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We show that the Aharonov-Bohm effect in the nuclear matrix model [K. Hashimoto, N. Iizuka, and

P. Yi, J. High Energy Phys. 10 (2010), 3.] derives the statistical nature of nucleons in holographic QCD.

For Nc ¼ odd (even), the nucleon is shown to be a fermion (boson).
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The statistics of baryons depends on the number of
colors in QCD; in particular for large Nc QCD, as the
baryons are bound states of Nc quarks, they are fermions
for odd Nc, while bosons for even Nc. The purpose of this
paper is to show this statistics in holographic QCD, by
using the nuclear matrix model [1].

The nuclear matrix model [1] derived in holographic
QCD offers a simple effective description of multibaryon
systems, where we can compute baryon spectra, short-
distance two-body nuclear forces, and even three-body
nuclear forces [2]. This model is a UðkÞ matrix model
which describes generic k-body interaction of nucleons.
The rank of gauge group UðkÞ is not at all related to the
number of colors Nc, but just the number of nucleons k.
The action is quite simple,
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The field content is summarized in Table I. The dynamical
fields are only XM and w _�i, while A0 and Ds are auxiliary
fields. In writing these fields, the indices for the gauge
group UðkÞ are implicit. The symmetry of this matrix
quantummechanics isUðkÞlocal � SUðNfÞ � SOð3Þ, where
the last factor SOð3Þ is the spatial rotation, which, together
with a holographic dimension, forms a broken SOð4Þ ’
SUð2Þ � SUð2Þ shown in the table. The breaking is due to
the mass terms for X4 and w _�i. In the action, the trace is
over these UðkÞ indices, and the definition of the covariant
derivatives is D0X

M � @0X
M � i½A0; X

M�, D0w � @0w�
iwA0, and D0 �w � @0 �wþ iA0 �w. The spinor indices of X
are defined as X� _� � XMð�MÞ� _� and �X _�� � XMð ��MÞ _��

where �M ¼ ði ~�; 1Þ and ��M ¼ ð�i ~�; 1Þ, with Pauli matri-
ces �. The model has a unique scaleMKK, and � ¼ Ncg

2
QCD

is the ’tHooft coupling constant of QCD, with the number
of colors Nc. For the derivation of this matrix model via

holography, and also for the computation of the baryon
spectrum (k ¼ 1), two-body nuclear forces (k ¼ 2), and
three-body forces (k ¼ 3) at short distances, see [1,2].
Let us turn to our question. Since this nuclear matrix

model has only bosonic variables, it is natural to ask how
the fermionic nature of baryons comes out from the matrix
model. In chiral soliton models, this question was an-
swered from the properties of Wess-Zumino term [3].
To identify the statistics (fermionic/bosonic) of nucleons

in the nuclear matrix model, we consider a 2� rotation in
the target space of the matrix model. The target space index
is carried by XM and w _�i. The effect on X

M is trivial, since
X decouples from the system in the matrix model for a
single baryon (k ¼ 1) once the ADHM (Atiyah-Drinfeld-
Hitchin-Manin) constraint is solved. However, since we
have a nontrivial gauge field A0, there is a nontrivial effect
on the w _�i sector. In fact, this gauge field A0 turns out to be
responsible for the statistics of the baryons, as we will see.
A long time ago, it was shown by Witten [3] that the

Wess-Zumino term in a pion effective Lagrangian is es-
sential for showing the nucleon statistics, in the picture of
solitonic nucleon of the system. Now, in holographic QCD,
this Wess-Zumino term is known to be from the 4-form
Ramond-Ramond flux in the gravity background in the
D4–D8 model of holographic QCD. In the nuclear matrix
model [1], the Ramond-Ramond flux generates a Chern-
Simons term in 1 dimension, which is just a term consisting
of a single gauge field A0. The w _�i field is charged under
the gauge symmetry, so it is natural to expect that the gauge
dynamics in this 1 dimension with the Chern-Simons term
gives the nucleon statistics.
In the nuclear matrix model, the terms including the

fundamental field w _�i, except for the ADHM potential
terms and the mass term, are

TABLE I. Fields in the nuclear matrix model.

field index UðkÞ SUðNfÞ SUð2Þ � SUð2Þ
XMðtÞ M ¼ 1, 2, 3, 4 adj. 1 ð2; 2Þ
w _�iðtÞ _� ¼ 1, 2; i ¼ 1; . . . ; Nf k Nf ð1; 2Þ
A0ðtÞ adj. 1 ð1; 1Þ
DsðtÞ s ¼ 1, 2, 3 adj. 1 ð1; 3Þ*koji@riken.jp
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Note that A0 is a gauge field for UðkÞ gauge symmetry of
the matrix model, so, for k ¼ 1 (single baryon), A0 does
not carry any non-Abelian index.

