten as pX ¼ pXn

þ pX �n
þ pXS

andP
X ¼ P

Xn

P
X �n

P
XS
, respectively. The incoming parton

momenta satisfy the relations, pðn; �nÞ ¼ Pðn; �nÞ � pðXn;X �nÞ.
Then the argument of the delta function in the last equality
of Eq. (12) becomes

q2 �M2
k ¼ ðpn þp �n �pXS

Þ2 �M2
k 	 ŝ� 2
ŝ1=2 �M2

k

¼ ðŝ1=2 þMkÞðŝ1=2 �MkÞ� 2
ŝ1=2

	 2ŝ1=2ðŝ1=2 � 2mS�Ek�
Þ
¼ 2ŝ1=2ðM� 2mS �EkÞ ¼ 2ŝ1=2ðE�EkÞ; (13)

where 
 ¼ p0
XS
, Mk ¼ 2mS þ Ek, and the invariant mass

of the COS pair is M ¼ ŝ1=2 � 
 ¼ 2mS þ E.
In order to derive the factorization formula in momen-

tum space, we will insert into �Rf

1 ¼
Z

d
dy1dy2�ð
þ i@0Þ�
�
y1 � �n � P

�n � Pn

�

� �

�
y2 � n � P

n � P �n

�
; (14)

where �n � P ðn � P Þ is a large label operator acting on
nð �nÞ-collinear fields, and the partial derivative, i@0, gives
the energy of soft partons. Using the definition of Oi in
Eq. (8) and the completeness relation jXihXj ¼ 1, we write
�Rf

as

�Rf
ðpp ! SþS�XÞ ¼ �

ð2m3
SÞ2s

X
m;k

EðmÞ�
abcdE

ðmÞ
efgh

Z
d
dy1dy2�ðq2 �M2

kÞjCmðM;�Þj2

� hPnP �njðB?�
n Yy

n ÞaðB?
�n�Y

y
�n ÞbðYvS

þ
v ÞcðYvS

�
v ÞdjOðRf;�Þ

k i; (15)

� hOðRf;�Þ
k j�ð
þ i@0ÞðYnB?�

n ½y1
ÞeðY �nB?
�n�½y2
ÞfðSþ�

v Yy
vÞgðS��

v Yy
vÞhjPnP �ni;

¼ �

8ðm2
SÞ3ðN2

c � 1Þ2
X
m;k

EðmÞ�
abcdE

ðmÞ
efgh

Z
d
dy1dy2ŝ�ðq2 �M2

kÞjCmðM;�Þj2fg=Pðy1Þfg=Pðy2Þ

� h0jSþr
v S�s

v jOðRf;�Þ
k ihOðRf;�Þ

k jSþ�i
v S��j

v j0ih0jYypa
n Yyqb

�n Ycr
v Yds

v �ð
þ i@0ÞYep
n Yfq

�n Yyig
v Yyjh

v j0i;
(16)

where ŝ ¼ y1y2s. In the third line of Eq. (15), we intro-
duced the following notation:

B?�;a
n ½y1
 ¼

�
�

�
y1 � �n � P

�n � Pn

�
B?�;a

n 
;

B?�;a
�n ½y2
 ¼

�
�

�
y2 � n � P

n � P �n

�
B?�;a

�n

�
:

(17)

The PDF for the gluon in Eq. (16) is defined by

hPnjB?�a
n B?�b

n ½y
jPni ¼ g��
? �ab yð �n � PnÞ2

2ðN2
c � 1Þ fg=PðyÞ:

(18)

The same equation, with n and �n exchanged, defines for the
�n-collinear gluon PDF.

In Eq. (16), the bound states jOðR;�Þ
n i are defined in terms

of the COS states by

jOðR;�Þ
n i ¼ CR�

�ab

ffiffiffiffiffiffiffiffiffi
2Mk

p Z d3k

ð2�Þ3
~c R
n ðkÞjSþa

v ðkÞS�b
v ð�kÞi;

(19)

where ~c R
n ðkÞ are the nonrelativistic wave functions in

momentum space. The COS single-particle states annihi-
lated by the HSET field, Sav, are related to the states
annihilated by the field Sa by jSavi ¼ ð1= ffiffiffiffiffiffiffiffiffi

2mS

p ÞjSai.
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In case of the final state with two identical particles such as

jS0vS0vi, the right side of Eq. (19) should be divided by
ffiffiffi
2

p
.

