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Charge orbits of extremal black holes in five-dimensional supergravity
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We derive the U-duality charge orbits, as well as the related moduli spaces, of ““large” and “‘small”
extremal black holes in nonmaximal ungauged Maxwell-Einstein supergravities with symmetric scalar
manifolds in d = 5 space-time dimensions. The stabilizer groups of the various classes of orbits are
obtained by determining and solving suitable U-invariant sets of constraints, both in ‘“bare” and
“dressed” charge bases, with various methods. After a general treatment of attractors in real special
geometry (also considering nonsymmetric cases), the N = 2 “magic” theories, as well as the N =2
Jordan symmetric sequence, are analyzed in detail. Finally, the half-maximal (JN° = 4) matter-coupled

supergravity is also studied in this context.
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L. INTRODUCTION

Five-dimensional supergravity theories with nonmaxi-
mal supersymmetry (2 = N < 8), emerging from Calabi-
Yau compactifications of M theory, admit extremal black
p-brane solutions in their spectrum [1]. In particular, un-
gauged theories admit extremal black holes (p = 0) and
black strings (p = 1) which are asymptotically flat and
reciprocally related through U duality.' These objects
have been intensely studied throughout the years, due to
the wide range of classical and quantum aspects they
exhibit.

For asymptotically flat, spherically symmetric, and sta-
tionary solutions, the attractor mechanism [3-6] proved to
be a crucial phenomenon, determining, in a universal
fashion, the stabilization of scalar fields in the near-horizon
geometry in terms of the fluxes of the 2-form field strengths
of the Abelian vector fields coupled to the system.
Moreover, the attractor mechanism turned out to be im-
portant also to unravel dynamical properties such as split
attractor flows [7] and wall crossing [8], and to gain in-
sights into the microstate counting analysis (see e.g. [9]
and references therein), also in relation to string topologi-
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valid for large values of the charges, of the U-duality groups
introduced by Hull and Townsend [2].
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cal partition functions [10] (see also [11] for a recent
account and a list of references). In d =5 space-time
dimensions, progress has also been achieved with the dis-
covery of new attractor solutions (see e.g. [12]), as well as
with the formulation of a first-order formalism governing
the evolution dynamics of nonsupersymmetric scalar flows
[13].

For supergravity theories with scalar manifolds which
are symmetric cosets, the extremal solutions of the unga-
uged theory can be classified through the orbits of
the relevant representation space of the U-duality group,
in which the corresponding supporting charges sit. The
relation  between U-invariant Bogomol’'ny-Prasad-
Sommerfeld (BPS) conditions and charge orbits in d = 5
supergravities has been the subject of various studies
throughout the years [14-20].

The present paper extends to d = 5 space-time dimen-
sions the four-dimensional investigation of [21].

We derive the U-duality charge orbits, as well as the
related moduli spaces, of ‘“large” and ‘““small” extremal
black holes and black strings in ungauged Maxwell-
Einstein supergravities with symmetric scalar manifolds.
The stabilizer groups of the various classes of orbits are
obtained by determining and solving suitable U-invariant
sets of constraints, both in “bare” and ‘“‘dressed” charge
bases, as well by exploiting Inonii-Wigner (IW) contrac-
tions and SO(1, 1) gradings.

It is worth pointing out here that in this paper we will not
deal with maximal N = 8, d = 5 supergravity, because a
complete analysis of extremal black hole attractors and
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their large and small charge orbits is already present in the
literature; see e.g. [14—18,20,22-26]. We will just mention
such a theory briefly, below Eq. (4.3).

The plan of the paper is as follows.

We start and give a résumé of real special geometry
(RSG) in Sec. II, setting up notation and presenting all
formulas needed for the subsequent treatment of charge
orbits and attractors.

In Sec. III extremal black hole (black string) attractors
are studied in full generality within real special geometry.
Starting from the treatment of [19], various refinements
and generalizations are performed, in particular, address-
ing the issue of generic, nonsymmetric vector multiplets’
scalar manifolds. In Sec. Il A we analyze the various
classes of critical points of the effective potential V, also
within the so-called ‘“‘new attractor” approach (see
Sec. Il A4). Then, in Sec. III B we compute the higher
order covariant derivatives of the previously introduced
rank-3 invariant tensor T, which will play a key role in
the subsequent developments and results, exposed in
Secs. IIIC and III D, respectively, dealing with generic
and homogeneous symmetric real special manifolds. A
general analysis of the Hessian matrix of V, crucial in
order to establish the stability of considered attractor
points, is then performed in Sec. IITE.

In Sec. IV all small charge orbits of symmetric,
“magic,” real special geometries are explicitly deter-
mined and classified, by exploiting the properties of the

functional J 3 introduced in Sec. III C 3. Note that small
charge orbits support nonattractor solutions, which have
vanishing Bekenstein-Hawking [27] entropy in the
Einsteinian approximation. Nevertheless, they can be
treated by exploiting their symmetry properties under U
duality.

Section V analyzes the “duality” relating the N = 2
magic theory coupled to 14 Abelian vector multiplets and
the N = 6 “pure” supergravity, both based on the rank-3
Euclidean Jordan algebra J:“;] and thus sharing the very
same bosonic sector.

Then, Sec. VI is devoted to the analysis of the large
(Sec. VI A) and small (Sec. VIB) charge orbits of N = 2
Jordan symmetric sequence. Similarly, Sec. VII provides a
detailed treatment of the large (Sec. VIIA) and small
(Sec. VIIB) charge orbits of the half-maximal (N = 4)
matter-coupled supergravity. The analysis of both Secs. VI
and VII is made in the bare charge basis, and various
subtleties, related to the reducible nature of the d =5
U-duality group and disconnectedness of orbits in these
two theories, are elucidated.

Two appendixes conclude the paper, containing various
details concerning the determination of the small orbits in
symmetric magic real special geometries.

The resolution of U-invariant defining (differential) con-
straints, both in bare and dressed charge bases, is per-
formed in Appendix A.
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Then, in Appendix B we give an equivalent derivation of
all small charge orbits of symmetric magic real special
geometries, relying on group theoretical procedures,
namely, Inonii-Wigner contractions (Appendix B 1) and
SO(1, 1) three-grading (Appendix B 2).

Finally, we point out that all results on charge orbits can
actually be obtained in various other ways, including the
analysis of cubic norm forms of the relevant Jordan sys-
tems in d = 5; this will be investigated elsewhere.

II. RESUME OF REAL SPECIAL GEOMETRY

RSG ([28-33] and references therein) is the geometry
underlying the scalar manifold M5 (with Euclidean signa-
ture) of Abelian vector multiplets coupled to the minimal
supergravity in d = 5 space-time dimensions, namely, to
N =2,d =75 theory.

In the present section, we recall some basic facts about
RSG, setting up notation and presenting all formulas
needed for the subsequent treatment of charge orbits and
attractors. Apart from slight changes in notation, we will
adopt the conventions of [19], which are slightly different
from the ones used in [34] (see the observations in [34]).

We start by specifying the kind and range of indices
being used. The index in the ‘“‘ambient space” is i =
0,1,..., ny [in which M5 is defined through a cubic con-
straint; see Eq. (2.5) below]. The “0” is the index pertain-
ing to the (bare) d = 5 graviphoton, and ny stands for the
number of Abelian vector multiplets coupled to the super-
gravity multiplet. On the other hand, x = 1, ..., ny and
a=1,...,ny, respectively, denote “curved” and (local)
“flat” coordinates in Ms.

The metric a;; in the ambient space (named g;; in [34])
can be defined as follows:

1 92log V(A
a,-j— _*L(.), (21)
: 3 9AIN
where
V(A =dipAAVak>0 (2.2)

is the volume of M5 itself, and d;j = d;j is a rank-3,
completely symmetric, invariant tensor (see further be-
low). In turn, the A’s are some real functions (with suitable
features of smoothness and regularity) of the set of scalars
¢* of the theory, coordinatizing Ms:

X = X,

They do satisfy the inequality (2.2). As elucidated e.g. in
[34], the A’s are nothing but the (opposite of the) imagi-
nary (‘“‘dilatonic’”) part of the complex scalar fields of the
special Kéhler geometry (SKG) based on a cubic holomor-
phic prepotential (usually named d-SKG; see e.g. [32,35]),
characterizing the Abelian vector multiplets’ scalar mani-
fold of N =2 Maxwell-Einstein supergravity in four
space-time dimensions. In this respect, the ambient space

(2.3)
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in five dimensions is nothing but the “dilatonic sector” of
the d-SKG in four dimensions.
It is now convenient to introduce rescaled variables as

follows:
A =NV IB e du AV =V =1 @4

Thus, the metric of M5 is the pullback of a;; on the hyper-
surface

V=1 (2.5)
in the ambient space, namely,
gxy = ):ix)zjyaij|‘V(A)El
1. « 02log V(A) .
= —- AN N, —— =g.,(A
3V TN | voe: 8y (A())
(=)
= g .(), (2.6)

where (the semicolon denotes Riemann-covariant differ-
entiation throughout)

. 3 9A! .y 3.,
A= —4|= = —4|=A = —4/=AL. 2.7
Notice that the constraint (2.4) implies
OV _ 3 MMM — Vo i A =0, 28)
dP* '

Let us now introduce T\, a rank-3, completely sym-
metric, invariant tensor, related to d;j; through the defini-

tion

Ty, = NN A dyje = —Q2ALN Adjy = Ty
2.9)
whose inversion reads
dijie = 3AihA = Jagike + T AFAPAS (210)
where
a ij()A‘) = aijW(A)zl- (2.11)

In other words, T, is the ¢-dependent ‘“‘dressing”
[through /ifx(qﬁ)’s] of the constant (¢-independent) tensor
d;jx. It is worth anticipating here that Egs. (2.9) and (2.10)
play the key role to relate the formalism based on the bare
charges with the formalism based on the dressed charges
(see further below).

T,,, enters the so-called “RSG constraints,” relating in
M the Riemann tensor R, to the metric tensor g,,, as
follows:

nyzu = %(gx[ugz]y + Tx[uwTZ]yw)

= %(gx[ugz]y + wa’[u Tz]ngWWI)- (2 12)

It is worth noticing a direct consequence of such RSG

PHYSICAL REVIEW D 82, 085010 (2010)

constraints: the sectional curvature (see e.g. [36,37]) of
matter charges in RSG globally vanishes:

R (Z) = nyzngXIgyy/gZZ/gWWIZx’Zy’Zz’ZWI = (. (213)

This is trivially due to the symmetry properties of the
Riemann tensor R,,., (which are the ones for a generic
Riemann geometry), and it is a feature discriminating RSG
from SKG [in which R (Z) generally does not vanish; see
e.g. [38,39]].

As a consequence of the constraints (2.12) (within the
metric postulate), the definition of M5 as a homogeneous
symmetric manifold

Ryyue =0 (2.14)
yields
TewuseTeow + Tewl T 8™
=04 Town T = TapuTq,,” =0, (2.15)
which can be solved by
Ty = 0. (2.16)

Through Egs. (2.9) and (2.10), and exploiting the con-
straints imposed by local IN° = 2 supersymmetry, it can
be shown that Eq. (2.16) implies the following relation
between the tensors d,

. . o jo k ) ri
dljkdj(mndpq)k = 8, dnpg) © dj(mndpq)kdrsta”at a

= 8} dupg) (2.17)

where the index-raising through the contravariant metric
a" has been made explicit.

ITII. ATTRACTORS IN RSG

The present section is dedicated to the study of attractors
in RSG. This was first treated in [19] (and then reconsid-
ered in [20], in connection to d = 6).

Starting from the treatment of [19], we will generalize
and elaborate further various results obtained therein.

It is worth recalling that no asymptotically flat dyonic
solutions of Einstein equations exist in d = 5. Thus, the
d = 5 asymptotically flat black holes (BHs) can only carry
electric charges g;. Their magnetic duals are the d = 5
asymptotically flat black strings, which can only carry
magnetic charges p'.

We will perform all our treatment within the electric
charge configuration. Because of the mentioned BH/black
string duality, this does not imply any loss of generality.
Furthermore, we will study attractors within the Ansdtze of
asymptotical (Minkowski) flatness, staticity, spherical
symmetry, and extremality of the BH space-time metric
(if no scalars are coupled, this is nothing but the so-called
Tangherlini extremal d = 5 BH). The near-horizon geome-
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try of extremal electric BHs and extremal magnetic black
strings, respectively, is AdS, X §3 and AdS; X S2.

