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1. Introduction

In the planar N = 4 supersymmetric Yang-Mills (SYM) theory at strong coupling, Alday

and Maldacena [1] noted a duality between an n-point colour-stripped scattering amplitude

and the vacuum expectation value of a Wilson loop with a contour made by n light-like

edges, whose length and ordering is given by the momentum and ordering of the particles

in the amplitude. Remarkably, such a duality was found to hold also for the planar N = 4

SYM theory at weak coupling, between the one-loop four-point amplitude in a maximally-

helicity violating (MHV) configuration and a one-loop four-edged Wilson loop with the

contour defined as above [2].

At one-loop level, the duality has been extended to Wilson loops and MHV amplitudes

with an arbitrary number of points [3]. Writing at any loop order L the amplitude M
(L)
n as

the tree-level amplitude, M
(0)
n , which depends on the helicity configuration, times a scalar

function, m
(L)
n , and introducing a Wilson-loop coefficient, w

(L)
n , the duality is expressed

by w
(1)
n = m

(1)
n + const +O(ǫ). At two-loop level, the duality has been successfully tested

on the four-edged Wilson loop and the four-point MHV amplitude [4], and on the five-

edged [5] and six-edged [6, 7] Wilson loops and the parity-even part of the five-point [8]

and six-point [9] MHV amplitudes.

The L-loop Wilson loop fulfills a Ward identity for a special conformal boost, whose

solution for L ≥ 2 can be written as the sum of two contributions: a term which iterates

the structure of the one-loop Wilson loop, augmented, for n ≥ 6, by a function R
(L)
n,WL of

conformally invariant cross ratios [5]. The iterative term is known through a conjecture on

the structure of the MHV amplitudes [10, 11], while R
(L)
n,WL, which is termed the remainder

function, is not fixed by the Ward identity and must be computed. Writing likewise the

L-loop MHV amplitude as the sum of the iterative formula of the one-loop amplitude

plus a function R
(L)
n of conformally invariant cross ratios, and choosing appropriately the

relative normalisation of one-loop amplitudes and Wilson loops, the duality between MHV

amplitudes and Wilson loops is then stated by the equality of their remainder functions,

R
(L)
n = R

(L)
n,WL. At two loops, R

(2)
n is known numerically for n = 6 [9], while R

(2)
n,WL

is known for arbitrary n through a numerical algorithm [12], which has been used to

compute it for up to 30 edges [13]. The two-loop six-edged remainder function R
(2)
6,WL is

also known analytically as a function of uniform transcendental weight four in terms of

multiple polylogarithms in three conformally invariant cross ratios [14, 15]1. Beyond two

loops, the remainder functions are unknown.

At strong coupling, the six-edged remainder function has been computed analytically in

the limit where all three cross ratios are equal [17]. In contrast to the weak coupling result,

which is of uniform and intrinsic transcendental weight four [15] (intrinsic in the sense that

the terms of the polynomial of weight four cannot usually be reduced to the product of

terms of lower weight), the strong coupling result is expressed as a combination of terms

with different transcendentality. Although analytically the remainder functions at strong

and weak coupling are different functions, it is worth noting that they are numerically

1In Ref. [16], R
(2)
6,WL has been expressed in terms of one-dimensional integrals.
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very close over a wide range of values for the conformal ratio, albeit with significative

differences [15, 17].

At strong coupling, for Wilson loops embedded into the boundary of AdS3, the eight-

edged remainder function has been computed in terms of two variables, χ+ and χ− [18].

The strong-coupling result has been compared numerically to the weak-coupling two-loop

result [13]. In this paper, we present the first analytic calculation of the two-loop eight-

edged Wilson loop as a function of χ+ and χ−. The ensuing remainder function takes a

remarkably simple form and is given, up to a constant, by the product of four logarithms.

Our paper is organized as follows: In Section 2 we introduce our notation and conven-

tions, and we review the eight-edged Wilson loop both in general as well as in the special

kinematics of Ref. [18]. In Section 3 we discuss our strategy for the computation of the

octagon remainder function and we present the main result of this paper, the analytic ex-

pression for R
(2)
8,WL(χ

+, χ−). In order to test the conjectures made in Ref. [13], in Section 4

we compare our result to the strong-coupling result of Ref. [18]. In Section 5 we draw our

conclusions.