Finally the matrix elements for the color-octet scalars in
Eq. (16) can be written in terms of the wave functions at the
origin using

h0jSþr
v S�s

v jOðRf;�Þ
k ihOðRf;�Þ

k jSþ�v
v S��w

v j0i
¼ 2MkC

Rf�
�rsC

Rf
�vwjc Rf

k ð0Þj2;
	 2M

ffiffiffiffiffiffiffiffiffiffiffiffi
dimR

p
E
ðRf;RfÞ�
rsvw jc Rf

k ð0Þj2: (20)

Here we identified M�Mk in the second equality, ignor-
ing Oð1=MÞ corrections. Using the relation

�ðq2 �M2
kÞ 	

1

2
ffiffiffî
s

p �ðEk � EÞ ¼ 1

2M�
Im

1

Ek � E� i	
;

(21)

inserting Eqs. (11), (13), and (19), into Eq. (16), and using

X
k

�ðq2 �M2
kÞjc Rf

k ð0Þj2 ¼ 1

2M�
ImGRf

ð0; 0; EÞ; (22)

we see that the cross section is proportional to the imagi-
nary part of the Coulomb Green’s function evaluated at
x ¼ x0 ¼ 0. Because the COS are unstable, we make the
substitution E ! Eþ i�S.

Combining Eqs. (16), (20), and (22), we then obtain

�Rf
ðpp ! SSXÞ ¼ 1

8m6
SðN2

c � 1Þ2
X
Ri

Z
d
dy1dy2ŝ

� jCRi;Rf
ðM;�Þj2 � ImGRf

ð0; 0; Eþ i�SÞ
� fg=Pðy1Þfg=Pðy2ÞSRi;Rf

ð
Þ; (23)

where we have slightly modified our notation by replacingP
m with

P
Ri

and Cm with CRi;Rf
. The function SRi;Rf

is

defined by

SRi;Rf
ð
Þ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

dimR
p

E
ðRi;RfÞ�
abcd E

ðRi;RfÞ
efgh E

ðRf;RfÞ�
rsvw h0jYypa

n Yyqb
�n Ycr

v

�Yds
v �ð
þ i@0ÞYep

n Yfq
�n Yyvg

v Yywh
v j0i: (24)

When we introduce the variable z ¼ M2=ŝ, which goes
to 1 at threshold, the soft momentum 
 can be rewritten as


¼ ŝ1=2 �M¼ ŝ1=2ð1� z1=2Þ� ŝ1=2

2
ð1� zÞ; z! 1:

(25)

Using the relation y1y2 ¼ �=z and replacing
R
d
 !

�R
dM, we find that the differential scattering cross

section is

d�Rf

dM
ðpp ! SþS�XÞ ¼ X

Ri

HRi;Rf
ðM;�FÞ

� M

ð2mSÞ6
ImGRf

ð0; 0; Eþ i�S; �FÞ�

�
Z 1

�

dz

z
�SRi;Rf

ð1� z;�FÞF
�
�

z
;�F

�
; (26)

where�F is the factorization scale, Fð�=zÞ is a convolution
of two PDFs,

Fðx;�FÞ ¼
Z 1

x

dy

y
fg=pðy;�FÞfg=pðx=y;�FÞ; (27)

and the dimensionless soft functions, �SRi;Rf
ð1� zÞ, are

defined to be �SRi;Rf
ð1� zÞ ¼ ðŝ1=2=2ÞSRi;Rf

ð
Þ, so that
�SRi;Rf

ð1� zÞ ¼ �ð1� zÞ at tree level. Finally, the hard

function HRi;Rf
is

HRi;Rf
ðM;�Þ ¼ 16

jCRi;Rf
ðM;�Þj2

ðN2
c � 1Þ2 : (28)

This factorization formula is one of our main results, and
can be extended to other processes with different initial
states such as q �q and qq. Note that to obtain the scattering
cross section for the production of two identical particles,
such as S0S0, the cross section should be divided by 2. If we
restrict the sum over bound states to the ground state of
the singlet channel (Rf ¼ 1 and k ¼ 0 corresponding to

the state with principal quantum number n ¼ 1 and l ¼ 0),
and use the tree-level soft function, �SRi;Rf