A. Classes of critical points of V

From the general theory of the attractor mechanism [3—
6], the stabilization of scalar fields in proximity to the
(unique) event horizon of a static, spherically symmetric,
and asymptotically flat extremal BH in N =2, d =5
Maxwell-Einstein supergravity is described by the critical
points of the positive-definite effective potential function

V=alqq; = (Nq)? + 3¢ A qid)q,
=7*+3¢VZ.Z, (3.1)

where the N = 2, d = 5 central charge function Z and its
Riemann-covariant derivatives (‘“‘matter charges”) have
been defined as follows:

Z

Ng, (3.2)

Z.=Nq=2,=2Z, (3.3)

The definitions (3.2) and (3.3) can be inverted, obtaining
the fundamental identities of RSG (in the electric formu-
lation) [19]:

4i = NZ = 387 A2, (3.4)

The identities (3.4) relate the basis of bare (¢-independent)
electric charges ¢, to the basis of dressed (central and
matter) charges {Z, Z,}, which do depend on the scalars
@*, as yielded by definitions (3.2) and (3.3).

By recalling definitions (3.2) and (3.3), one obtains that

= = = — 3
Zoy=Zoy = Ziy = Ziey = Axpyi

= %gxyz - J%Txyzgzwzw

Therefore, by using Eq. (3.5) the criticality conditions
(alias attractor equations) for the effective potential V can
be easily computed to be [19]

3.5

Vo= V= Vi =2(222, — iLoe"s2,2,) = 0.
(3.6)

A priori, there are three classes of critical points of V which
are nondegenerate (i.e. with V|v),:0 # 0).

1. (})-BPS

This class is defined by the sufficient (but not necessary)
criticality constraint

Z.=0, Vux (3.7)

implying

V=27 (3.8)
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2. Non-BPS

This class is defined by the constraints

Z +0; Z. # 0 for at least some xs, (3.9)

which are critical provided the following algebraic con-
straint among Z and Z,’s holds:

— 1 3 ¥ o2t
Zx_ﬁ ETxyzg 8 ZSZI'

(3.10)
At least in symmetric RSG, this implies [19]
V =972 (3.11)
3. Remark

It is worth recalling here the Bekenstein-Hawking
entropy-area formula [27], implemented for critical points
of V:

_ A
SBHi;;H = EI: =R} = (VIjy=0)/*.
The attractor mechanism [3-6] is known to hold only for
the so-called ““large’ BHs, which, through Eq. (3.12), have
a nonvanishing Bekenstein-Hawking entropy.

Therefore, attractors in a strict sense are given by non-
degenerate critical points of V. On the other hand, degen-
erate critical points of V, namely, critical points such that
Vl0jv=o = 0, are trivial. Indeed, by virtue of the positive
definiteness of V (inherited from the strictly positive def-

(3.12)

initeness of a” throughout all its domain of definition), it
holds that

V=0egq,=0 Vi (3.13)

which is the trivial limit of the theory with all (electric)
charges switched off.

The same reasoning can be repeated in the magnetic
case.

Thus, only large BHs exhibit a (classical) attractor
mechanism, implemented through nontrivial (alias nonde-
generate) critical points of the effective potential itself [6].

4. “New attractor” approach

Through the so-called new attractor approach [40], an
equivalent form of the ny real criticality conditions (i.e. of
the so-called attractor equations) for the various classes of
critical points of V can be obtained by plugging the criti-
cality conditions themselves into the ny + 1 real RSG
identities” (3.4). By doing so, one, respectively, obtains

The extra real degree of freedom is only apparent, and it is
removed by the homogeneity of degree one of the RSG identities
(3.4) under a real overall shift of charges

q; — n4q; neR

085010-4
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(i) BPS attractor equations:

q; = AZ. (3.14)

While Egs. (3.7) are ny real differential ones, the
ny + 1 real equations (3.14) are purely algebraic.
(i1)) Non-BPS attractor equations:

A 1/3\3/21 A
q; = /\lZ - —(_) —TXyZZVZZ)\l‘,x.

A
2\2) Z ’ (3.15)

B. Derivatives of T,

Now, in order to proceed further, it is convenient to
compute the Riemann-covariant derivative of the invariant
tensor 7', namely, 7,..,, a quantity which will be rele-
vant in the subsequent treatment. By using the definition
(2.9), one obtains

= _%[_%g(yzgxw) + Tr(szxw)sgrs]
(3.16)

T

waw = ayzyw
= T(xyz;W)'

Consequently, the condition (2.16) for the real special
manifold M5 to be a symmetric coset can be equivalently
recast as follows [see e.g. p. 14 of [19] and Eq. (3.2.1.9) of
[201]:

Tr(yZTXW)SgrS = %g(yzgxw)' (317)

One can then proceed further, and compute T,..,.,-
Starting from Eq. (3.16) one obtains (within the metric
postulate)

T

Xyz;wiq

= Tlayzwyg = _2\/6Tr(yzl;qTIXW)sg”

= <267y Ti)s8” = Tiyeng  (3:18)

Through Eq. (3.16), this result can be further elaborated to
give
Txyz;w;q = 12[_%g(szqu) + T(qlverIyzwa)sgpvg”]-
(3.19)
One can now introduce the following rank-5, completely

symmetric tensor Exyzwq, which is the “RSG analogue’ of
the so-called E tensor’ of SKG:

1 1

EXyzwq = ﬁTxyz;W;q = ET(xyz;w;q) = E(xyzwq)’ (3.20)

satisfying, by definition, the relation
T(q|ver|yz wa)sgpvgrs = %g(yz waq) + Exyzwq) (32 1 )

which holds globally in RSG.

3The E tensor of SKG was first introduced in [32], and it has
been recently considered in the theory of extremal d =4 BH
attractors in [21,38,39,41,42].
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By recalling the symmetricity condition (2.16),
Egs. (3.18), (3.19), (3.20), and (3.21) yield
T

xXyz;w

=0=T

xXyziwiq

S TiglorT ply:Taw)s8778"™ = %g(szqu)'

=0 E, 0

yawg

(3.22)

C. Generic RSG

Let us now consider the value of the effective potential V
in the various classes of its critical points. By recalling its
very definition, (3.1), (3.7), and (3.10) yield the following
results.

1. BPS
Recall Eq. (3.8):
V=272 (3.23)
Through Eq. (3.12), this yields
Sora=s _ A R} = V34 = |zZP2, (3.24)
T 4

2. Non-BPS and the dressed charges’ sum rule

3
V=2+3g"2.2,

, . 31
=243 58Tl 2222,

xztt wsy

(3.25)

By recalling Eq. (3.16), the second term in the right-hand
side of Eq. (7.17) can be further elaborated as follows:

X 131 3
ZxZ - _gJ;? T(ZtW;S)ZZZtZ Z + E ?(ZXZ )2,
(3.26)
yielding (Z,Z* # 0)
3T o 252 22
37 75 =872 4 |2 Ll . (3.27)
2 2 Z,Z"

Consequently, at non-BPS Z # 0 critical points of V, it
generally holds that

V =972+ A, (3.28)
where the real quantity
X 3 Txv W VAVAVAY A
A E\ﬁ zw) (3.29)
2 Z,Z"

has been introduced. This latter is the RSG analogue of the
complex quantity A introduced in SKG [41] (see also
[21,38,39,42]). As A enters the dressed charges’ sum rule
at non-BPS (Z # 0) critical points of Vgy in SKG [see e.g.
Eqgs. (282)—(284) of [41]], A enters the dressed charges’
sum rule (3.28) at non-BPS critical points of V in RSG,
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which further simplifies to (3.11), at least in symmetric
RSG (having A=0 globally). Notice that, through
Eq. (3.27) and definition (3.29), the (assumed) strictly
positive definiteness of g,, (throughout all Ms and, in
particular, in the considered class of critical points of V
itself) yields

A
7 + 3 > 0. (3.30)
Through Eq. (3.12), Eq. (3.28) yields
Seuazs A8 _ po 34— 922 + RPA (331)

s dar

3. The functional 7 3

Within a generic RSG, let us now consider the function

I,=172-3zz.72° - i\/ngyZZ"ZyZZ. (3.32)
In general, 7 3 is a diffeomorphism- and symplectic-
invariant function of the scalars ¢* in M5, or equivalently
a functional of the dressed charges {Z, Z,} in Ms. Its
derivative reads [recalling Eq. (3.16)]

P

Iy, =15, = —\/ngyZ;szzyzz
_%ZXZXZW + %grS(Trzywas + Trszyws

+ Ty Tays) 2225 (3.33)
From the definition (3.29), it thus follows that
. 1,7
A=-22 (3.34)
YAVA

The computation of 7 3 and 7 3 [respectively given by
Eqgs. (3.32) and (3.33)] at the various classes of critical
points of V [specified by Egs. (3.7), (3.8), (3.9), and (3.10)]
respectively yield the following results.

BPS:

I1,=173, (3.35)

A=

jgyx = 0.
Thus, by recalling Egs. (3.23) and (3.24), it follows that

(3.36)

SBH,d=5 _ ‘E = Rlzq — |Z|3/2 = V3/4 = \/-6—|:T3|1/2.

T 47
(3.37)
Non-BPS:
Eq. (3.27) and definition (3.29) yield
1 2~
77" = ?622 + §A. (3.38)

On the other hand, by recalling Eqgs. (3.10) and (3.16),

the term T\, Z*Z"Z% can be further elaborated at non-
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BPS Z # 0 critical points of V as follows:

1 (Zzz9(~ 3
T.,.222007" = — ——= — A—=Z27| 33
Thus, definition (3.32) yields the following expression of
7 3 at non-BPS Z # 0 critical points of V:
. 9 7 A A 621,
=——7Z1+-==5)e==—=(=Z=2+1).
== ( 6 3222) 32727 (9 z )
(3.40)
Thus, by recalling Egs. (3.28) and (3.31), it follows that

SBH,dZS — 1& = R%—] — (922 + 5)3/4 — V3/4

T 4
33/2 4 Jy\3/4
= m |Z|3/2<1 o g _3) , (341)
thus necessarily yielding
3.1
e =3 (3.42)

D. Symmetric RSG and large charge orbits
Let us now consider the case in which *
_Gs Gs

My="2=_"5__ 3.43
> H; MCS(Hs) (3-43)

is a symmetric coset.

At least in this case, d;j is the unique Gs-invariant,
rank-3, completely symmetric tensor, whereas T, is the
unique Hs-invariant, rank-3, completely symmetric tensor.

Magic symmetric M5’s are reported in Table I (see e.g.
[32] and references therein; see also [44] for a brief review
and a list of references).

Besides these four isolated cases, there are two infinite
sequences of other symmetric real special manifolds,
namely, the so-called Jordan symmetric sequence

SO(1, n)
M =S50(1, 1) X ——=, =ny,—1€N,
J.5.n (1,1) S0(n) n=ny
(3.44)
and the non-Jordan symmetric sequence [45]
SO(1, n)
M =———, =ny €N, 3.45
nJ,5,n SO(”Z) n ny ( )

ny being the number of Abelian vector supermultiplets
coupled to the N = 2, d = 5 supergravity one.

The sequence (3.45) is the only (sequence of ) symmetric
RSG which is not related to Jordan algebras of degree

4“MCS” is an acronym for maximal compact subgroup (with
symmetric embedding). Unless otherwise noted, all considered
embeddings are symmetric. Moreover, the subscript “max”
denotes the maximality of the embedding throughout.
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TABLE I. Homogeneous symmetric real special vector mul-
tiplets” scalar manifolds M5 of N' = 2, d = 5 magic supergrav-
ity. Ms’s also are (1) the non-BPS Z # 0 moduli spaces of
N =2, d=4 special Kihler symmetric vector multiplets’
scalar manifolds [23], and (2) the large %-BPS charge orbits
Ogps jarge Of N = 2, d = 5 Maxwell-Einstein supergravity itself
[19]. The large non-BPS Z # 0 charge orbits O,gpg aree = M5
(see e.g. Table 5 of [43] and references therein) and the related
non-BPS Z # 0 moduli spaces M,,gps 1are are reported, as well.
The rank r of the orbit is defined as the minimal number of
charges defining a representative solution. As observed in [23],
for magic supergravities ny = dimgMs = 3¢q + 2, whereas
dimp M ,gps 1aree = 2¢, and Spin(l + q) C hs. See text for
more details.

M5 _ Gs _ Strp(J3)

H,  Aully) . G
= @BPS,large MS - [:T5 i

" r=3 = (QnBPS,large j\:lnBPS,large :~ h__:
J3 Hs = mcs(Gs) r=3 hs = mcs(Hs)

0 , — Eg(—26) Ee(—20) Fa-20)
73 q 8 Fy—sy) Fy—20) 50(9)
M og—4 SU*(6) SU*(6) USp(4.2)

3:4 Usp(6) USp4,2) USp@=<USp()
JC =9 SL(3,0) SL(3,C) SUQ2,1)

34 SUQ) SUR.I) SUQ)XU)
J[R =1 SL(3,R) SL(3,R) S0(2,1)

3 4 50(3) S02.1) 500

three. It is usually denoted by L(—1, n — 1) in the classi-
fication of homogeneous Riemannian d spaces (see e.g.
[32] and references therein). It will not be further consid-
ered here, because it does not correspond to symmetric
spaces in four dimensions.