2. The two-loop Wilson loop

2.1 Definitions

The Wilson loop is defined through the path-ordered exponential,

W [Cn] = Tr P exp

[

ig

∮

dτ ẋµ(τ)Aµ(x(τ))

]

, (2.1)

computed on a closed contour Cn. In what follows, the closed contour is a light-like n-edged

polygonal contour [1]. The contour is such that labelling the n vertices of the polygon as

x1, . . . , xn, the distance between any two contiguous vertices, i.e., the length of the edge

in between, is given by the momentum of a particle in the corresponding colour-ordered

scattering amplitude,

pi = xi − xi+1 , (2.2)

with i = 1, . . . , n. Because the n momenta add up to zero,
∑n

i=1 pi = 0, the n-edged

contour closes, provided we make the identification x1 = xn+1.

In the weak-coupling limit, the Wilson loop can be computed as an expansion in

the coupling. The expansion of Eq. (2.1) is done through the non-abelian exponentiation

theorem [19, 20], which gives the vacuum expectation value of the Wilson loop as an

exponential,

〈W [Cn]〉 = 1 +

∞
∑

L=1

aLW (L)
n = exp

∞
∑

L=1

aLw(L)
n , (2.3)

where the coupling is defined as

a =
g2N

8π2
. (2.4)

For the first two loop orders, one obtains

w(1)
n = W (1)

n , w(2)
n = W (2)

n −
1

2

(

W (1)
n

)2
. (2.5)
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The one-loop coefficient w
(1)
n was evaluated in Refs. [2, 3], where it was given in terms of

the one-loop n-point MHV amplitude,

w(1)
n =

Γ(1− 2ǫ)

Γ2(1− ǫ)
m(1)

n = m(1)
n − n

ζ2
2

+O(ǫ) , (2.6)

with ζi = ζ(i) and ζ(z) the Riemann zeta function, and where the amplitude is a sum of

one-loop two-mass-easy box functions [21],

m(1)
n =

∑

p,q

F 2me(p, q, P,Q) , (2.7)

where p and q are two external momenta corresponding to two opposite massless legs,

while the two remaining legs P and Q are massive. The two-loop coefficient w
(2)
n has been

computed analytically for n = 4 [4], n = 5 [5] and n = 6 [14, 15], and numerically for

n = 6 [7] and n = 7, 8 [12].

The Wilson loop fulfils a special conformal Ward identity [5], whose solution is an

iterative formula over the one-loop Wilson loop [10, 11] plus, for n ≥ 6, an arbitrary

function of the conformally invariant cross ratios. Thus, the two-loop coefficient w
(2)
n can

be written as

w(2)
n (ǫ) = f

(2)
WL(ǫ)w

(1)
n (2ǫ) + C

(2)
WL +R

(2)
n,WL +O(ǫ) , (2.8)

where the constant is C
(2)
WL = −ζ22/2, and the function f

(2)
WL(ǫ) is [4, 12, 22],

f
(2)
WL(ǫ) = −ζ2 + 7ζ3ǫ− 5ζ4ǫ

2 . (2.9)

With the two-loop coefficient w
(2)
n given by Eqs. (2.8) and (2.9) and a similar expansion of

the two-loop MHV amplitude [10],

m(2)
n (ǫ) =

1

2

[

m(1)
n (ǫ)

]2
+ f (2)(ǫ)m(1)

n (2ǫ) +C(2) +R(2)
n +O(ǫ) , (2.10)

with the constant C(2) = C
(2)
WL, and the function f (2)(ǫ) = −ζ2 − ζ3ǫ − ζ4ǫ

2, the dual-

ity between Wilson loops and amplitudes is expressed by the equality of their remainder

functions [12],

R
(2)
n,WL = R(2)

n . (2.11)

2.2 The two-loop eight-edged Wilson loop

The diagrams that enter the computation of the two-loop eight-edged Wilson loop have

been given explicitly in Ref. [12] in terms of multifold Feynman parameter-like integrals.

In total, 49 different diagrams (plus their cyclic permutations over the external edges) con-

tribute to w
(2)
8 . The most difficult contribution comes from the so-called “hard diagram”,

which corresponds to the situation where three different edges of the polygon are connected

by a three-gluon vertex. However, the complexity of the problem does not only come from

the large number of diagrams, but also from the fact that the Wilson loop is a function
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of twenty cyclic Mandelstam invariants2 of the form si,i+1, si,i+1,i+2 and si,i+1,i+2,i+3 (See

Appendix A for a summary of the eight-point kinematics).