¼ �ð1� zÞ,
Eq. (26) becomes

�ð0Þ
1 ðpp ! O0þÞ ¼

64�3N2
c�

2
s

ðN2
c � 1Þ2M5

jc 1
0ð0Þj2�Fð�Þ: (29)

This reproduces the tree-level cross section for pp ! O0þ
in Ref. [16].
In the scattering cross section, the hard function, H, the

soft function, �S, and the Coulomb Green’s function in
Eq. (26) should be evaluated at renormalization scales
labeled �H, �S, and �C, respectively. These scales are
chosen so that large logarithms are minimized. Large log-
arithms are resummed by evolving the hard function from
�H to�F, the soft function from�S to�F, and the Green’s
function �C to �F. This is described in the next section.

IV. RESUMMATION AND NUMERICAL RESULTS

In this section we calculate the resummed scattering
cross section to NLL accuracy with leading order (LO)
Wilson coefficients. This approximation, called NLLþ
LO, includes all Oð1Þ terms when the large logarithms
are counted as an inverse power of �s, so corrections to
NLLþ LO are Oð�sÞ suppressed. Next-to-leading order
Wilson coefficients have not been calculated for COS pair
production. Refs. [29,30] have observed that �2-enhanced
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NLO contributions, which can be inferred from the imagi-
nary parts of anomalous dimensions as we will see below,
are numerically similar in size to the complete NLO �s

correction. So we will include this contribution in our
numerical results, which, based on expectations from
previous calculations of Higgs production [30], should
provide a result numerically consistent with a full NLLþ
NLO calculation.

As shown in Sec. II, the only nonzero LO Wilson
coefficients for gg ! SS are C1, C2, and C8, which corre-
spond to the initial and final states ð1; 1Þ, ð8S; 8SÞ, and
ð27; 27Þ, respectively. Computing anomalous dimensions
for the NLL resummation in each of these channels is
straightforward, and the results are

�1Hð�Þ ¼ �
�
�s

4�
�A
0 þ

�
�s

4�

�
2
�A
1

�
ln

�2

�M2 � i	
� �s

4�
BA
1 ;

(30)

�2Hð�Þ ¼ �
�
�s

4�
�A
0 þ

�
�s

4�

�
2
�A
1

��
1

2
ln
�2

M2

þ 1

2
ln

�2

�M2 � i	

�
� �s

4�
BA
8S
; (31)

�8Hð�Þ ¼ �
�
�s

4�
�A
0 þ

�
�s

4�

�
2
�A
1

��
4

3
ln
�2

M2

� 1

3
ln

�2

�M2 � i	

�
� �s

4�
BA
27; (32)

where CA ¼ Nc, BA
1 ¼ 2�0, BA

8S
¼ 2CA þ 2�0, BA

27 ¼
16þ 2�0, and �0 is the first coefficient of the QCD beta
function. Here, �A

0 and �A
1 are the first and second coef-

ficients of the cusp anomalous dimension of Wilson lines
in the adjoint representation: �A

0 ¼ 4CA and �A
1 ¼

8Nc½ð67=18� �2=6ÞNc � 5nf=9
, where nf is a number

of flavors.
From the anomalous dimensions we can infer the form

of the double logarithms in the Wilson coefficients,
which are

Cf1;2;8gð�Þ ¼ Cð0Þ
f1;2;8g

�
1� �s

4�
CA

�	
1;
1

2
;� 1

3




� ln2
�

�2

�M2 � i	

�
þ

	
0;
1

2
;
4

3




� ln2
�
�2

M2

�
þ � � �

��
: (33)

These lead to large �2-enhanced corrections when eval-
uated at the scale � ¼ M,

jCf1;2;8gðMÞj2�jCð0Þ
f1;2;8gðMÞj2

�
1þ�s�

2
CA

	
1;
1

2
;�1

3


�

�jCð0Þ
f1;2;8gðMÞj2 exp

�
�s�

2
CA

	
1;
1

2
;�1

3


�
: (34)