G5 and Hs can, respectively, be interpreted as the re-
duced structure group Stro and the automorphism group
Aut of the corresponding Euclidean Jordan algebra of
degree three (see e.g. [46] for a recent review, and refer-
ences therein):

_ % _ Stro(.]g)
3 H5 Aut(J3) .

(3.46)

Furthermore (at least’) in symmetric RSG, due to
Egs. (2.16) and (3.33), it holds that

(3.47)

In other words, j3 is independent of all scalars ¢*.
Furthermore,

Iy=1, (3.48)

where I; is the unique cubic invariant of the relevant
electric (irreducible) representation [(ir)repr.] Ry of d =
5 U-duality Gs, defined by (7.2). As mentioned above, d;

SNotice that, from Eq. (3.33), it follows that

I3, =0T, 2277 =0,

xXyzsw

for which (2.16) is a solution.
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is G5 invariant in all RSG, whereas d"* is G5 invariant at
least in symmetric RSG.

In this framework, by virtue of the relations (7.27) and
(7.31), the Bekenstein-Hawking entropy-area formula
(3.12) can be completed as follows [recall Eq. (3.48)]:

_ A
SpHa=s _ AH _ R} = (VIy—o)/* = V6| I3]'/2
T 47T

= \/6|j3|1/2' (3.49)

Furthermore, in RSG based on symmetric cosets I%’ the

representation space of the irrepr. of Gs in which the
(electric or magnetic) charges sit admits a stratification
in disjoint orbits [15,19]. Such orbits are homogeneous, in
some cases symmetric, manifolds.

The charge orbits supporting nondegenerate (in the
sense specified above; see the end of Sec. IIT A) critical
points of V are called large orbits, because they correspond
to the previously introduced class of large BHs with
nonvanishing Bekenstein-Hawking entropy area [see
Eq. (3.12)]. On the other hand, charge orbits corresponding
to small BHs (having vanishing Bekenstein-Hawking en-
tropy area) are correspondingly dubbed small orbits.

In the treatment of symmetric RSG performed in the
present subsection, only large orbits, first found in [19], are
considered.

In Sec. IV, through the properties of the function 7 3
defined by Eq. (3.32), the stabilizers of all small charge
orbits of symmetric RSG will be derived, by suitably
solving Gs-invariant (sets of) defining differential con-
straints, as well as by performing suitable group theoretical
procedures.

We can now specialize the results obtained in Sec. III C
and in Sec. III C 3 to magic symmetric RSG. The detailed
treatment of N = 2 Jordan symmetric sequence (3.44)
will be given in Sec. VI. Actually, the large charge orbits of
(3.44) have already been considered in [19] (see also [23]
for the study of corresponding moduli spaces), but in
Sec. VI the treatment is further refined.

1. BPS
Equations (3.35) and (3.48) yield

I,=122=1, (3.50)
and thus
S A
SRS = T8 = Ry = (Vigy=0)* = VeI T3]
= 6| 15|12 = |z}~ (3.51)

Such a large BH is supported by (electric) charges belong-
ing to the large charge orbit (homogeneous symmetric
manifold) [19]
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Gs
O ==M
BPS, large 5.
Hj

(3.52)
The compactness of Hs yields the absence of a moduli
space related to %—BPS large attractor solutions, a fact that
can be seen also from the expression of the Hessian matrix
of V evaluated along the BPS criticality constraints (3.7)
[see Eq. (3.72) below].

It is worth remarking that Ms’s also are the non-BPS
Z # 0 moduli spaces of N =2, d =4 special Kihler
symmetric vector multiplets’ scalar manifolds [23].

Notice that, in general,
dimgMs = ny. (3.53)

As observed in [23], for magic supergravities (based on
Euclidean Jordan algebras of degree three J3A over the
division algebras A), it holds that

dimpMs = 3¢ + 2,

(3.54)
g =dimg(A=0O,H,C,R) = (8,4,2,1).
2. Non-BPS
Equations (3.40) and (3.48) yield
1,=-32=1, (3.55)

Indeed, from its very definition, in this framework it glob-
ally holds that

A=0 (3.56)
and thus [recall Eq. (3.11)]
32,7° =87 oV =97 (3.57)
Through Eq. (3.49), it thus follows that
SBHi;Td:S = 2_7]:_ = R%, = (V|av=o)3/4 = \/8|]3|1/2
= /6| 15|12 = 332 z}3/2, (3.58)

Such a large BH is supported by (electric) charges belong-
ing to the large charge orbit (homogeneous symmetric
manifold)

Gs

— — *
Cr)nBPS,large T Msr

i (3.59)

where Hs is the unique noncompact, real form of Hs =
mcs(Gs) which admits a maximal symmetric embedding
into Gs:

Gs 2 Hs.

max

(3.60)

The homogeneous symmetric pseudo-Riemannian mani-
fold M: is the *“* version” of Ms, obtained through time-
like d=6—35 reduction from the corresponding
anomaly-free uplifted N = (1,0), d = 6 chiral theory
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(see e.g. Table 5 of [43], and references therein). Notice
that Eq. (3.59) yields

o nBPS,large — @EPS,large’ (3.61)

in the sense we have just specified.
The noncompactness of Hs implies the existence of a

non-BPS moduli space [23]
__Hs _Hs

MBS laree = ——mm = = 3.62
BPSlaree = Q) 2 (3.62)
As observed in [23], for magic supergravities it holds that

(see e.g. Table 8 of [44], and references therein)

dimRmnBPS,large = 261§ Spln(l + Q) C 55’ (363)

where Spin(1 + g) is the spin group in 1 + g dimensions.
Notice that 2¢ is the number of d = 6 (scalarless) vector
multiplets needed for an anomaly-free uplift of the consid-
ered N = 2, d = 5 magic Maxwell-Einstein supergravity
to the corresponding N = (1, 0) chiral quarter-minimal
magic supergravity in d = 6 (see e.g. Sec. 5 of [20], and
references therein).

Thus, by recalling (3.54), the number # of ‘“nonflat”
scalar degrees of freedom along O, gps jaree 15

nBPS, large = dimpMs — dimpM,,gps jaree = ¢ + 2.
(3.64)

The large non-BPS Z # 0 charge orbits O,pps jaree =
M3, and the related non-BPS Z # 0 moduli spaces
M ,pslarge fOr magic models are reported in Table I.
Furthermore, it should be recalled that the Jordan symmet-
ric sequence (3.44) is related to the reducible rank-3
Euclidean Jordan algebra Re1I';,, where I'|, is the
rank-2 Jordan algebra with a quadratic form of
Lorentzian signature (1, n), i.e. the Clifford algebra of
O(n, 1) [49].

E. Hessian matrix of V

From its very definition (3.1), the first derivative of V
reads [recall Eq. (3.6)]

Vo= V= V= 2222~ iTyg"e'2,2,), (G65)

By further differentiating, the global expression of the real
Hessian ny X ny matrix of V in a generic RSG can be
computed as follows:

V., =V

v Viny
= %gxy(zz — %ZWZW) + 2Zny - SJ%ZTX)'ZZZ

+ 2(TX)’5TUW + 4szrTyws)grSZZZW
= Vi (3.66)

where Eqgs. (3.5) and (3.16) have been used.
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On the other hand, by recalling definitions (3.20) and
(3.33), it can be computed that

]3;x;y = _3J%(4Exyzwrzr + 2ZTxyz w

ALy 2 )2,

Then, further elaboration of Eq. (3.66) is possible for
Z # 0.1Indeed, in such a case Eq. (3.67) implies that [recall
Eq. (3.16)]

(3.67)

11 6 -
Toyn Z°2Y = — —= =T — — o Z2ZV T
wsy \/6 7 XY 7 yz
1 1
+ —(ZWZW)TWZZ + 2,0 22

+ 2T

( xrp }rv tzw xwp yr thzr)

X grr PUTATATAS (3.68)

Notice that the symmetry properties 7 By = 7 3(xy) and
Ty 1y 252" = T(xzy:y)Z°Z" are not manifest, respectively,

from Eqgs. (3.67) and (3.68), due to the presence of Exyzw,,
T,y..,, and 33;x;y itself. By plugging Eq. (3.68) back into
Eq. (3.66), the following result is achieved:

1%

Xy

=V

XY
8 2 1
=47.7, +322 —8\/; 2Ty 2+ 2 sy

66 -

+ 7Exyzwrzzzwzr - \/7(2 ZW) xyz
6

\/— VAVASE S £(T T,.,T

7 —Z szw xrpLyr'sttzw

+ 2wapTyr’sthr)grr/gthXZzZW
+ 4T, Ty 8" 2727,

xzwd ysw

(3.69)

holding true for Z # 0. Once again, notice that the
symmetry property V., = V(. is not manifest from
Eq. (3.69), due to the presence of Exyzwr and j3;x;y.

By inserting the global condition (2.16) into Eq. (3.66),
one obtains that

Viy = Vixy

= 42,2, +32%g,, — 8\22T,.Z¢

xXyz

+ 4T, Ty 8" Z°Z°

(3.70)

= V;x;y, symm-*

This is the global expression of the real Hessian ny X ny
matrix of V (at least) in symmetric RSG, and indeed it
matches the result given by Eq. (5-1) of [19] (see also [20]).
Thus, Egs. (3.66) and (3.70) yield the following result:

PHYSICAL REVIEW D 82, 085010 (2010)

V;x;y = V;x;y symm - gxy(Z ZW) - 2Zny
+ 22T, Tyso + Ty T )85 2V 25, (3.71)

1. Evaluation at critical points of V

We will now proceed to evaluate the Hessian matrix of V
given by Eq. (3.66) in the various classes of critical points
of V itself, as given by Egs. (3.7), (3.8), (3.9), and (3.10).

BPS.—The necessary and sufficient BPS criticality con-
straints (3.7) plugged into Eq. (3.66) yield

Vi = 38,22 (3.72)
Equation (3.72) holds for a generic RSG, and it matches the
result given by Eq. (5-2) of [19]. For a strictly positive-
definite g, (as it is usually assumed), it implies that the
Hessian matrix of V at its BPS critical points has all strictly
positive eigenvalues.

As mentioned above, the lack of Hessian massless
modes at %—BPS critical points of V determines the absence
of a moduli space in BPS attractor solutions, which thus
have all scalar fields ¢* stabilized at the (unique) event
horizon of the considered (electric) d = 5 extremal BH.

Non-BPS.—It is worth noticing here that Eq. (3.10)

yields
31
z.7" =
=L

By recalling the dressed charges’ sum rule given by
Eq. (3.27) and definition (3.29), Eq. (3.73) implies

ey \/51
3 2Z

On the other hand, by using Eq. (3.16), one can compute
also that

YNV AVAVAS

xyz

(3.73)

VBNV AVAVAS

Xyz

(3.74)

zzi=- P Lp  zpzge s
X - o E? Xyz;w . vl

8 16 22 (Z Zy*

(3.75)

By dividing by Z,Z* # 0, one then obtains the dressed
charges’ sum rule given by Eq. (3.27). However, one can
also interpret Eq. (3.75) as a quadratic equation in the
unknown Z,Z*, obtaining the result

8 64
0<Z.7Z" = gZ2 +a =27 -

= ZT ZF,
9 3ix

(3.76)
When T 30 = 0 (i.e—at least—for symmetric RSG),
Eq. (3.76) consistently yields [19]

37,7 = 87% 3.77)
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IV. SMALL CHARGE ORBITS AND MODULI
SPACES IN SYMMETRIC MAGIC RSG

In the treatment of symmetric RSG performed in
Sec. III D, only large charge orbits, supporting solutions
to the corresponding attractor equations (and first found in
[19]; see also [20]), have been considered.

In the present section, by exploiting the properties of the

functional J 3 introduced in Sec. III C 3, all small charge
orbits of magic symmetric RSG will be explicitly deter-
mined through the resolution of Gs-invariant defining (dif-
ferential) constraints both in bare and dressed charge bases,
as well as through group theoretical techniques.

By definition, I,1=1I1;in symmetric RSG, as dis-
cussed in Sec. I D; see Eq. (3.48)] vanishes for all small
charge orbits. Consequently, such orbits do not support
solutions to the attractor equations [alias criticality con-
ditions of the effective potential V; see Eqgs. (3.7), (3.8),
(3.9), and (3.10), or Egs. (3.14) and (3.15) in the so-called
new attractor approach]. In other words, the (classical)
attractor mechanism does not hold for small charge orbits,
which indeed do support BH states which are intrinsically
quantum, in the sense that the effective description through
Einstein supergravity fails for them.

Besides the condition of vanishing 7 3, further condi-
tions, formulated in terms of derivatives of 7 3 in some
charge basis, may be needed to fully characterize the class
of small orbits under consideration. It is worth pointing out
here that the (sets of ) Gs-invariant constraints which define
small charge orbits in homogeneous symmetric real special
manifolds 1% are characterizing equations for charges (in

both bare and dressed bases), but they actually are identi-
ties in all scalar fields ¢*, and thus they hold globally in g—; .