From the special conformal Ward identity [5], we expect that the two-loop eight-edged

remainder function R
(2)
8,WL, defined through Eq. (2.8), be a function of cross ratios only,

defined as,

uij =
x2ij+1x

2
i+1j

x2ijx
2
i+1j+1

, (2.12)

where x2ij = (xi−xj)
2 = si,i+1,...,j−1, with j > i. For the eight-edged Wilson loop there are

twelve cross ratios, which are given explicitly in Eq. (A.4) and which can be divided into

two groups of eight and four respectively,

ui,i+3 =
x2i,i+4 x

2
i+1,i+3

x2i,i+3 x
2
i+1,i+4

and uk,k+4 =
x2k,k+5 x

2
k+1,k+4

x2k,k+4 x
2
k+1,k+5

, (2.13)

with i = 1, . . . , 8 and k = 1, . . . , 4. Hence in general kinematics the eight-point remainder

function R
(2)
8,WL is a function of twelve variables. Currently that lies beyond our technical

capabilities. Therefore it is natural to look for special kinematics where the twelve cross

ratios are parametrised by a smaller set of free parameters. In Ref. [18], the eight-point

remainder function was computed at strong coupling for a Wilson loop embedded into the

boundary of AdS3. In this set-up all twelve conformal ratios can be expressed in terms of

two real positive parameters χ±. Explicitly, the relations read,

u15 =
χ+

1 + χ+
, u26 =

χ−

1 + χ−
, u37 =

1

1 + χ+
, u48 =

1

1 + χ−
,

ui i+3 = 1 , i = 1, . . . , 8 .

(2.14)

For more details on these kinematics and how to express the positions of the cusps of the

Wilson loop in terms of χ± we refer to Refs. [13, 18], as well as to Appendix A.

Let us conclude this section by summarizing the properties of the remainder function in

these special kinematics. The invariance of the Wilson loop under a cyclic permutation of

the edges implies that the remainder function R
(2)
8,WL, as a function of the twelve conformal

ratios, must be symmetric under a simultaneous cyclic permutation or reversal of the first

eight and the last four cross ratios in Eq. (2.13) [12]. It is easy to check that in the χ±

kinematics this implies the invariance of the remainder function under a reversal and/or

inversion of χ+ and χ−, i.e.,

R
(2)
8,WL(χ

+, χ−) = R
(2)
8,WL(χ

−, χ+) = R
(2)
8,WL(1/χ

+, 1/χ−) = R
(2)
8,WL(1/χ

−, 1/χ+) . (2.15)

Furthermore, the limits where the χ variables become large or small correspond to various

soft and collinear limits [18]. In general kinematics in the triple collinear limit, the octagon

remainder function must reduce to the sum of two hexagon remainder functions [12]. In

that limit and in the kinematics of Eq. (2.14), we obtain that the eight-point remainder

function must reduce to twice the remainder function for a regular hexagon [13],

R
(2)
8,WL → 2R

(2)
6,reg = −

π4

18
. (2.16)

2We do not impose the Gram determinant constraint, i.e., we no not restrict the external momenta to

four dimensions.
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2.3 The quasi-multi-Regge kinematics of four-of-a-kind along the ladder

In Ref. [23], it was noted that the calculation of a six-point MHV amplitude (and thus

of a six-edged Wilson loop) would be exact if performed in multi-Regge kinematics which

do not modify the functional dependence of the cross ratios on the kinematic invariants.

The simplest of such kinematics are the quasi-multi-Regge kinematics (QMRK) of a pair

along the ladder [24, 25]. This fact was used in Refs. [14, 15] to compute analytically the

two-loop six-edged Wilson loop. In fact, in Ref. [14] it was shown that in the QMRK of a

cluster of n − 4 particles along the ladder, an L-loop n-edged Wilson loop is Regge exact,

i.e., its analytic form is the same as in arbitrary kinematics3.

For an eight-edged Wilson loop, the appropriate kinematics are the QMRK of four

particles along the ladder [26]. In the physical region, defining 1 and 2 as the incoming

gluons, with momenta p2 = (p+2 /2, 0, 0, p
+
2 /2) and p1 = (p−1 /2, 0, 0,−p−1 /2), and 3, . . . , 8 as

the outgoing gluons, the kinematics are set by taking the outgoing gluons strongly ordered

in rapidity, except for a cluster of four along the ladder. The ordering is,

y3 ≫ y4 ≃ y5 ≃ y6 ≃ y7 ≫ y8 , |p3⊥| ≃ |p4⊥| ≃ |p5⊥| ≃ |p6⊥| ≃ |p7⊥| ≃ |p8⊥| , (2.17)

where the particle momentum p is parametrised in terms of the rapidity y and the azimuthal

angle φ, p = (|p⊥| cosh y, |p⊥| cosφ, |p⊥| sinφ, |p⊥| sinh y). We shall work in the Euclidean

region, where the Wilson loop is real. In that case, the Mandelstam invariants can be taken

as all negative, and in the QMRK of four-of-a-kind along the ladder they are ordered as

follows,

−s12 ≫ −s1234,−s3456,−s123,−s345,−s678,−s812,−s34,−s78 ≫

≫ −s2345,−s4567,−s234,−s456,−s567,−s781,−s23,−s45,−s56,−s67,−s81 . (2.18)