In the second line we have exponentiated, the�2-enhanced
terms. This is a consequence of evolving the renormaliza-
tion scale to a complex value so as to minimize the loga-
rithms [22]. Interestingly, the Wilson coefficient for the 27
channel is suppressed when the �2-enhanced contribution
is included.
In the resummed cross section, we use the tree-level

values for the soft functions in Eqs. (24) and (26).
However, we need to evolve the soft functions from the
soft scale, �S, to the factorization scale, �F, and to deter-
mine the appropriate �S we will use the one-loop expres-
sions for the soft functions:

�S 1;1ð1� z; �Þ ¼ �ð1� zÞ þ �s

�
NcAð1� z; �Þ; (35)

�S 8S;8Sð1� z;�Þ ¼ �ð1� zÞ þ �s

2�
Ncð2Að1� z;�Þ

þ Bð1� z;�ÞÞ; (36)

�S27;27ð1� z;�Þ ¼ �ð1� zÞ þ �s

2�
Nc

�
2Að1� z;�Þ

þ 8

3
Bð1� z;�Þ

�
; (37)

where the coefficient function Að1� z; �Þ is obtained from
soft gluon exchanges between Yn andY �n orYnð �nÞ andYv,

and Bð1� z;�Þ from soft interactions betweenYvs. These
coefficient functions are

Að1� z; �Þ ¼
�
1

2
ln2

�2

M2
� �2

4

�
�ð1� zÞ � 2 ln

�2

M2

� 1

ð1� zÞþ þ 4

�
lnð1� zÞ
1� z

�
þ
; (38)

Bð1� z; �Þ ¼
�
ln
�2

M2
þ 2

�
�ð1� zÞ � 2

ð1� zÞþ ; (39)

where the standard plus distributions are used, and UV
poles have been absorbed into counterterms. Note that
these expressions are IR finite. The general form for the
NLO soft function for the process I1I2 ! F, where I1 and
I2 denote the color representations of the initial partons
and F denotes the irreducible representation of the final
two heavy particle states, is given by

�SðI1;I2Þ;Fð1� z;�Þ ¼�ð1� zÞþ �s

2�
ððCI1 þCI2ÞAð1� z;�Þ

þCFBð1� z;�ÞÞ; (40)

where CI1;2 and CF are the quadratic Casimir operators for

the initial and final representations. Our result agrees with
Ref. [28], where the computation has been performed in
coordinate space.
The CoulombGreen’s functions in Eqs. (22) and (26) are

[17,31]
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GRf
ð0; 0; Eþ i�S; �Þ ¼ �sð�Þ

4�
CRf

m2
S

�
� 1

2

þ ln

�
i�

2mS �v

�

þ 1

2
� c ð1� 
Þ

�
; (41)

where 
, �v, and c are


 ¼ i
CRf

�sð�Þ
2 �v

; �v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ i�S

mS

s
;

c ðzÞ ¼ �E þ d

dz
ln�ðzÞ:

(42)

Here E ¼ M� 2mS, �E is the Euler gamma, and �ðzÞ is
the Gamma function. TheCRf

are the coefficients in the LO

Coulomb potential, VC;Rf
ðrÞ ¼ ��sCRf

=r, where Rf refers

the representation of the COS pair. For COS pairs, C1 ¼
Nc, C8S ¼ Nc=2, and C27 ¼ �1, so the COS pairs in the 1

and 8S feel an attractive forcewhile COS pairs in the 27 feel
a repulsive force. The appropriate scale for the Coulomb’s
Green’s function is �C �mSv�mSCRf

�sð�CÞ, where v

is the relative velocity of the COS. In the resummed cross
section the Coulomb Green’s function needs to be evolved

from the scale �C to the scale �F, as indicated in Eq. (26).
However, the Coulomb Green’s function anomalous dimen-
sion starts at Oð�2

sÞ so its evolution can be neglected in a
NLL calculation.
The renormalization group equations for the hard func-

tions, soft functions, and PDF’s are solved directly in
momentum space using the methods of Refs. [26,32,33].
The details of the calculation are very similar to the
calculation of the resummed cross section for single COS
production in Ref. [22] so we simply quote our result for
the differential cross section:

d�Rf

dM
ðpp! SþS�XÞ ¼ M

ð2mSÞ6
ImGRf

ð0;0;Eþ i�S;�CÞ�

�
Z 1

z

dz

z
VRf

ðz;M;�FÞFð�=z;�FÞ; (43)

where the resummation function,VRf
ðz;M;�FÞ, is given by

VRf
ðz;M;�fÞ ¼

X
Ri

HRi;Rf
ðM;�HÞURi;Rf

ð�H;�S;�FÞ

� ~SRi;Rf
ð@
;�sÞ z�


ð1� zÞ1�2


e�2�E


�ð2
Þ : (44)