This is to be contrasted with large charge orbits, which are
defined through the attractor equations themselves, which
are, at the same time, characterizing equations for charges
(in both bare and dressed bases) and stabilization equations
for the scalars ¢* at the event horizon of the extremal BH.

As it is well known [23], at non-BPS Z # 0 critical
points of V, some scalars are actually unstabilized at the
(unique) event horizon of the corresponding large extremal
BH solutions. Such unstabilized ¢*’s span the moduli
space M,gps aree [given by Eq. (3.62)], associated with a
hidden compact symmetry of the non-BPS Z # 0 attractor
equations themselves, which can be traced back to the
noncompactness of the stabilizer of the non-BPS Z # 0
large charge orbit O,pps juree [see Eq. (3.59), to be con-
trasted with Eq. (3.52)].

The small charge orbits are homogeneous manifolds of
the form

Gs

SmaxXT’ (41)

(9 small —

where x denotes the semidirect group product throughout,
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and T is the non-semisimple part of the stabilizer of
Ogpan, Which in all symmetric RSG (with some extra
features characterizing the symmetric Jordan sequence;
see Sec. VI) can be identified with an Abelian translational
subgroup of Gy itself.

One can also associate a moduli space with small charge
orbits, by observing that the noncompactness of Sy 37
yields the existence of a corresponding moduli space de-
fined as®

Smax

M i = m

xT . 4.2)

Note that, differently from large orbits, for small orbits
there also exists a moduli space M.y = 7 when S, is
compact. As found in [47,48] for large charge orbits of the
N = 2,d = 4 stumodel, and recently proved in a model-
independent way in [49], the moduli spaces of charge
orbits are defined all along the scalar flows, and thus they
can be interpreted as moduli spaces of unstabilized scalars
at the event horizon (if any) of the extremal BH, as well as
moduli spaces of the Arnowitt-Deser-Misner (ADM) mass
of the extremal BH at spatial infinity. In the small case, the
interpretation at the event horizon breaks down, simply
because such a horizon does not exist at all (at least in the
Einsteinian supergravity approximation).

In general, the number # of nonflat scalar degrees of
freedom supported by a (large or small) charge orbit O
with associated moduli space M is defined as follows:

# = dimpM —s — dimpM. (4.3)
As an example, let us briefly consider the maximal N =
8, d = 5 supergravity, whose large and small charge orbits
have been classified in [15]. The scalar manifold of the
theory is

Eg(6)
Usp(8)’

Mo—gqs = dimp = 42. (4.4)

(1) The unique large charge orbit is §-BPS:

E¢ )

0] (1/8)-BPS — &

. dimg = 26,
Fyw)

(4.5)

with corresponding moduli space [23]

Fy)
USp(6) X USp(2)’

M(I/S)-BPS = 4.6)

Thus, the number of nonflat directions along
@(1/8)-BPS reads

®We thank M. Trigiante for a discussion on the “flat” direc-
tions of small charge orbits.
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ﬁ(1/8)-BPs = dimpM pr—g 4—5 — dimRm(l/S)—BPS
= 14. “4.7)

Since the charge orbit is large, #/g)-gps also ex-
presses the actual number of scalar degrees of
freedom which are stabilized in terms of the electric
(magnetic) charges in the near-horizon geometry
of the extremal black hole (black string) under
consideration.

(2) The small 1-BPS orbit is

__ Eeo L
(9(1/4)-BPS = W’ dimg = 26,
(4.8)
with corresponding moduli space
S0(5,4)
le _ — —’)d 16’
WABES T 50(5) X SO(4) (4.9)

Thus, the number of nonflat directions along
O(1/4)-ps reads

# (1/4)-sps = dimpM nr—g 4—5 — M1 /4)-pps = ©.

(4.10)
(3) The small 1-BPS orbit is
E¢6) .
Ojpypps = ———, d =17,
(1/2)-BPS SO(5, 5)xR1 1My
4.11)
with corresponding moduli space
S0(5,5)
M 2)-pps = ———————xRI®
(172855 = 50(5) X SO(5)
- M(2,2),d=6><|IR16> 4.12)

dimg = 41,

where M, 5) 4—¢ is the scalar manifold of maximal
(nonchiral) supergravity in d = 6. Thus, the number
of nonflat directions along Oy, /,)-gps reads

# (1/2)-sps = dimpM nr—g 4—5 — M1 /2)-pps = L.
4.13)

As we will point out more than once in the treatment
below, result (4.13) expresses the pretty general fact
that the unique nonflat direction along maximally
supersymmetric (namely, %-BPS) charge orbits is
the Kaluza-Klein radius in the dimensional reduc-
tiond =6—d=>5.

In the treatment of Sec. IVA, the Gs-invariant con-
straints defining all classes of small charge orbits in all
symmetric RSG will be derived. Then they will be solved
both in bare and dressed charge bases in Appendix A.

PHYSICAL REVIEW D 82, 085010 (2010)

Furthermore, in Appendix B the origin of small charge
orbits (and, in particular, of 7') will be elucidated through
group theoretical procedures [namely, Inonii-Wigner con-
tractions [50,51] and SO(1, 1) three-grading].

While the treatment of Sec. IV A holds for all symmetric
RSG, the treatments given in Appendixes A and B strictly
fit only the isolated cases of symmetric RSG provided by
the so-called magic symmetric RSG’s [28-31]. The main
results of Appendixes A and B are reported in Tables III
and IV [the symmetric Jordan sequence (3.44) is consid-
ered in Sec. VI]. In the magic octonionic case J? (g =79),
the results of [15] are matched.

Below we summarize the main results of Appendixes A
and B.

(i) The small lightlike BPS charge orbit (dimp = 3¢ +

2)
0 = Gs
HENKeBPS (S0 (g + 1) X A, )xREP(a T Dispin(@,)”
(4.14)
with
S maxlightike, gps = SO0(g + 1) X A, (4.15)
T Jightiike,pps = REPINGTD:spin(Q0), (4.16)

Q, and A ,, a further factor group in Sy, are given
by Table II. Furthermore, we define

spin (¢ + 1) = dimg(Spin(g + 1)), 4.17)

spin (Q,) = dimg(Spin(Q,)),

with Spin(g + 1) and Spin(Q,), respectively, de-
noting the spinor irreprs. in ¢ + 1 and Q, dimen-
sions. It is worth remarking that A , is independent
of the space-time dimension (d = 3,4, 5, 6) in which
the quarter-minimal symmetric magic (Maxwell-
Einstein) supergravity (classified by ¢ = 8, 4, 2, 1)
is considered. It also holds that

(4.18)

d =506 Gen = SO(1,1) X SO(g — 1) X A,

4.19)
d=3,4: Gent = Gpaini = SO(q) X A, (4.20)
TABLE II. Q, and A, for the various N = 2, d = 5 magic

supergravities (based on J?, A = 0, H, C, R), classified by ¢ =
dimpgA = 8, 4, 2, 1.

q Qq ‘Aq
4 2 SO(3)
2 2 50(2)
1 . “ e
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TABLE III. Small lightlike charge orbits (f)“ghmke,BPS and (f)“ghmke,ngps (with associated moduli
spaces) in symmetric magic RSG.

Oighiike,Bps- Oighiike,nBps
J5 (+ rel. data) r=2 Miighiike, BPS r=2 Miighttike,nBPS
A=0.q=8 oA Re o o R
Spin(9) = 16
ﬁ'light,BPS =10
Frghnars = 2 SU*(6) SU*(6) S0(4,1)
A=H q=4 (SOB)XSOB)RED R (50 )X SO(3)HRAD souy ARG
Ay =80(3),
Q4=2
Spin(5) = 4
Spin(Q,) = 2
ﬁ'light,BPS =6
Fighnmps =2 SLB,C) SLB,C) s0@,1)
A=C q=2 SOBIXSOQ)WRED R SormsoaET  soo) R
A, =S0(2)
0, =12,
Spin(3) = 2,
Spin(Q,) = 2
Hlighps = 4
ﬁ:light,nBPS =2 LR LR
A=R g=1 S, R? ot SO(1, xR?
Spin(2) = 2
HlighuBps = 3
ﬁhght,nBPs =2
where the groups écent and Gp,ip are usually intro- d =5, 6). The moduli space corresponding to (4.14)
duced in the treatment of supergravity billiards and is purely translational:

timelike reductions (for a recent treatment and a set
of related references, see e.g. [43]; see also Table V
therein, for subtleties concerning the case ¢ = 8§ in

M jightike pps = REPI@TDspin(@,), 4.21)

with real dimension

TABLE IV. Small critical charge orbit Oycq pps (With asso-

ciated moduli space M iica ps) in Symmetric magic RSG. TABLE V. N-dependent supersymmetry-preserving features
of large and small charge orbits of the irrepr. 15 of the d =5
JE (+ rel. data) O.siticarpps, 7 = 1 M critical BPS U-duality group SU*(6), related to J&'. This corresponds to two
A=0,q=28 Eq(—26) S00.) \ R16 “twin” theories, sharing the same bosonic sector: an N = 2
S in(93 — 16 SO0, xR 5009) Maxwell-Einstein theory and the N' = 6 “‘pure” theory. The
ﬁp —1 subscript “H’’ stands for “‘(evaluated at the) horizon.”
crit, BPS T
_ _ SU*(6) 506,1) mp(4,2) — —
A=H q=4 (SO, )XSOR)HRED 50(5) R 75 N=2 N=6
A4 = S0(). 0, =2 SU'(©) 1_BPS nBPS
Spin(5) = 4, USp(6)° 3 ,
Spin(Q,) = 2 large, I3 # 0 Zypn =0,
Xy #0
Heripps = 1 SU*(6) 1H
A = C q = 2 SLB.C) . SO(S'I)XI[R(Z‘Z) USp(4,2)° nBPS, ZH #0 E_BPS’
A :,50(2) (SOG. D50 509 large, I3 # 0 Zapu * 0,
Q22= 2 ’ SU*(6) 1 )1(H -
Spin(3) = 2, (SO(5)XS0(3))xR™? * 3-BPS s-BPS
Spin(Q,) =2 small, T, =0 1
Beriepps = 1 LG 00t (S0@ )XSOG)XR * nBPS 3-BPS
A = R,g=1 SO0 iE 500y MR small,sgg(; 0 | 1
Spin(2) =2 BOGIXSQGE™ 5-BPS >-BPS
Heriepps = 1 smail, 975 =0
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spin (g + 1) - spin(Q,) = 2g4. (4.22)

Thus, by recalling (3.54), the number # of scalar
degrees of freedom on which the ADM mass de-
pends along Ojgngike pps is [recall Eq. (3.64)]

Frighegps = dimpMs — dimg M jigngike Bps
=3¢ + 2 — (spin(g + 1) - spin(Q,))

—g+2 (4.23)

By recalling Eq. (3.63), it is worth noting that
MnBPS,large and :]Vllightlike,BPS have the same real
dimension, but they are completely different, as
yielded by Egs. (3.62) and (4.21).

(i) The small lightlike non-BPS charge orbit (dimp =

3g +2)
O sobice nsps = O
ehikenBES T (50(g, 1) X A ) REpna D spin0,)”
(4.24)
with
S max lightlike,iBps = SO(q, 1) X A, (4.25)

RUPin(g T Dspin(@) = T e mps.

(4.26)

T lightlike,nBPS —

The related moduli space reads (dimg = 3¢q)

50(¢, 1)
50(q)
= M, 5,3 R(spin(g+1).spin(Q,))

4.27)

M jighttike,nBPS = x[Rispin(g+ D spin(Q,)

where M, 5 , is the gth element of the generic non-
Jordan symmetric sequence (3.45). Thus, by recall-
ing (3.54), the number # of scalar degrees of free-
dom on which the ADM mass depends along

(Olightlike,nBPS 18

ﬁlight,nBPs = dimpMs — dlmRMlightlike,nBPS

=2g + 2 — (spin(g + 1) - spin(Q,)) = 2.