Introducing a parameter λ ≪ 1, the hierarchy above is equivalent to the rescaling

{s1234, s3456, s123, s345, s678, s812, s34, s78} = O(λ) ,

{s2345, s4567, s234, s456, s567, s781, s23, s45, s56, s67, s81} = O(λ2) . (2.19)

In this case, it is easy to verify that all the twelve cross ratios (A.4) are O(1). Because

the dependence of the remainder function R
(2)
8,WL on the twelve cross ratios is left invariant

in going from the exact kinematics to the QMRK of Eq. (2.17), these are the candidate

simplest kinematics by which to determine R
(2)
8,WL.

3. The octagon remainder function in χ kinematics

In this section we present our computation of the eight-edged remainder function in χ

kinematics, which was done following the recipe introduced in Refs. [14, 15]. We start from

3Regge exactness was noted firstly in the simplest instance of the Regge limit of a four-edged Wilson

loop [2]. In fact, the Regge limit can be seen as the limiting case of the QMRK of a cluster of zero particles

along the ladder. However, in the case of a four-edged Wilson loop there are no cross ratios and no remainder

function, so the Regge exactness pertains only to the iterative part of Eq. (2.8).
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the parametric representations of the Wilson loop diagrams given in Ref. [12] and derive

appropriate Mellin–Barnes (MB) representations for all of them. In multi-loop calculations

it is sometimes difficult to find an optimal choice for the MB representation. However, in

our case the MB representations are introduced in a straightforward way using the basic

formula,

1

(A+B)λ
=

1

Γ(λ)

∫ +i∞

−i∞

dz

2πi
Γ(−z) Γ(λ+ z)

Az

Bλ+z
, (3.1)

where the contour is chosen such as to separate the poles in Γ(. . . − z) from the poles in

Γ(. . . + z). Note that in our case λ equals an integer plus an off-set corresponding to the

dimensional regulator ǫ. In order to resolve the singularity structures in ǫ, we apply the

strategy based on the MB representation and given in Refs. [27, 28, 29, 30]. To this effect,

we apply the codes MB [31] and MBresolve [32] and obtain a set of MB integrals which

can safely be expanded in ǫ under the integration sign. After applying these codes, all

the integration contours are straight vertical lines. At the end of this procedure, the most

complicated integral is expressed as a tenfold MB integral, which is dependent on ratios of

Mandelstam invariants.

We then simplify the computation by exploiting the Regge exactness of the Wilson

loop [14] and extract the leading quasi-multi-Regge behaviour by applying MBasymptotics

[33]. Finally, we apply barnesroutines [34] to perform integrations that can be done by

corollaries of Barnes lemmas. We arrive at a representation in terms of at most fivefold

integrals depending explicitly on the cross ratios only4. We checked numerically that

the sum of the MB integrals in the QMRK equals the sum of all the original parametric

integrals, the latter being evaluated numerically using FIESTA [35, 36], as well as comparing

directly to results obtained by the numerical code of Ref. [12]. It is worth noting that,

although the individual integrals have undergone a huge simplification, due to the Regge

exactness of the Wilson loop the representation of w
(2)
8 obtained in this way is valid in

arbitrary kinematics.

The integrals we obtained can be simplified further by introducing the χ± variables

via Eq. (2.14). Since most of the cross ratios become one in this limit, many of the MB

integrals can be done in closed form using (corollaries of) Barnes lemmas, which, after

some additional massaging, leaves us with at most twofold integrals to compute. All the

integrals can now be computed by closing the contours at infinity and summing up the

residues in the poles of the Γ functions. The sums we obtain are nested harmonic sums [37]

that sum up to (multiple) polylogarithms, a task that can easily be performed using the

FORM code XSummer [38]5. Combining all the terms, and after a final massaging, we arrive

at a very simple expression for the octagon remainder function,

R
(2)
8,WL(χ

+, χ−) = −
π4

18
−

1

2
ln

(

1 + χ+
)

ln

(

1 +
1

χ+

)

ln
(

1 + χ−
)

ln

(

1 +
1

χ−

)

. (3.2)

4However, the coefficients of the integrals depend on logarithms of Mandelstam invariants.
5In intermediate steps, some of the integrals also get contributions from multiple binomial sums [39, 40].