Let us make a spatial rotation, for example, along the x3

axis, by an angle 2�. We look at how a wave function of a
baryon transforms under this rotation, and if it acquires a
phase n� with an odd integer n, i.e. it changes a sign, then
the state is determined to be a fermion.

Since w _�i carries a spinor index of the target space, it is
obvious that the spatial rotation acts for the case of the
rotation around the x3 axis with an angle �, as

w _�i ! U
_�
_�w _�i; U ¼ exp

�
i
�

2
�3
�
: (2)

Here �3 is the third component of Pauli matrices. Our
spatial rotation by 2� means that the angle � moves in
the period 0 � � � 2�.

As shown in [1], the vacuum of the matrix model for
k ¼ 1 is quite simple,

w ¼ �0 0
0 �0

� �
: (3)

After minimizing the Hamiltonian, we obtain a certain
nonzero value for this �0. So the spatial rotation (2) cor-
responds to a certain path in the target space of w _�i. In the
following, we would like to compute an Aharonov-Bohm
phase with this path. For that, it is inconvenient that two
nonzero entries in (3) move simultaneously. So, we com-
bine a gauge transformation exp½�i�=2� together with the
spatial rotation (2), so that we find a path

w _�i ! U
_�
_�w _�i; U ¼ 1 0

0 e�i�

� �
: (4)

With this, we find that only the lower-right corner of w _�i in
(3) rotates. Indeed, the same change of the parameteriza-
tion of the path was used in [3] for the soliton in the pion
effective field theory.

We are interested in a phase change of a baryon wave
function. The argument of the wave function is the moduli
of this matrix model, and it is a part of w _�i configuration
space. If we think of the path ofw _�i defined by (4), then the
phase of the wave function of our concern is in fact an
Aharonov-Bohm (AB) phase, for the path (4), as if we
regard the lower-right entry of the matrix field w _�i as a
position of a charged particle.

Let us write down the Lagrangian for this charged
particle, to compute the AB phase. Writing the lower-right
component ofw _�i as w _�¼2;i¼2 ¼ uþ ivwhere u and v are

real, then the relevant part of the matrix model is

S ¼ �NcMKK
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It was shown in [1] that solving the equation of motion for
A0 gives A0 ¼ �27�=2�MKK�

2
0, which is a real con-

stant. Then the action (5) can be rewritten with conjugate
momenta in real coordinates as

S ¼ 1

2M

Z
dt½ðPu þ A0vMÞ2 þ ðPv � A0uMÞ2�: (6)

Here we have defined the ‘‘mass’’ M of the hypothetical
particle moving in the u-v space as M ¼ �NcMKK=27�.
The expression shows that the particle is in a minimally-
coupled gauge potential in the u–v space, defined by

~A u � �A0Mv ¼ Nc

2�2
0
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2�2
0

u:

(7)

The magnetic flux made by this gauge potential is constant.
The path of this hypothetical charged particle is given

by (4), which is

uþ iv ¼ �0e
�i� ð0 � � � 2�Þ (8)

so the circle encloses the area ��2
0, in a counterclockwise

way. The AB phase � is given by an integration of the
gauge potential (7) along this path,

� ¼ ��0

I
~A�d� ¼ Nc�: (9)

In the last equality, we have used (7) in a polar coordinate,
~A� ¼ �Nc=2�0. The negative sign is from the orientation
of the path.
This AB phase means that, when Nc is odd, the spatial

rotation by the angle 2� results in a sign (� 1) multiplied
to the baryon wave function. Therefore, when Nc is odd
(even), the baryon is a fermion (boson).
It is intriguing that a simple mechanism, the AB phase,

is encoded in the nuclear matrix model naturally to ensure
the baryon statistics in holographic QCD.
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