(4.28)

(iii)) The small critical BPS charge orbit (dimg = 2¢q +

1)
0 - o
critical, BPS — (Gg X ﬂq)x'R(spin(q-%—l),spin(Qq)) )
(4.29)
where
Ge=S0(1,q + 1) (4.30)
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is the U-duality group of the corresponding (1, 0),
d = 6 chiral supergravity theory. Thus,

Smaxcritica,Bps = G6 X Ay, @31)

Tcritical,BPS = Tlight]ike,nBPS = Tlightlike,BPs
The related moduli space reads (dimg = 3¢ + 1)
SO(g+1,1)

SO(g +1)
R Epin(g+1),spin(Q,))

(4.32)

M critical, BPS X R(spin(q D spin(Qq))

= MnJ,S,q+

Thus, by recalling (3.54), the number # of scalar
degrees of freedom on which the ADM mass de-
pGl’ldS along @critical,BPS is

B oriepps = dimpMs — dimp M rica Bps
=2¢ + 1 — (spin(g + 1) - spin(Q,)) = L.
(4.33)

The unique scalar degree of freedom on which the
ADM mass depends can be interpreted as the
Kaluza-Klein radius in the d = 6 — d = 5 reduc-
tion. Furthermore, it is worth observing that

— spin(g+1),spin
M critical BPS = M(l,O),d:ﬁ,J;-MR(p (g4 Dspin(Qy)),

(4.34)

where M, o) 4, 1s the manifold of tensor mul-
tiplets’ scalars in the corresponding (1, 0), d = 6
theory (see e.g. Sec. 5 of [20] for a recent
treatment).

It should also be noticed that O,ppguee [given by
Eq. (3.59)] and O, pps [given by Eq. (4.29)] share the
same compact symmetry, or equivalently that M, gps jarge
[given by Eq. (3.62)] and M i;capps [given by Eq. (4.32)]
share the same stabilizer group (apart from an A, com-
muting factor), but they do not coincide. This is due to the
fact that Hs and Gg X A 4 share the same MCS, namely,

hs = MCS(Hs) = MCS(Gs X A,)

=8S0(g+1)xX A, (4.35)

In the case A = R (¢ = 1), the following further results
hold (see also Tables III and IV):

2

R2
M =X
nBPS, large, /3 R(z,z)

=M w=(1,0),d=6,12*x'{ R22

- { Mcritical,BPSJéR (4.36)

Mlightlike,nBPS,ch'

Notice that J%Q is the unique case, among J? ind=>5,in
which M,,gps jarge aNd M siical ps DOt Only share the same
stabilizer, but actually do coincide (up to x[R?). Moreover,
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MnBPS,large, " also coincides with ,’thhﬂike,nBPS, ° (up to
(22) . .

xR'“<), because the respective charge orbits @nBPS,large, 2

and @lighmke’”Bpsl P share the same semisimple, namely,

nontranslational, part of the stabilizer [apart from a com-
muting A, = SO(2) factor], i.e. SO(2, 1).

The Jordan symmetric infinite sequence [28-32,35,52]
given by Eq. (3.44) needs some extra care (also at the level
of large charge orbits), because of the factorization of Gs.
The large and small charge orbits for such a sequence will
be treated in Sec. VI. This treatment refines and complete
the ones given e.g. in [19,20,23].

A. Gs-invariant defining constraints

As mentioned above, small charge orbits in all symmet-
ric RSG are all characterized by the constraint [recall
Eq. (3.48)]

I,=1,=0, 4.37)

where J 3 = I35 is the unique cubic scalar invariant of the
relevant electric representation R, of the d = 5 U-duality
group G5 (in which the electric charges g; sit). By recalling
definitions (3.32) and (7.2), the ‘““smallness” condition
(4.37) can be recast as follows:

R s (Y o (3N
I, =0ez -(3)2z2' - (3) 1,227 =0

(4.38)

I;=0ed%q,q;q9, =0, (4.39)

in the dressed and bare charge bases, respectively.
It is worth noticing here that Eq. (4.38) can be recast as a
cubic algebraic equation:

Z2+pZ—q=0,
q= (%)3/2TxyZZXZyZZ’

p=-0(rzz <0
(4.40)

with a polynomial discriminant

3 2 3
Poaqa_3
D=—+—=—_[2T
9 4 26[ T
Thus, for D > 0 one gets one real and two complex con-
jugate (unacceptable) roots, whereas for D << 0 all roots are
real and unequal. In the particular case
D =0 2T, Z*2°7%)? = (Z,7*)?,

xyz

7779 — (Z,7%)%]. (4.41)

yz

(4.42)

all roots are real, and at least two are equal.
Let us proceed further, by differentiating the functional

7 3 with respect to the dressed charges
zZ={7271 (4.43)

as well as the function J5 with respect to the bare charges
{g,}. One, respectively, obtains
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X 7
o1, _ |5 =12 52z (4.44)
0Z  \4p= iz -1 27,

oIy 1 .

aqé =S d7qjq, (4.45)

where it should be recalled once again that here we are
considering symmetric real special manifolds g—i where
Egs. (2.16) and (2.17) hold true. ‘

A further differentiation with respect to Z or {g;}, re-
spectively, yields

021,
24 @~ £
P E = P21, = —3zx
(aZ)Q E)ZaAZX 4 .
Py _ _3goxy _ (3\3/27n _ 9T
.oz, — 4287 (NS RARS 202,
(4.46)
921 N 021
L= dikg = — (4.47)
9994 9999
By further differentiating, one then obtains
e ~
Iy
w1
o #I,
Iy _ ] Gz 0
3 B, 3 oy 3T
(02) azazxjazy =387 = azaz(xfazy)
PI, 332wy — 031
L azxazjazZ - (E) e = az(xaz:azz)’
(4.48)
>T N 31
2 —gik=_ "3 (4.49)
9q;9q;9q; 999994

Starting from the fourth order of differentiation, all deriva-
tives vanish. This is no surprise, because 7 3 is a homoge-
neous functional polynomial of degree three in dressed
charges Z, and (equivalently) I3 is a homogeneous poly-
nomial of degree three in bare charges ¢;.

At this point, it is possible to classify the various small
charge orbits through G5-invariant conditions involving 7 3
and its nonvanishing functional derivatives with respect to
Z, or equivalently through Gs-invariant conditions involv-
ing 5 and its nonvanishing derivatives with respect to ¢;’s.

1. Small lightlike orbits

The small lightlike charge orbits are defined by the
constraints [recall Egs. (4.38) and (4.39)]
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. 3\2 3\3/2 ,
I; =027 - (5) 77,7 — (5) T, 2*2>Z* =0,

. VAR VAVAR (S
015

773 4 9« 4 and/or
0Z
77> + \/gT’CyZZy 7% # 0 (at least for some x),
(4.50)
or equivalently,
I, =0 d%qq,q, =0,
4.51)

01,
dq;

The sets of constraints (4.50) and (4.51) are both Gj
invariant, but their manifest invariance is different.
Indeed, the dressed charge basis Z is covariant with respect
to Hs, and thus the set of constraints (4.50) exhibits a
manifest Hs invariance. Instead, the bare charge basis
{g,} is G5 covariant, and thus the set of constraints (4.50)
is manifestly G5 invariant.

# 0 < d'*q,q, # 0 (at least for some i).

PHYSICAL REVIEW D 82, 085010 (2010)

In the dressed charge basis, it is immediate to realize that
two classes of small lightlike charge orbits exist.
(i) A small lightlike charge orbit for which the con-
straints (4.50) are solved with Z = 0:

Tilyeo=0&T,.2°2°2* =0,
K Z.7°#0
a1,
§|Z:0 # 0« { and/or

T*,.2°Z* # 0 (at least for some x).

(4.52)

Notice that the constraint Z,Z* # 0 is automatically
satisfied, because (1) g, is assumed to be strictly
positive definite, and (2) Z, # 0 at least for some x
(otherwise, since Z = 0, one would obtain the trivial
limit in which all charges vanish).

(i1) A small lightlike charge orbit for which the con-
straints (4.50) are solved with Z # 0 [also recall
Egs. (4.40), (4.41), and (4.42)]:

. . (32 NANE .
Ilz20 =02 - 2 Z2,2" — 3 (A AVARV)

VAR VAVAR K\

o7,

743 and/or
0Z | 720

#0&

2. Small critical orbit

The small critical charge orbit is defined by the con-
straints [recall Egs. (4.38) and (4.39)]

N 3\2 3\3/2 ,
=02 - (E) 772.7* — (5) T2 20 7¢ = 0,

3 VAR VAR
07 4
—Z3 =0 { - , (4.54)
9 zz* + i, 2z =0
or equivalently,
I;=0¢< dijk%?ﬂk =05
a1 . (4.55)
3 0o d’fkqjqk =0.
qi

As noticed above for the sets of constraints (4.50) and
(4.51), the sets of constraints (4.54) and (4.55) are both
G5 invariant: while (4.54) is manifestly invariant only
under Hs = MCS(Gs), (4.55) is actually manifestly Gs
invariant.

Once again, in the dressed charge basis it is immediate to
realize that only one class of small critical charge orbits
exists, namely, a small critical charge orbit for which the
constraints (4.54) are solved with Z # 0:

(4.53)

77> + \/%T"VVZZYZZ # 0 (at least for some x).

I
N 3\2 3\3/2 ,
I3|Z#:0 =0« Z3 - (5) ZZXZX - (5) T'xyZZXZ}ZZ

= (),
N ZZ _ QZ 75 =0
aT 14x ;
=3 = (4.56)
0Z | 240 zz* + it 27° = 0.

Notice that, for the same reason the constraint % lz=0 #
0 is automatically satisfied for the small lightlike charge
orbit whose representative in the dressed charge basis is
given by Eq. (4.52), a small critical charge orbit with a
representative having Z = 0 cannot exist. Indeed, such an
orbit should have Z = 0 and Z,Z* = (. Because of the
assumed strictly positive definiteness of g, this would be
possible only in the trivial limit of the theory in which all
charges do vanish. This can be formally stated as follows:

=0 Z=0.
Z=0

(4.57)

VI :N=2VSN =6

The rank-3 Euclidean Jordan algebra J%’” (g=4) is
related to two different theories, namely, an N = 2 theory
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coupled to 14 Abelian vector multiplets and the N = 6
“pure” theory. These two theories share the same bosonic
sector [15,19,53], but their fermionic sectors, exploiting
the supersymmetric completion of the bosonic one, are
different.

Thus, it also follows that the supersymmetry-preserving
features of the large and small charge orbits of the relevant
irrepr. 15 of G5 = SU(6) are different. The N -dependent
supersymmetry properties of the various orbits are given in
Table V (notice they are consistent with the results of [54]).
In the large (attractor) cases, these match the results of
[20].

VI. N = 2,d = 5 JORDAN SYMMETRIC
SEQUENCE

The Jordan symmetric sequence of N =2, d =5 su-
pergravity coupled to ny, = n + 1 vector multiplets reads
(dimg = n + 1, rank = 2, n € NU{0})

SO(1, n)
SO(n) -~

This sequence is associated with the rank-3 Euclidean
reducible Jordan algebra R @ I' ,. In the following treat-
ment, we will determine the large and small orbits of the
irrepr. (1,1 +mn) of the U-duality group SO(I, 1) X
SO(1, n).

For the sake of brevity, we will do this only through an
analysis in the bare charges’ basis.

Without any loss of generality, one can choose to treat
only d =5 extremal (electric) BHs. Indeed, due to the
symmetricity of the reducible coset (6.1), the treatment
of d =5 extremal (magnetic) black strings is essentially
analogous.

Two disconnected geometric structures emerge in the
treatment, as follows.

(1) Timelike two-sheet hyperboloid 7,, with the two

disconnected sheets T, respectively, related to gy =

MNZZ,d:S,Jordan,symm = SO(L 1) X (6.1)

0:
T = SO(1, n) TS T,
" SO(n) lg=0 >0 ¢o<0 '
T, NnT, =@. (6.2)
(ii) Forward/backward light-cone A, of (n+

1)-dimensional Minkowski space with metric 7;;

defined by (6.5), with two (forward A, and back-

ward A, ) cone branches, respectively, related to

q0 = 0O:

A, EM=A;UA;;AZHA; =0,
SO(n — 1)xR*!

(6.3)

with “0” here denoting the origin of A, itself.
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Because of such structures, as well as the lower (N =
2) supersymmetry, the case study of large and small charge
orbits in N = 2, d = 5 Jordan symmetric sequence ex-
hibits some subtleties absent in the N = 4, d = 5 theory
analyzed in Sec. VIL.

In the bare charges’ basis, the electric cubic invariant of
the (1, 1 + n) of SO(1, 1) X SO(1, n) reads as follows (I =
0, i, wherei = 1, ..., n, throughout; O pertains to the d = 5
graviphoton field, which through the dimensional reduc-
tion d = 5 — d = 4 becomes the Maxwell vector field of
the axio-dilatonic vector multiplet):

n

T30 =quqi9sm"” = qnq; = qH<q% -y q?), (6.4)

i=1

where gy is the electric charge of the dilatonic vector
multiplet: it is an SO(1, n) singlet, with SO(1, 1) weight
+2. On the other hand, the SO(1, n) vector g, has SO(1, 1)
weight —1, such that 5, defined by (6.4) is SO(1, 1) X
SO(1, n) invariant. Notice that the action of the U-duality
group does not mix gy and ¢g;, and this originates more
charge orbits with respect to the irreducible cases.
Moreover, 1;; = '/ is the Lorentzian metric of SO(1, n):

n

1 . ——
Ny ="M Edmg(-l—l,—l,...,—l). (6.5)

In N =2, d = 5 Jordan symmetric sequence, as well
as in N =4, d = 5 theory, the reducibility of the asso-
ciated rank-3 Jordan algebra gives rise to many subtleties
and differences with respect to the theories associated with
irreducible Euclidean rank-3 Jordan algebras. In the N =
2 case under consideration, the major difference consists in
a higher number of large and small orbits with respect to
the magic supergravities.