FIG. 2 (color online). Mass distribution of the scattering cross section for pp ! SþS�X near threshold for
ffiffiffi
s

p ¼ 7 TeV. Upper
(lower) filled regions with blue (yellow) color represent d�1=dMðd�8S=dMÞ with the soft scale varied between �II

S � �S � �I
S.
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Here ~SRi;Rf
ð@
;�SÞ are the Laplace transforms of the soft

functions, and the evolution functions URi;Rf
ð�H;�S;�FÞ

are multiplicative factors that come from evolving the hard
functions from the scale �F to the scale �H and the soft
functions from the scale �F to the scale �S. Up to NLL
accuracy the representations of the initial and final states
are the same, so below we will simplify our notation by
replacing fRi;Rf

with fRf
where f represents either a hard

function, soft function, or evolution function, and suppress
the summation over Ri in Eq. (44). For the NLL resumma-
tion, the auxiliary parameter 
 is defined to be 
 ¼
ð�A

0=�0Þ lnð�sð�fÞ=�sð�sÞÞ as in Ref. [26].

The NLL expressions for URf
ð�H;�S;�FÞ are

lnURf
ð�H;�S;�FÞ¼ ln

�
4SUNLLð�H;�SÞþ

BA
Rf

�0

� ln
�sð�SÞ
�sð�HÞþ

Bg

�0

ln
�sð�FÞ
�sð�SÞ

�
; (45)

where Bg ¼ 2�0 and BA
Rf

are defined in Eqs. (30)–(32).

The function SUNLLð�1; �2Þ is

SUNLLð�1;�2Þ¼ �A
0

4�2
0

�
4�

�sð�1Þ
�
1�1

r
� lnr

�
þ
�
�A
1

�A
0

��1

�0

�

�ð1�rþ lnrÞþ �1

2�0

ln2r

�
; (46)

where r ¼ �sð�2Þ=�sð�1Þ.
We will choose the hard scale to be �H ¼ M, and use

the second line of Eq. (34) for theWilson coefficients in the
hard functions so that the large �2-enhanced contribution
is included. To resum logarithms of 1� z, the soft scale
should be set to �S ¼ Mð1� zÞ. However this choice
gives divergences in the z integral since the running cou-
pling will cross the Landau pole as z ! 1. Instead we
chose the scale �S so that the higher order corrections to
the soft function are perturbatively small. In order to do
this, we define two soft scales,�I

S and�
II
S . The scale�

I
S is

defined by starting from �S ¼ �H and lowering �S until
the Oð�sÞ correction is less than 15%. The scale �II

S is

chosen so that the one-loop correction is minimized. The
soft scale �S is then defined to be the mean of �I

S and �II
S

[30,33].

FIG. 3 (color online). Mass distribution of the scattering cross section for pp ! SþS�X near threshold for
ffiffiffi
s

p ¼ 14 TeV. Upper
(lower) filled regions with blue (yellow) color represent d�1=dMðd�8S=dMÞ with the soft scale varied between �II

S � �S � �I
S.
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In the Manohar-Wise model [12], the dominant decay
modes for S� with masses greater than 200 GeVare Sþ !
t �b ðS� ! �tbÞ, so the width of the COS is given by

�S 	 �ðSþ ! t �bÞ ¼ j
Uj2jVtbj2
16�m3

S

�
mt

v

�
2ðm2

S �m2
t Þ2; (47)

where v is the vacuum expectation value of Higgs and 
U

is an unconstrained complex Yukawa coupling. Equation
(47) is used to determine �S in the evaluation of the
Coulomb Green’s function. When j
Uj is smaller than 1,
the COS live long enough to form bound states called
octetonium [16]. Figures 2 and 3 show the differential
cross section as a function of the invariant mass of the
COS pair. For the numerical results we employed NLO
CTEQ5 PDF set [34]. Figure 2 shows the cross section atffiffiffi
s