All of these terms cancel however in the sum over all contributions.
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Figure 1: Plot for R
(2)

8 (red) and R
strong

8 (blue) as a function of |m| for φ = 0 (left) and φ = π/4

(right). Note that the two curves basically overlap and that the numerical difference between them

is too small to be appreciated by eye.

Eq. (3.2) is the main result of this paper. We checked its correctness by comparing to

various points obtained by the numerical code of Ref. [13]6. Note that in Eq. (3.2) the

symmetry properties (2.15) of the remainder function are manifest. Furthermore, in the

limit where one of the χ variables becomes large or small, Eq. (3.2) immediately reduces

to −π4

18 , in agreement with Eq. (2.16). Finally, we can extract from Eq. (3.2) the value of

the regular octagon, which corresponds to χ± = 1,

R
(2)
8,WL(1, 1) = −

π4

18
−

1

2
ln4 2 ≃ −5.52703 . . . , (3.3)

in a very good agreement with the numerical value quoted in Ref. [13].

4. Comparison to the strong coupling result

In Ref. [18] the strong coupling octagon remainder function was given in terms of a

one-dimensional integral,

Rstrong
8,WL = −

1

2
ln

(

1 + χ−
)

ln

(

1 +
1

χ+

)

+
7π

6

+

∫ +∞

−∞
dt

|m| sinh t

tanh(2t+ 2iφ)
ln
(

1 + e−2π|m| cosh t
)

,

(4.1)

where m = |m|eiφ is a complex variable related to χ± via

χ+ = e2πImm and χ− = e−2πRem . (4.2)

Eq. (4.1) is valid in the first quadrant of the complex m-plane, 0 < φ < π
2 , and is extended

over the whole complex plane by analytic continuation. Note that Eq. (4.1) is invariant

under φ → φ+ π
2 , reflecting the invariance of the remainder function under exchange and

6We are grateful to Paul Heslop and Valya Khoze for providing us with this check.

– 7 –



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.224

-0.222

-0.220

-0.218

-0.216

-0.214

-0.212

Φ

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-0.69

-0.68

-0.67

-0.66

-0.65

-0.64

Φ

Figure 2: Plot for R
(2)

8 (red) and R
strong

8 (blue) as a function of φ for |m| = 0.2 (left) and |m| = 0.45

(right).

inversion of the χ variables. In the collinear limit, Eq. (4.1) reduces to twice the remainder

function of the regular hexagon,

Rstrong
8,WL → 2Rstrong

6,reg =
7π

6
. (4.3)

Furthermore, the value of the regular octagon is also known analytically,

Rstrong
8,reg =

5π

4
−

1

2
ln2 2 . (4.4)

In Ref. [13] the following rescaled remainder function was introduced, both at weak

and at strong coupling,

R
i
8 =

Ri
8,WL −Ri

8,reg

Ri
8,reg − 2Ri

6,reg

, (4.5)

where i refers either to the strong or the weak coupling answer. It was observed that within

numerical errors this rescaled remainder function is equal at weak and at strong coupling,

R
strong
8 ≃ R

(2)
8 , (4.6)

and it was conjectured that such a universality might extend even beyond the case of the

octagon and/or the special kinematics under consideration.

Since we are now in possession of an analytic expression for the weak coupling result,

we can check this conjecture to a much higher accuracy. We find that, similar to the case

of the hexagon remainder function, the two functions are indeed very close over a wide

range of values, but they differ substantially not only in magnitude, but also in shape (See

Fig. 1 and 2).

5. Conclusion

In this paper we have presented the first analytic computation of the two-loop remainder

function for an eight-edged Wilson loop in N = 4 SYM, in the kinematic set-up of Ref. [18].

The result is characterised by a remarkably simple form, a constant plus a product of four

logarithms. In fact it corresponds to the simplest function of uniform transcendentality
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four consistent with the constraints coming from cyclic invariance and collinear limits,

Eqs. (2.15) and (2.16). Hence its functional form is simpler than the strong coupling result

of Ref. [18]. This is to be contrasted with the case of the hexagon remainder function,

where the strong coupling result [17] is given by a rather short expression in terms of

simple functions, whereas the weak coupling result [14, 15] is expressed as a complicated

combination of polylogarithms of weight four.

In order to test the conjecture of a universality of the remainder function in the strong

and weak coupling limits, in Section 4 we confronted our result to the strong coupling

result. In contrast with the numerical observation of Ref. [13], we do not find a matching

between the strong and weak coupling results, because both functions differ not only in

magnitude but also in shape. Thus we conclude that a universality of the type suggested

in Ref. [13] is ruled out.

In the perspective of studying further potential relations between the strong- and weak-

coupling remainder functions, it would be interesting to compare our result to the recently

introduced OPE approach to polygonal Wilson loops [41].