A. Large orbits
(i) BPS (3-charge) orbits are defined as follows:

gy >0, q%—Zq%>0,
i=1

qo>0, or gqy<0, q%—Zq%>0,
i=1

40 < 0. (6.6)

By recalling definition (6.2), the orbit reads (n = 0)
@BPS,large = [SO(I’ 1)+ X Trjr] U [SO(I’ 1)7 X T;l
(6.7)

with no related moduli space. In particular, for n =
0, namely, in the so-called N =2,d =5 SO(1, 1)
model (d =5 uplift of the d = 4 s> model), in
which only the dilatonic vector multiplet is coupled
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to the gravity multiplet, this orbit is actually 2-
charge, and it is given by

O gps taree s001,1) = {(qm> q0) = (+, +), (=, =)}
(6.8)

On the other hand, for n = 1, i.e. in the so-called
N =2,d=5[S0(1,1)]? model (d =5 uplift of
the stu model), the cubic invariant (6.4) can be
rewritten as follows:

Iy = quaiasm™ = au(ad — 41 = qnq+q-,
9+ =q0 * q1,

and thus the hyperboloid (6.2) and light-cone (6.3)

structures get, respectively, factorized as follows

(“+,” “=,” and “0,” respectively, denote strictly
positive, strictly negative, and vanishing values):

(6.9)

T, = SO(1, 1)

q+q9-=>0
+ —
- g h T NT; = @,
90 =>0 g9 <0 (6.10)
TF ={(g+, q-) = (+ )}
Ty ={(g+ q-) = (= )k
A =50(1,1)= AT UAT;ATNAT =0,
AT ={(g4,q-) =(=,0),(0, )}
For n = 1, orbit (6.7) reads
@BPS,3-charge,[SO(l,1)]2 = {(qH’ q+s qf)
= (J’_’ +’ +)’ (_’ _’ _)}’
(6.12)

This is invariant under triality permutation symmetry
of gy, g+, and g_, and it is consistent with the
analysis of [34].

(i1)) Non-BPS (3-charge) orbits, with Z # 0 at the hori-
zon, are defined as follows:

an>0, @~ q>0,
i=1

go <0, or gqy<0, q%—Zq%>0,
i=

q0 > 0. (6.13)
By recalling definition (6.2), the orbit reads (n = 0)

O,8ps,large1 = [SO(1, 1) X T,]
ul[So(1,1)- X T}] (6.14)

with no related moduli space. In particular, for n =

PHYSICAL REVIEW D 82, 085010 (2010)

0, this orbit is actually 2-charge, and it is given by

O ,8ps taree, s0(1,1) = 1(qm> q0) = (+, =), (=, +)}.
(6.15)

On the other hand, for n = 1, orbit (6.14) reads

@nBPs,large,L[so(l,l)]Z = {(QH’ q+, q,)
= (+’ _? _)«' (_? +) +)}'
(6.16)

The supersymmetry properties of Opgpsjaee  and
O,ps 1aree,1 can be understood by noticing that the flip of
the sign of ¢ amounts, in the dressed charges’ basis, to the
exchange Z < d,Z, where s is the real dilaton scalar field,
parametrizing SO(1, 1) of (6.1).

It is worth pointing out that both the N =2
orbits Oppg jaree and O,pps 1arge,1 [reSpectively given by
(6.7) and (6.14)] uplift to the same N =4 orbit
O(1 /4)-BpS laree, N'=4,4=5 given by Eq. (7.4). As mentioned,
this is due to the fact that in N =4, d =35, gy >0 <
gy < 0 amounts to exchanging the two gravitinos in the
gravity multiplet, i.e. the two (opposite) skew eigenvalues

of the skew-traceless central charge matrix Z,p (A, B =
L...,4).

Another non-BPS (3-charge) orbit, with Z # 0 at the
horizon, is defined as follows [19]:

gy = 0; a3 — Y ;<0 (6.17)
i=1

Thus, the resulting orbit reads (existing only for n = 1)

SO(1, n)

@nBPS,large,Il = SO(L 1) X

with related moduli space [recall (3.44) and (3.45)]

so(l,n—1) M;s,—, _

= M,0),d=6ln—-1,

MnBPS,large,H = nd,5,n—1

(6.19)

where M,; s, denotes the N =2, d = 5 non-Jordan
symmetric sequence with n — 1 vector multiplets [45], and
M(1,0).4—6ln—1 is the scalar manifold of (1, 0), d = 6 super-
gravity with ny = n — 1 tensor multiplets. Thus, by recall-
ing (6.1), the number # of nonflat scalar degrees of freedom
along O,pps jaree, 1 1S independent of n > 1:

ﬂnBPS,large,II = dlmRMN:Z,d:S,Jordan,symm

- dimRmnBPS,large,ll =2 (620)

For n = 1, orbit (6.18) reads
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(9nBPS,large,H,[SO(l,l)]z = {(qH’ Q‘F’ Q—) = (+’ +’ _)’ (+) ) +)’ (_’ +r _)r (_r ) +)}!

with no corresponding moduli space. Equation (6.21) is
equivalent to (6.16) through triality permutation symmetry
of gy, g+, and g_. Thus, consistent with the analysis of
[34], the non-BPS large orbit of the [SO(1, 1)]* model is
given, up to permutations of the triplet (g, g+, g_), by

(9nBPs,3—charge,[so(1,1)]2 = {(QH’ qerq-)

=(++ =) (+ — )} (622

B. Small orbits

Let us now consider the small orbits, and compute the
criticality and double-criticality conditions on 15 ,; defined
by (6.4):

0l;, 2
9715, _ a;HI 1 623)
GQ 913,21 — zq 1] .
aq; HGIN
0I5
8213 . (gqjﬂ)2 Oa]
L = Sl — 973l — 1J
aQZ 38(1;1641 aq;90qy 2('I.177 (624)
el —
aq;9q, ZQH!
where
0 = (qu, q1) (6.25)

is shorthand for the vector of electric charges. As expected
from the fact that I3, is homogeneous of degree three,
(6.24) implies that the unique doubly critical orbit is the
trivial one with all charges vanishing, because

I3
00?
The small orbits of the (1,1 + n) of the U-duality group
SO(1, 1) X SO(1, n) are listed as follows:
(1) BPS lightlike (I3,, =0 EEVIRETY) 2-charge) orbit

Y]
with vanishing ¢y and timelike ¢;:

=00=0. (6.26)

qgn =0, a3 — D >0 (6.27)
i=1

By recalling definition (6.2), the orbit reads (n = 0)
(QBPS,small,I = SO(L 1) X Tn; (628)

with no corresponding moduli space. In particular,
for n = 0 this orbit is actually 1-charge, and it is
given by

O gps smaiLs01,1) = 1(qu g90) = (0, +), (0, =)}
(6.29)
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6.21)

2

3)

On the other hand, for n = 1, the orbit (6.28) reads

@BPS,small,I,[SO(l,l)P = {(QH, q+; 6]—)
= (0) +! +)) (O) _) _)})
(6.30)

with no corresponding moduli space, and thus

# BPS small 1[50, 1) = 2- (6.31)

Non-BPS lightlike (I5,, = 0, a(.:;ng, # 0: 2-charge)

orbit with vanishing gy and spacelike ¢;:

qu =0, a3 — Y q? <0. (6.32)
i=1
It reads (existing only for n = 1)
SO(1, n)
0 =50(1,1) X —————, (6.33
nBPS,small,I ( ) SO(L n— 1) ( )

with corresponding moduli space [recall Eq. (6.19)]

M pssmant = Mupps targe, 11+ (6.34)

Thus, by recalling (6.1), the number # of nonflat
scalar degrees of freedom along O,gps sman 1S in-
dependent of n = 1:

ﬂnBPS,smalLI = dlmRMN:Z,d:S,Jordan,symm

— dimg M,,5ps smai,1 = 2. (6.35)

For n = 1, orbit (6.33) reads

o nBPS,smallL[SO(1,1)]? g g4, 9-)
= (O! +’ _)r (0: ) +)}:
(6.36)

with no corresponding moduli space.

BPS critical (I3, =0, aj’é“’ = 0: 1-charge) orbit

with vanishing gy and lightlike ¢;:

au =0 @G- =0 (6.37)
i=1

By recalling definition (6.3), the orbit reads (existing
only forn = 1)

@BPS,small,ll = Aw (638)

and the corresponding moduli space is (n = 1)
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M gps smanr = SO(1, 1) X R*~1, (6.39) Analogously to what holds for symmetric magic
S RSG [noted below Eq. (4.33)], the unique scalar
Thus, by recalling (6.1), the number # of nonflat degree of freedom on which the ADM mass depends
scalar degrees of freedom along Ogps sman 1 is inde- can be interpreted as the Kaluza-Klein radius in the
pendent of n = 1: d =6 — d =5 reduction. For n = 1, orbit (6.38)
. d
ﬁBPS,small,II = dlmRMN:Z,dZS,Jordan,symm reads
— dimg Mgps smann = 1. (6.40)
|
@BPS,small,II,[SO(l,l)]z = {(CIH’ q+, C]—) = (0) 0: +): (Or +: O), (O’ O’ _)’ (O: > O)} (641)
(4) BPS lightlike (I3, = 0, "’jg' # 0: 2-charge) orbit, anq the corresponding moduli space is purely trans-
defined as follows: lational (n = 2):
n
qu >0, a—> 9l =0 M gps smanm = R = Mpps gman- (6:44)
i=1
n
go>0, or gy<o0, 7 - Z g2 =0, Thus, by recalling (6.1), the number # of nonflat
i= scalar degrees of freedom along Ogps gyap,m 18 in-
40 < 0. dependent of n = 2:
(6.42)

ﬂBPS,small,III = dlmRMﬁ\f:Zd:S,Jordan,symm
— dimg Mpps smainm = 2- (6.45)

By recalling definition (6.3), the orbit reads (n = 2)
Ogps sman,mn = [SO(1, )" X AJ]

ulso(, 1)~ X A, ], (6.43)

|

This orbit exists also for n = 1, and it reads

O gps smanmsoanp = @m g+, q-) = (+,0,+), (+, +,0), (=, 0, -), (=, —, 0)}, (6.46)
[
with no corresponding moduli space. Equation By recalling definition (6.3), the orbit reads (n = 2)
(6.46) is equivalent to (6.30) through triality permu-
tation symmetry of ¢y, g+, and g_. Thus, the BPS 2- O,5ps.smannt = SO, T X A, ]

charge orbit of the [SO(1, 1)]*> model is given, up to

- +
permutations of the triplet (qy, g+, g—), by U[SO(L, D)™ X AJL  (6.49)

O gps 2-chargeso0,np = @ 4+ 4-) with corresponding moduli space (n = 2)
= (+7 +, 0); (_, ) O)}. »
(6.47) MnBPS,small,H =R = MBPS,small,II
= Magps small, - (6.50)

5) Non-BPS lightlike (I3, = 0, 222 + 0: 2-charge
) ightlike (L3, e ge) Thus, by recalling (6.1), the number # of nonflat

scalar degrees of freedom along O,ps sman1r 1 in-
dependent of n = 2:

orbit, defined as follows:

qH<0; q%_quz: s

n ﬂnBPS,small,H = dimRMN:Zd:S,Jordan,symm

4 >0, or gz>0, qi— > ql=0 — dimg M,gps ot = 2. (6.51)
i=1

g0 < 0. (6.48) This orbit exists also for n = 1, and it reads
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(6)

(9nBPS,small,II,[SO(l,l)]Z = {(qH’ q+’ Q—) = (+1 O’ _)’ (+’ ) O)r (_r Or +)r (_r +’ O)}’

with no corresponding moduli space. Equa-
tion (6.52) is equivalent to (6.36) through triality
permutation symmetry of gy, ¢, and g_. Thus,
the non-BPS 2-charge orbit of the [SO(1, 1)]> model
is given, up to permutations of the triplet

(qm> g+, 9-), by

@nBPS,2-charge,[SO(1,l)]2 = {(QH’ q9+,q-)

=(+, —,0)} (6.53)
BPS critical (I3, =0, a;g’ = 0: l-charge) orbit

with vanishing ¢; and nonvanishing gy:
g € Ry, q;=0. (6.54)

It exists for every n = 0, and it reads

O gps sman,iv = SO(1, 1), (6.55)

with moduli space [n = 1; recall (3.45)]

SO(1, n)

M ps smai v = S0y Musw (6.56)