p ¼ 7 TeV formS ¼ 350 GeV and 500 GeV, and for two
values of the Yukawa coupling, j
Uj ¼ 0:5 and 1.0.
Figure 3 shows the same for

ffiffiffi
s

p ¼ 14 TeV. As seen in
Figs. 2 and 3, the octetonium appears as a resonance
10–15 GeV below 2mS that is clearly visible in the
1 channel. In the 8S channel, there is a small peak in the
cross section just a few GeV below 2mS. This peak is so
broad for j
Uj ¼ 1:0 that it is barely noticeable, but the
peak is visible when the Yukawa coupling is j
Uj ¼ 0:5.
The scattering cross sections in the 27 channel do not have
peaks and are negligible compared to the 1 and 8S chan-
nels, so we have not included them in Figs. 2 and 3.

V. SCATTERING CROSS SECTION FOR
pp ! SþS� ! ��

Reference [16] argued that the process pp ! SS ! AB,
where AB represents a pair of SM electroweak gauge
bosons, e.g., WþW�, Z0Z0, ��, or �Z0, are promising
channels in which to search for octetonium. Near the
vicinity of the octetonium resonance there is a peak in
the cross section which can exceed the SM background for
these final states. This is in contrast with final states like gg
or t�t where we expect the QCD background to greatly
exceed any signal from octetonium. In Ref. [16], a simple
estimate for the cross section for pp ! SþS� ! �� in the
vicinity of the octetonium resonance was compared with
the SM background. For octetonium with mass & 1 TeV

(mS & 500 GeV) the cross section at the LHC at
ffiffiffi
s

p ¼
14 TeV was found to exceed the SM background for this
process. Therefore, searches for �� resonances could
either reveal these novel heavy states or provide much
better constraints on the allowed masses of COS, which
are currently only constrained to be � 100 GeV [15]. The
point of this section of the paper is to improve upon the
results of Ref. [16] by performing a resummed calculation
of the invariant mass spectrum for the photons produced in
pp ! SþS� ! �� in the vicinity of the octetonium reso-
nance, which is compared with the SM prediction for the
�� invariant mass distribution.
Below the threshold 2mS (and ignoring the widths of the

bound states), the cross section for pp ! SþS� ! �� can
be written as a sum over contributions from individual O1

k

states,

�1ðpp!SS!��Þ¼X
k

�1;kðpp!O1
kXÞ

�1
kðO1

k!��Þ
�1
k;totðO1

k!XÞ :

(48)

Note that only color-singlet resonances can decay to the
final state ��. Using the factorization formulae in Eq. (43),
integrating over M, and writing ImGRf¼1ð0; 0; EÞ as a sum
of � functions times wave functions squared, as in Eq. (22),
we can write �1;kðpp ! O1

kXÞ as

�1;kðpp ! O1
kXÞ ¼

2�

ð2mSÞ6

�
Z

dMH1ðM;�Þ�M2�ðM2 �M2
kÞjc 1

kð0; �Þj2

�
Z 1

�

dz

z
�S1ð1� z; �ÞF

�
�

z
;�

�
: (49)

The LO decay rates for O1
k ! �� are [16]

�1
kðO1

k ! ��Þ ¼ 64��2

M2
jc 1

kð0Þj2: (50)

Finally, we must allow for a finite width for each of the
bound states, O1

k. We do this by replacing �ðM2 �M2
kÞ

with the Breit-Wigner ðMk�
1
k;tot=�Þ=ððM2 �M2

kÞ2 þ
M2

kð�1
k;totÞ2Þ. Then we can simplify Eq. (48) with the

substitution

X
k¼0

�ðq2�M2
kÞjc 1

kð0Þj4!
X
k¼0

�
Rf

k;tot

4M�

jc 1
kð0Þj2

E�Ekþ i�1
k;tot=2

jc 1
kð0Þj2

E�Ek� i�1
k;tot=2

	E�E0 �
1
0;tot

4M�

X
k¼0

jc 1
kð0Þj2

E�Ekþ i�1
0;tot=2

jc 1
kð0Þj2

E�Ek� i�1
0;tot=2

	 �1
0;tot

4M�
jG1ð0;0;Eþ i�1

0;tot=2Þj2: (51)

PAIR PRODUCTION OF COLOR-OCTET SCALARS AT THE LHC PHYSICAL REVIEW D 82, 075017 (2010)