Acknowledgements

We thank Fernando Alday, Paul Heslop, Valya Khoze and Amit Sever for useful discussions.

This work was partly supported by RFBR, grant 08-02-01451, and by the EC Marie-Curie

Research Training Network “Tools and Precision Calculations for Physics Discoveries at

Colliders” under contract MRTN-CT-2006-035505.

– 9 –



A. Eight-point kinematics

The diagrams that enter the computation of the two-loop eight-edged Wilson loop have

been given explicitly in Ref. [12]. In terms of those diagrams, we write the Wilson loop as,

w
(2)
8 = C [fH(p1, p2, p3; 0, p4 + p5 + p6 + p7 + p8, 0) + fH(p1, p2, p4; p3, p5 + p6 + p7 + p8, 0)

+fH(p1, p2, p5; p3 + p4, p6 + p7 + p8, 0) + fH(p1, p2, p6; p3 + p4 + p5, p7 + p8, 0)

+fH(p1, p2, p7; p3 + p4 + p5 + p6, p8, 0) + fH(p1, p3, p5; p4, p6 + p7 + p8, p2)

+fH(p1, p3, p6; p4 + p5, p7 + p8, p2)

+fC(p1, p2, p3; 0, p4 + p5 + p6 + p7 + p8, 0) + fC(p1, p2, p4; p3, p5 + p6 + p7 + p8, 0)

+fC(p1, p2, p5; p3 + p4, p6 + p7 + p8, 0) + fC(p1, p2, p6; p3 + p4 + p5, p7 + p8, 0)

+fC(p1, p2, p7; p3 + p4 + p5 + p6, p8, 0) + fC(p1, p2, p8; p3 + p4 + p5 + p6 + p7, 0, 0)

+fC(p1, p3, p4; 0, p5 + p6 + p7 + p8, p2) + fC(p1, p3, p5; p4, p6 + p7 + p8, p2)

+fC(p1, p3, p6; p4 + p5, p7 + p8, p2) + fC(p1, p3, p7; p4 + p5 + p6, p8, p2)

+fC(p1, p3, p8; p4 + p5 + p6 + p7, 0, p2) + fC(p1, p4, p5; 0, p6 + p7 + p8, p2 + p3)

+fC(p1, p4, p6; p5, p7 + p8, p2 + p3) + fC(p1, p4, p7; p5 + p6, p8, p2 + p3)

+fC(p1, p4, p8; p5 + p6 + p7, 0, p2 + p3) + fC(p1, p5, p6; 0, p7 + p8, p2 + p3 + p4)

+fC(p1, p5, p7; p6, p8, p2 + p3 + p4) + fC(p1, p5, p8; p6 + p7, 0, p2 + p3 + p4)

+fC(p1, p6, p7; 0, p8, p2 + p3 + p4 + p5) + fC(p1, p6, p8; p7, 0, p2 + p3 + p4 + p5)

+fC(p1, p7, p8; 0, 0, p2 + p3 + p4 + p5 + p6)

+fX(p1, p2; p3 + p4 + p5 + p6 + p7 + p8, 0) + fY (p1, p2; p3 + p4 + p5 + p6 + p7 + p8, 0)

+fY (p2, p1; 0, p3 + p4 + p5 + p6 + p7 + p8) + fX(p1, p3; p4 + p5 + p6 + p7 + p8, p2)

+fY (p1, p3; p4 + p5 + p6 + p7 + p8, p2) + fY (p3, p1; p2, p4 + p5 + p6 + p7 + p8)

+fX(p1, p4; p5 + p6 + p7 + p8, p2 + p3) + fY (p1, p4; p5 + p6 + p7 + p8, p2 + p3)

+fY (p4, p1; p2 + p3, p5 + p6 + p7 + p8) + (1/2)fX (p1, p5; p6 + p7 + p8, p2 + p3 + p4)

+fY (p1, p5; p6 + p7 + p8, p2 + p3 + p4)

+(−1/2)fP (p1, p3; p4 + p5 + p6 + p7 + p8, p2) fP (p2, p4; p1 + p5 + p6 + p7 + p8, p3)

+(−1/2)fP (p1, p3; p4 + p5 + p6 + p7 + p8, p2) fP (p2, p5; p1 + p6 + p7 + p8, p3 + p4)

+(−1/2)fP (p1, p3; p4 + p5 + p6 + p7 + p8, p2) fP (p2, p6; p1 + p7 + p8, p3 + p4 + p5)

+(−1/2)fP (p1, p3; p4 + p5 + p6 + p7 + p8, p2) fP (p2, p7; p1 + p8, p3 + p4 + p5 + p6)