Thus, by recalling (6.1), the number # of nonflat
scalar degrees of freedom along Ogps sman v i8 in-
dependent of n = 1:

ﬂBPS,small,IV = dlmRMN:Z,d:S,Jordan,symm

— Mpps smaniv = 1. (6.57)

Analogously to what holds for symmetric magic
RSG [noted below Eq. (4.33)], the unique scalar
degree of freedom on which the ADM mass depends
can be interpreted as the Kaluza-Klein radius in the
d = 6 — d = 5 reduction. Furthermore, as in the
corresponding N =4, d =5 small orbit [given
by Eq. (7.34)], the sign of gy does not matter here.
Orbit (6.55) originates from the d =6 —d =5
reduction of (1, 0) theory with all charges switched
off. Indeed, gy is the electric charge of the Kaluza-
Klein vector in the reduction d =6 —d = 5. In
particular, for n = 0, this orbit reads

O gps sman1v.so.1) = 1w q0) = (+,0), (=, 0)},
(6.58)

with no corresponding moduli space. On the other
|

[SO(L 1)]2: @BPS,I-charge - (OBPS,Z-charge - { O

PHYSICAL REVIEW D 82, 085010 (2010)

(6.52)

|
hand, for n = 1 the orbit (6.55) reads

(QBPS,small,IV,[SO(l,l)]z ={(qm 9+, 9-)
= (+1 01 0)! (_y O) 0)}) (6'59)

which is equivalent to (6.41) through triality permu-
tation symmetry of gy, ¢, and g_. Thus, the BPS
1-charge orbit of the [SO(1, 1)]?> model is given, up
to permutations of the triplet (¢y, ¢+, g_), by

@Bps,l—charge,[so(1,1)]2 = {(QH, q+ 61—)
=(+,0,0), (-, 0,0)}
(6.60)

Thus, the stratification structure of the (1,1 + n)-repr.
space of the d = 5 U-duality group SO(1, 1) X SO(1, n)
can be given through the following two chains of relations,
proceeding (left to right) from 1-charge orbits to 2-charge
orbits to 3-charge orbits:

O
BPS, large
( Ogps smai1 — { 0
nBPS, large, I

@nBPs,smau,I - @nBPs,large,H
@BPS,la.rge
nBPS, large, I

@] i
BPS,small,IT
@BPS, small, ITT

(@)
nBPS large, I
L O,1ps smai it — { .
nBPS, large,II»

(6.61)
O
BPS, large
@Bps,smau,m - { BPS larec 11
n ,1arge,
0 BPS,small,IV o)
@ N nBPS, large,I
nBPS,small, I
nBPS, large,II+
(6.62)

For the SO(1, 1) model (n = 0), such a stratification struc-
ture simplifies as follows:

1-charge 2-charge
SO(l, 1) OBPS,small,I - @BPS,large (663)
OBPS,small,IV @nBPS,large'

On the other hand, for the [SO(1, 1)]* model (n = 1), the
stratification structure (6.61) and (6.62) reads

@BPS, 3-charge
nBPS,3-charge

(6.64)

@nBPS, 2-charge @nBPS,S—Charge'
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Thus, summarizing, the N = 2, d = 5 Jordan symmet-
ric sequence admits six small charge orbits describing the
flux configurations supporting static, spherically symmet-
ric, asymptotically flat small BHs: four 1-BPS and two
non-BPS. Furthermore, there are three large orbits, namely,
one %—BPS and two non-BPS (with Z # 0 at the horizon).

VII. N = 4, d = 5 SUPERGRAVITY

The scalar manifold of N =4, d =5 supergravity
coupled to ny = n € NU{0} matter (vector) multiplets
reads [dimp = 1 + 5n, rank = 1 + min(5, n)]

SO(5, n)

Mar—yges = SO(1, 1) X — 22
N=ha=5 (LD SO(5) X SO(n)

(7.1)
This theory is associated with the rank-3 Euclidean reduc-
ible Jordan algebra R @ I's ,,. In the following treatment,
we will determine the large and small orbits of the irrepr.
(1,5 + n) of the U-duality group SO(1, 1) X SO(5, n).

For the sake of brevity, we will do this only through an
analysis in the bare charges’ basis.

Without any loss of generality, one can choose to treat
only d =5 extremal (electric) BHs. Indeed, due to the
symmetricity of the reducible coset (7.1), the treatment
of d = 5 extremal (magnetic) black strings is essentially
analogous.

In the bare charges’ basis, the electric cubic invariant of
the (1, 5+ n) of SO(1, 1) X SO(5, n) reads as follows (I =
1,...,5 + n throughout; the indices 1, ..., 5, with positive
signature, pertain to the five N = 4, d = 5 graviphotons):

I3 =quq19,m" = quq?. (7.2)

where gy is the electric charge of the 3-form field strength
of the 2-form B,,, (u, v =0, 1,...,4) in the gravity mul-
tiplet (see e.g. [55,56]). gy is an SO(5, n) singlet, with
SO(1, 1) weight +2. On the other hand, the SO(5, n) vector
gr has SO(1, 1) weight —1, such that I ,; defined by (7.2)
is SO(1, 1) X §O(5, n) invariant. Notice that the action of
the U-duality group does not mix ¢y and ¢;, and this
originates more charge orbits with respect to the irreduc-
ible cases. Moreover, 1,;, = 5’/ is the pseudo-Euclidean
5 n

——
metric of SO(5, n), with signature (+, ..., +,~, ..., ).

A. Large orbits

@) }L—BPS (3-charge) orbit, defined by a timelike ¢,
vector, with gy of any sign:

qn € Ry, q19;m" > 0. (7.3)
The resulting form of the orbit reads [20] (n = 0)
SO(5, n)

(9(1/4)'BPS,1arge = S50(1,1) X (7.4)

S04, n)’

with related moduli space

085010-21
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» __ S0G4n) _ Muya=e
(1/4)-BPS,large SO(4) X SO(n) SO(1,1)°
(7.5)

where M(; 1) 4—¢ is the scalar manifold of nonchiral
half-maximal supergravity in d = 6 with n matter
(vector) multiplets. The exchange between gy >0
and gy < 0 amounts to exchanging the two graviti-
nos in the gravity multiplet, i.e. the two (opposite)
skew eigenvalues of the skew-traceless central

charge matrix Z,3 (A, B =1, ..., 4). Thus, the num-
ber # of nonflat scalar degrees of freedom along
O(1/2)-BPS large 18 (for n = 1)

# (1/4)-BpS large = dimpM 74 45
— dimg My /4)-Bps Jaree
=n+ 1 (7.6)

In N > 2-extended supergravity theories, in gen-
eral, %-BPS attractors have a related moduli space
[23]. It corresponds to the hypermultiplets’ scalar
manifold in the supersymmetry reduction N > 2 —
N =2 of the theory under consideration. In this
case, it is amusing to observe that M 4)-gps jaree
given by (7.5) is the ¢ map of the vector multiplets’
scalar manifold of the N" = 2, d = 4 Jordan sym-
metric sequence:

SU(1, 1)
0
SO2,n—2)
SOQ) X SO0 — 2))' 7.7)

Thus, M /4)-gps laree @dmits an interpretation either
as (1) a scalar manifold of the N' = 4, d = 3 Jordan
symmetric sequence in d = 3, or as (2) the hyper-
multiplets’ scalar manifold of the Jordan symmetric
sequence in d =4, 5 (N =2) and 6 [(1, 0)]. In
particular, My 4)-pps jaree Parametrizes the N =2
hyperscalar degrees of freedom in the supersymme-
try/Jordan algebra reduction:

 N=4 _ N=2
"ReTls,  Rel,,

M (1/4)-BPS,large — C(

d=75 (7.8)

The pure theory (i.e. n = 0) limit of orbit (7.4) is
actually 2-charge [indeed, SO(5) symmetry can be
used to make only one component of the Euclidean
vector ¢; nonvanishing], and it reads

SO(5)
SO(4)
= SO(1, 1) X 84, (7.9)

@(1/4)-BPS,large,n:0 =S0(1,1) X

with no corresponding moduli space, and thus trivi-
ally
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# (1/4)-BPS large.n=0 = 1. (7.10)

(i1)) Non-BPS (3-charge) orbit with iAB =0 (at the

horizon), defined by a spacelike g; vector, and gy
of any sign:

9 € R, q;9;m" <O0. (7.11)

Notice that both signs of g are allowed, due to the

fact that the non-BPS Z,p = 0 attractor equations
are quadratic in gy (see e.g. [20]). The resulting
orbit reads (n = 1, not existing in pure theory) [20]

PHYSICAL REVIEW D 82, 085010 (2010)
with corresponding moduli space [recall Eq. (7.5)]

M (1/2)-BPS,small,I — M(1/4)-BPS,large' (717)

Thus, the number # of nonflat scalar degrees of
freedom along O 2)-pps sman,1 is (for n = 1)
# (1/2)-ps sman1 = AimpM ar—y 45
- dimRm(l /2)-BPS, small,I

=n+ 1 (7.18)

The pure theory (i.e. n = 0) limit of orbit (7.16) is
actually 1-charge, and it reads

SO(5, O (1/2)-BpSs smalln—o = SO(1,1) X §%, 7.19
O sps g = SO(L, 1) X - 5( i)l C(1.12) (1/2)-BPS, small,[,1=0 (1,1) (7.19)
(5.n ) with no related moduli space, and thus
with related moduli space
p # (1/2)-BPS smallLn=0 = L. (7.20)
M _ S0(,n—1)
nBPS,large —

SO(5) X S -1

0(5) X 50(n = 1) (2) Lightlike (I3, = 0, 24! # 0: 2-charge) orbit with
= Me,0)a=6ln-1, (7.13) vanishing gy and spacelike g;:

where M 50) 4—6l,—1 is the scalar manifold of (2, 0),
d = 6 supergravity with ny = n — 1 tensor multip-
lets. Note that N =4, d=5 and (2, 0), d=6
supergravities share the same R symmetry

g =0 ¢ <O0. (7.21)

This orbit is non-BPS. It reads (n = 1, not existing
in pure theory)

SO(5) ~ USp(4). Thus, the number # of nonflat SO(5, n)
scalar degrees of freedom along O, gps jaree s inde- O ,8ps sman = SO(1, 1) X m, (7.22)
pendent of n = 2: '
with corresponding moduli space [recall Eq. (7.13)]
ﬁnBPS,large = dimRMN:4,d:5 - dimRmnBPS,large
M gps,smat = MuBps targe- (7.23)

=6 (7.14)

Thus, the number # of nonflat scalar degrees of
freedom along O, gps sman is independent of n = 1:

ﬁnBPs,smau = dimgM pr—y g=5 — dimp MnBPS,small
=6 (7.24)

B. Small orbits

The conditions on 5 ,; defined by (7.2) are formally the
same as the ones holding in N = 2, d = 5 Jordan sym-
metric sequence, and given by Egs. (6.23) and (6.24). Thus,
analogously to the case of N = 2, d = 5 Jordan symmet- 3
ric sequence, and as expected from the fact that I, is
homogeneous of degree three, (6.24) implies that
the unique doubly critical orbit is the trivial one with
all charges vanishing [namely, O-charge orbit; recall
Eq. (6.26)].

The small orbits of the (1, 5 + n) of the U-duality group
SO(1, 1) X SO(5, n) can be listed as follows:

(1) Lightlike (I5,, = 0, aj&"" # 0: 2-charge) orbit with
vanishing gy and timelike ¢;:

Critical (I3, =0, a?g‘” = 0: 1-charge) orbit with

vanishing gz and lightlike ¢;:
gy = 0; (7.25)

This orbit is %—BPS [14]. It reads (n = 1, not exist-
ing in pure theory)

q; = 0.

SO(5, n)
SO(4, n — 1)xR*"~ 1"

) (1/2)-BPS,small,ll — (7.26)

with corresponding moduli space [recall Eq. (7.17)]

qn =0, g7 > 0. (7.15) M (1/2)-BPS, small 1t
This orbit is 1-BPS [14]. It reads (n = 0) = SO(1, 1) X M1 /2)-pps,smalt1ln—n—1XR*"
=S0(1,1) X M 4- | xR
SO(5, n) , (1/4)-BPS,large ln—n—1
O (1/2)-Bps,sman; = SO(1, 1) X (7.16)

S04, n)’ (7.27)
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“

Thus, the number # of nonflat scalar degrees of
freedom along O /5)-gps smani is independent of
n=1:

#(1/2)-Bps,smann = dimgM n—y 4—s5
— dimg My /2)-gps smann = 1.
(7.28)

Analogously to what holds for symmetric magic
RSG [noted below Eq. (4.33)] and for N =2, d =
5 Jordan symmetric sequence treated in Sec. VI, the
unique scalar degree of freedom on which the ADM
mass depends can be interpreted as the Kaluza-
Klein radius in the d = 6 — d = 5 reduction.