075017-9



In the second line we replaced �1
k;tot with �1

0;tot so we could
write the final result in terms of the Green’s function. The
corrections to this approximation are not important near the

resonance of interest, and small except near the other poles
of the Green’s function which should not be important for
our calculation. Then we combine Eqs. (49)–(51) to obtain

(a) (b)

FIG. 4 (color online). Mass distribution of the scattering cross section d�1=dMðpp ! SþS� ! ��Þ near the resonance O0þð¼ O1
0Þ

versus the standard model background d�SM=dMðpp ! ��Þ for (a) ffiffiffi
s

p ¼ 7 TeV and (b)
ffiffiffi
s

p ¼ 14 TeV.
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�1ðpp ! SþS� ! ��Þ ¼ 32��2

ð2mSÞ6

�
Z dM

M
H1ðM;�ÞjG1ð0; 0; Eþ i�

Rf

0;tot=2Þj2�

�
Z 1

�

dz

z
�S1ð1� z;�ÞF

�
�

z
;�

�
: (52)

Using Eq. (52), we compare the cross section for pp !
SþS� ! �� to the SM background pp ! ��. The cross
section is computed in the vicinity of the O0þð¼ O1

0Þ reso-
nance in the Manohar-Wise model. In this model, the width
of O0þ depends on a scalar coupling, �1, which appears in
the coupling of a COS pair to the SMHiggs boson [12]. We
have set this parameter to �1 ¼ 1. Explicit expressions for
the decay rates for O0þ ! gg, t�t, WþW�, Z0Z0, ��, and
hh can be found in Ref. [16], and these have been used to
calculate the total width, �1

0;tot. In Fig. 4, we compare the

�� invariant mass distribution near the peak of the reso-
nance O0þ with SM backgrounds for pp ! ��. The SM
background cross section, d�SM=dM, is the sum of NLO
calculations of q �q ! �� and gg ! ��with a rapidity cuts
of j
1;2j< 2:4. The K factor has been computed using the

program DIPHOX [27]. The cross section is computed forffiffiffi
s

p ¼ 7 TeV with COS masses of 250, 300, and 350 GeV,
and for

ffiffiffi
s

p ¼ 14 TeV with COS masses of 300, 400, and
500 GeV. We see that the resonant cross section exceeds
the SM contribution when mS � 500ð350Þ GeV for

ffiffiffi
s

p ¼
14ð7Þ TeV, confirming the conclusions of Ref. [16].
We have used 
U ¼ 1 in our calculation, for smaller 
U

the resonance peak is more narrow and visible. Note that
the octetonium,O0

R, which is composed of a pair of electri-
cally neutral COS, is significantly narrower than O0þ when
j
Uj ¼ 1:0 and mS � 700 GeV. Therefore, this should
appear as a narrower resonance in channels into which it
can decay, such as WþW� and Z0Z0. It would interesting

to extend the results of this paper to other final states with
electroweak bosons.

VI. CONCLUSIONS

The LHC will explore physics beyond the TeV scale.
One possibility for new physics that may be discovered at
the LHC is the existence of heavy COS. In this work we
have extended our previous analysis of single COS pro-
duction [22] and considered the production cross section of
two COS which bind together through Coulomb interac-
tions to form a bound state called octetonium [16]. This
bound state can decay into two photons, providing a reso-
nant signal above the SM diphoton production cross sec-
tion. We established a factorization theorem for this
production process using SCETand HSET, then performed
a next-to-leading logarithmic partonic threshold resumma-
tion directly in momentum space. Our factorized cross
section is independent of the specifics of the underlying
NP theory responsible for the production of COS. In this
paper, we focused on the Manohar-Wise model of COS,
but the calculation can be easily extended to pair produc-
tion of heavy colored particles in other models, e.g. stopo-
nium in supersymmetry [35–37] or pairs of Kaluza-Klein
excitations of quarks and gluons in models of extra
dimensions, by a suitable modification of the matching
coefficient at the high scale, 2MS. We find that the resonant
cross section exceeds the SM contribution when mS �
500ð350Þ GeV for

ffiffiffi
s

p ¼ 14ð7Þ TeV. Searches for diphoton
resonances at the LHC will either discover COS reso-
nances or greatly improve existing bounds on COS masses.
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