+(−1/2)fP (p1, p4; p5 + p6 + p7 + p8, p2 + p3) fP (p2, p5; p1 + p6 + p7 + p8, p3 + p4)

+(−1/2)fP (p1, p4; p5 + p6 + p7 + p8, p2 + p3) fP (p2, p6; p1 + p7 + p8, p3 + p4 + p5)

+(−1/2)fP (p1, p4; p5 + p6 + p7 + p8, p2 + p3) fP (p2, p7; p1 + p8, p3 + p4 + p5 + p6)

+(−1/2)fP (p1, p4; p5 + p6 + p7 + p8, p2 + p3) fP (p3, p7; p1 + p2 + p8, p4 + p5 + p6)

+(−1/4)fP (p1, p5; p6 + p7 + p8, p2 + p3 + p4) fP (p2, p6; p1 + p7 + p8, p3 + p4 + p5)

+(−1/8)fP (p1, p5; p6 + p7 + p8, p2 + p3 + p4) fP (p3, p7; p1 + p2 + p8, p4 + p5 + p6)

+ cyclic permutations of (p1, p2, p3, p4, p5, p6, p7, p8)] , (A.1)
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where, in the terminology of Ref. [12], fH stands for a hard diagram, fC for a curtain

diagram, fX for a cross diagram, fY for a Y diagram plus half a self-energy diagram, fP
for a factorised cross diagram. Furthermore,

C = 2a2µ4ǫ [Γ(1 + ǫ)eγǫ]2 , (A.2)

and the scale µ2 is given in terms of the Wilson loop scale, µ2
WL = πeγµ2.

The Wilson loop w
(2)
8 is expressed in terms of the kinematic invariants, s12, s23, s34,

s45, s56, s67, s78, s81, s123, s234, s345, s456, s567, s678, s781, s812, s1234, s2345, s3456, s4567, all

the other invariants being related to those above by the following relations,

s13 = s123 − s12 − s23 , s14 = s1234 − s123 − s234 + s23 ,

s15 = −s1234 − s2345 + s234 + s678 , s16 = s2345 − s678 − s781 + s78 ,

s17 = s781 − s78 − s81 , s24 = s234 − s23 − s34 ,

s25 = s2345 − s234 − s345 + s34 , s26 = −s2345 − s3456 + s345 + s781 ,

s27 = s3456 − s781 − s812 + s81 , s28 = s812 − s81 − s12 ,

s35 = s345 − s34 − s45 , s36 = s3456 − s345 − s456 + s45 ,

s37 = −s3456 − s4567 + s456 + s812 , s38 = s4567 − s812 − s123 + s12 ,

s46 = s456 − s45 − s56 , s47 = s4567 − s456 − s567 + s56 ,

s48 = −s4567 − s1234 + s567 + s123 , s57 = s567 − s56 − s67 ,

s58 = s1234 − s567 − s678 + s67 , s68 = s678 − s67 − s78 . (A.3)

Using these expressions, we can form twelve independent conformal cross ratios,

u14 =
x215x

2
24

x214x
2
25

=
s1234s23
s123s234

, u25 =
x226x

2
35

x225x
2
36

=
s2345s34
s234s345

, u36 =
x237x

2
46

x236x
2
47

=
s3456s45
s345s456

,

u47 =
x248x

2
57

x247x
2
58

=
s4567s56
s456s567

, u58 =
x251x

2
68

x258x
2
61

=
s1234s67
s567s678

, u61 =
x262x

2
71

x261x
2
72

=
s2345s78
s678s781

, (A.4)

u72 =
x273x

2
82

x272x
2
83

=
s3456s81
s781s812

, u83 =
x284x

2
13

x283x
2
14

=
s4567s12
s812s123

, u15 =
x216x

2
25

x215x
2
26

=
s678s234
s1234s2345

,

u26 =
x227x

2
36

x226x
2
37

=
s781s345
s2345s3456

, u37 =
x238x

2
47

x237x
2
48

=
s812s456
s3456s4567

, u48 =
x241x

2
58

x248x
2
51

=
s123s567
s4567s1234

,

where we have used Eq. (2.2) to set x2i,j = si,i+1,...,j−1, with j > i.

In Ref. [13], three representations of the set-up of Ref. [18] in terms of the Wilson-loop

cusp coordinates are given. We choose the one for which the cusp coordinates are

x1 = (1/2, 1/2,−1) , x2 =

(

χ+

2 + 2χ+
,

χ+

2 + 2χ+
,−1

)

,

x3 =

(

1 + (2 + χ−)χ+

2(1 + χ− + χ−χ+)
,

−1 + χ−χ+

2(1 + χ− + χ−χ+)
,
−(1 + χ−)(1 + χ+)

1 + χ− + χ−χ+

)

,

x4 =

(

1

2 + 2χ−
,

−1

2(1 + χ−)
,−1

)

, x5 = (1/2,−1/2,−1),

x6 = (−1/2,−1/2, 0) , x7 = (0, 0, 0) , x8 = (−1/2, 1/2, 0) . (A.5)
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Then the Mandelstam invariants take the values

x213 = s12 = −
1

1 + χ−(1 + χ+)
, x214 = s123 = −

1

1 + χ−
,

x215 = s1234 = −1 , x216 = s678 = −1 , x217 = s78 = −1 ,

x224 = s23 = −
χ+

(1 + χ−)(1 + χ+)
, x225 = s234 = −

χ+

1 + χ+
,

x226 = s2345 = −1 , x227 = s781 = −1 , x228 = s81 = −
1

1 + χ+
,

x235 = s34 = −
χ+χ−

1 + χ−(1 + χ+)
, x236 = s345 = −

χ−(1 + χ+)

1 + χ−(1 + χ+)
,

x237 = s3456 = −1−
χ+

1 + χ−(1 + χ+)
, x238 = s812 = −

1 + χ−

1 + χ−(1 + χ+)
,

x246 = s45 = −
χ−

1 + χ−
, x247 = s456 = −1 , x248 = s4567 = −1 ,

x257 = s56 = −1 , x258 = s567 = −1 , x268 = s67 = −1 . (A.6)

Using these expression, we can immediately construct the cross ratios given in Eq. (2.14).
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[27] V. A. Smirnov, “Analytical result for dimensionally regularized massless on-shell double

box,” Phys. Lett. B 460 (1999) 397 [arXiv:hep-ph/9905323].

[28] J. B. Tausk, “Non-planar massless two-loop Feynman diagrams with four on-shell legs,”

Phys. Lett. B 469 (1999) 225 [arXiv:hep-ph/9909506].

– 13 –



[29] V. A. Smirnov, “Evaluating Feynman Integrals,” Springer Tracts Mod. Phys. 211 (2004) 1.

[30] V. A. Smirnov, “Feynman integral calculus,” Berlin, Germany: Springer (2006) 283 p

[31] M. Czakon, “Automatized analytic continuation of Mellin-Barnes integrals,” Comput. Phys.

Commun. 175 (2006) 559 [arXiv:hep-ph/0511200].

[32] A.V. Smirnov and V.A. Smirnov, “On the Resolution of Singularities of Multiple

Mellin-Barnes Integrals,” Eur. Phys. J. C 62 (2009) 445 [arXiv:0901.0386 [hep-ph]].

[33] M. Czakon, MBasymptotics; http://projects.hepforge.org/mbtools/

[34] D. A. Kosower, barnesroutines; http://projects.hepforge.org/mbtools/

[35] A. V. Smirnov and M. N. Tentyukov, “Feynman Integral Evaluation by a Sector

decomposiTion Approach (FIESTA),” Comput. Phys. Commun. 180 (2009) 735

[arXiv:0807.4129 [hep-ph]].

[36] A. V. Smirnov, V. A. Smirnov and M. Tentyukov, “FIESTA 2: parallelizeable multiloop

numerical calculations,” arXiv:0912.0158 [hep-ph].

[37] S. Moch, P. Uwer and S. Weinzierl, “Nested sums, expansion of transcendental functions and

multi-scale multi-loop integrals,” J. Math. Phys. 43, 3363 (2002) [arXiv:hep-ph/0110083].

[38] S. Moch and P. Uwer, “XSummer: Transcendental functions and symbolic summation in

Form,” Comput. Phys. Commun. 174, 759 (2006) [arXiv:math-ph/0508008].

[39] F. Jegerlehner, M. Y. Kalmykov and O. Veretin, “MS-bar vs pole masses of gauge bosons.

II: Two-loop electroweak fermion corrections,” Nucl. Phys. B 658 (2003) 49

[arXiv:hep-ph/0212319].

[40] M. Y. Kalmykov, B. F. L. Ward and S. A. Yost, “Multiple (inverse) binomial sums of

arbitrary weight and depth and the all-order epsilon-expansion of generalized

hypergeometric functions with one half-integer value of parameter,” JHEP 0710 (2007) 048

[arXiv:0707.3654 [hep-th]].

[41] L. F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, “An Operator Product

Expansion for Polygonal null Wilson Loops,” arXiv:1006.2788 [hep-th].

– 14 –