Lightlike (I5,, = 0, agg, # 0: 2-charge) orbit with

nonvanishing gy and lightlike ¢;:

an € Ro: q; = 0. (7.29)
This orbit is i—BPS. Itreads (n = 1)
O (1/4)-8pssman = SO(1, 1)
SOG.m) (7.30)

SO(4,n — 1)xR"~1’
with corresponding moduli space [recall Eq. (7.27)]

M (1/4)-BPS,small — M(I/Z)‘BPS,small,I|n—>n—1>4R4'n_1
- M(1/4)-BPS,large|n—>n_1)<]R4‘n_1_
(731)

Thus, the number # of nonflat scalar degrees of
freedom along Oy /2)-gps smann 1S independent of
n=1:

ﬁ(1 /4)-BPS,small — dimpM pr—4 45
- dimRM(l /4)-BPS,small — 2.
(7.32)
Critical (I3, =0, aéuQ, = (: 1-charge) orbit with
vanishing ¢; and nonvanishing ¢qg:

This orbit is %—BPS [14]. It reads (independent of
n=0)

O (12)-Bps,sman,m = SO(1, 1), (7.34)
with moduli space
SO(5, n)
M. (1/2)-8PS smail i = (7.35)

SO(5) X SO(n)”

Thus, the number # of nonflat scalar degrees of
freedom along Oy 2)-ps sman,m is independent of
n=0:

PHYSICAL REVIEW D 82, 085010 (2010)

ﬁ(1/2)'BPS,Small,III = dimRM N—dd=s5
= M1 /2)-Bps,smanmm = 1. (7.36)

Notice that O /5)-gps sman,mr can also be seen as the
“n =0 formal limit” of Oy 4)-ppssman given by
Eq. (7.30). Indeed, the n = 0 limit of (7.29) is given
by (7.33) itself. Furthermore, analogously to
what holds for symmetric magic RSG [noted below
Eq. (4.33)] and for N = 2, d = 5 Jordan symmetric
sequence treated in Sec. VI, the unique scalar degree
of freedom on which the ADM mass depends can be
interpreted as the Kaluza-Klein radius in the d =
6 — d = 5 reduction. Orbit (7.34) is originated by
the d = 6 — d = 5 reduction of (2, 0) theory with
all charges switched off. Indeed, gy is the electric
charge of the Kaluza-Klein vector in the reduction
d = 6 — d = 5. Notice that in the pure theory (i.e.
n = O) m(l/Z)—BPS,small,III VaniSheS, and thus

# (1/2)-BPS small,mn=0 = 1. (7.37)

Thus, the stratification structure of the (1,5 + n)-repr.
space of the d = 5 U-duality group SO(1, 1) X SO(5, n)
can be given through the two chains of relations, proceed-
ing (left to right) from 1-charge orbits to 2-charge and then
3-charge orbits:

(9(]/2)—BPS,small,I - (9(]/4)—BPS,1arge
nBPS,small — @nBPs,large

O(l/4)-BPS,1arge
nBPS,large;

(7.38)

0 (1/2)-BPS,small,lI —
(9(1 /4)-BPS,small {

@( 1/4)-BPS, large
nBPS, large*
(7.39)

(9(1 /2)-BPS,small, Il — (9(1 /4)-BPS,small — {

For pure N = 4, d = 5 supergravity, such a stratification
structure simplifies as follows:

I-charge 2-charge

(9(1 /2)-BPS,small,L,n=0 (7.40)

(9(1/2)—BPS,smau,lu @(1/4)-Bps’large'":0'

Thus, summarizing, N = 4, d = 5 supergravity theory
admits five small charge orbits describing the flux configu-
rations supporting static, spherically symmetric, asymp-
totically flat small BHs: one }-BPS, three 1-BPS, and
one non-BPS. There are two large orbits, namely, one

1-BPS and one non-BPS (with Z, = 0 at the horizon).

The relations among the charge orbits of N =4,d =5
supergravity and the charge orbits of N =2, d =75
Jordan symmetric sequence can be determined through
the supersymmetry reduction
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TABLE VI. Large (rank = 3) and small (rank = 1 and 2) charge orbits of the repr. (1,5 + n)
and (1,1 + n) of the d = 5 U-duality groups SO(1, 1) X SO(5, n) and SO(1, 1) X SO(1, n) of
N = 4 supergravity (based on R ® I's,,)) and N' = 2 Jordan symmetric sequence (based on
ReT',), respectively. The rank r of the orbit is defined as the minimal number of charges
defining a representative solution. < *”* denotes the fact that the orbits are related through a flip
of the sign of gy. The disconnected timelike hyperboloid 7, and light-cone A, structures are
defined by (6.2) and (6.3), respectively. The symbol #, defined in (4.3), denotes the number of
nonflat scalar degrees of freedom supported by the charge orbit.

r N=4:R@F5’n N:2:R®F1‘n
3 (9(1/4)) -BPS, large @BPS,large
S0(1, 1) X gggg;; [SO(L, D* X T JU[SO(1, 1)~ X T ]
#=n+1 gf=n+1
1
@nBPS,Iarge,I [SO(I» 1)+ X T;] U[SO(L 1)7 X T;r]
t=n+1
3 (OnBPS large (onBPS,large,II
SO(1, 1) X 52001 SO(1, 1) X gooln
=6 #=2
2 @(1/2) -BPS,small,I @BPS,small,I
S0(5,n) 1,1) X T,
50;1, 1) X 301(4;) S?(_, n)+ L
=n-+ -
2 O(1/4)-BPs,small Ogps small
SO, 1) X 55305 [S00L, 17 X A;JUTS00, 17 X A7)
= o
@nBPS,small,H
[SO(1, Dt X A, JU[SO(1,1)~ X AS]
=2
2 @nBPS small @nBPS small,T
so(1, 1ﬁ)>< %ggi o so0(1, 11¢)>< Szgﬂ; 2
1 (9( 1/2)-BPS,small, I OBPS,small,ll
50(5,n) A
SO n— xR T "
h=1 #=1
1 O(1/2)-ps smati,m Ogps smai,1v
SO(1,1) SO, ) ¢=1
=1
N =4 N =2 metric sequence the results are reported in Table VI. As
d=>5: — , (7.41) . . . ) .
Rerls, Rel,, pointed out above, in the symmetric RSG’s under consid-

yielding the results summarized in Table VL.

Finally, it is worth summarizing the results obtained
about the number # of nonflat scalar degrees of freedom,
within the symmetric RSG studied in previous sections.
For the magic supergravities, it holds that

. BPS: ¢ =3¢ +2
large”(rank = 3): {ans:ﬁﬁ - Z +2

J5: L, [BPS: g =g+2
“small”: {rank =3 {nBPS: =2

rank = 3: BPS: # =1,
(7.42)

whereas for N = 4 supergravity and N' = 2 Jordan sym-

eration the unique scalar degree of freedom on which the
ADM mass depends along the 1-charge %-BPS (maximally
symmetric) charge orbits can be interpreted as the Kaluza-
Klein radius in the d = 6 — d = 5 reduction.
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APPENDIX A: RESOLUTION OF G5-INVARIANT
CONSTRAINTS

In this appendix, we explicitly solve the Gs-invariant
defining constraints of small charge orbits in magic sym-
metric RSG, both in the bare (Appendix A 1) and dressed
(Appendix A 2) charge bases.

1. Bare charge basis

Let us start by noticing that for each of the four magic
symmetric RSG’s a unique maximal symmetric embedding
into G5 exists containing a factor SO(1, 1). It reads [recall
Eq. (4.30)] [57]

Gs 2 Ge X A, X SO(1, 1), (A1)

max

where the group A, has been defined in Table II. Notice
that, in the cases ¢ = 4 and 2, G4 X SO(1, 1) is not em-
bedded maximally (also considering nonsymmetric em-
beddings [58]) into G5 itself.

When removing A, in the cases ¢ = 4 and 2 (and thus
losing the maximality), the embedding (Al) has a nice
interpretation in terms of truncation of the magic super-
gravity to theories belonging to the Jordan symmetric
sequence (3.44) [19]:

JP 2 ReJP: Eg_ye) 2 SO(1,1) X SO(1,9),

JIoRe i SUH6)250(1, 1) X SO(1, 5),
JS2R@JS: SL(3,C)250(1, 1) X SO(1, 3),
JF2ReJN: SLG,R) 2 SO(1,1) X SO(1, 2),

max max

(A2)

where it should be recalled that (¢ = 8, 4, 2, 1; see e.g.
[461)

I3 ~T i1 (A3)
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a. (Olightlike,BPS

In order to solve the small lightlike Gs-invariant defin-
ing constraints (4.51) in bare charges in a way consistent
with an orbit representative having Z # 0, let us further
embed the MCS of the group in the right-hand side of
Eq. (A1), thus obtaining

MCS
Gs 2 Go X A, X S0(1,1) 2 SO(g+1) X A,

max

(A4)

Thus, under the “branching” (A4) the irrepr. R, of Gs in
which the electric charges ¢g; sit decomposes as follows:

RQ - (17 1)+4 + (q + 27 1)72

+ (Spin(q + 2), Spin(Q,))+,
- @11, +(@+1,1)+ 11y

+ (Spin(q + 1), Spin(Q,)). (AS)
This in turn entails the branching
qi = (qa,1, 9.1, 9q+1.1) 4(Spin(g+1)Spin(0,))-  (A6)

In the first and second lines of (AS5) subscripts denote the
weight with respect to SO(1, 1), whereas in the third and
fourth lines they just discriminate between the two singlets
of SO(q + 1) X A,. Also recall that, as given in Table II,
A, and Q, are absent for ¢ = 8 and ¢ = 1.

Therefore, with respect to SO(¢ + 1) X A, one ob-
tains:

(i) two singlets [note that (1, 1); is a singlet of SO(g +

1,1) X A,, as welll;

(ii) one vector (q + 1, 1);

(iii) a (double) spinor (Spin(g + 1), Spin(Q,)).

The representation decomposition (A5) yields that d'/¥,
the rank-3 completely symmetric Gs-invariant tensor
[namely, the unique singlet in the tensor product (RQ)3],
decomposes in such a way that (1, 1);; and (q + 1, 1) have
the same couplings inside (Ry)*.

Details concerning the various magic symmetric RSG’s
are given further below.

The position which solves [with maximal-—compact—
symmetry SO(g +1) X A,] the small lightlike
Gs-invariant defining constraints (4.51) in bare charges
(and in a way consistent with an orbit representative having
Z # 0) reads as follows:

4dq+11) =0,
Q(l,l)” a O

=0,
q1,1), (A7)

4(Spin(g+1)Spin(o,) = O,

Since SO(q + 1) X A, is the unique group maximally
(and symmetrically) embedded into Gg X A, X SO(1, 1)
which has SO(q + 1) X A, as (in this case, improper)
MCS, it follows that SO(g + 1) X A, is also the maximal
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semisimple symmetry of Ojigpgike gps» Which is thus given
by Eq. (4.14).

The origin of the non-semi-simple Abelian (namely,
translational) factor RGPn(¢+1).spin(Q) in the stabilizer of
@light]ike,BPs will be explained through the procedure of
suitable  Inonii-Wigner contraction performed in
Appendix B 1.

b. @critical,BPS

Equation (A4) and subsequent ones are also relevant for
the resolution of the small critical Gs-invariant defining
constraints (4.55) in bare charges in a way consistent with
an orbit representative having Z # 0 (which is the unique
possible case; see treatment above). In this case, the posi-
tion which solves (with maximal-——noncompact—symme-
try Go X A,) the constraints (4.55) in bare charges reads
as follows:

dq+11) = 0,
q(l,l)l 7& O

=0,
q(lvl)ll (Ag)

4d(spin(g+1),spin(0,) = 0,

At least for the relevant values ¢ = 8, 4, 2, 1, it holds that

spin(g + 2) = spin(qg + 1) [recall definition (4.17)].
Therefore, since
d9a.0; =0 gg+1) =09 qq21) =0, (A9)

it follows that the position (A8) exhibits maximal-—non-
compact—symmetry Gg X A, which is then the maxi-
mal semisimple symmetry of O;;capps, Which is thus
given by Eq. (4.29).

The origin of ROPn(@*+2spin(Q) in the stabilizer of
OLisicaps Will be explained through the procedure of
suitable ~ SO(1,1) (three-)grading performed in
Appendix B 2.

C. (Dlightlike,nBPS
In order to solve the small lightlike G5-invariant defining
constraints (4.51) in bare charges in a way consistent with
an orbit representative having Z = 0, the embedding (A1)
has to be further elaborated as follows:

Gs 2 G X A, XS0(1,1) 2 SO(¢g, 1) X A,

max max

MCS
X SO(1,1) 2 S0(q) X A, (A10)

Thus, under the branching (A10) the irrepr. R, decom-
poses as follows:
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Ro—= @Dy +(q+21),

+ (Spin(g + 2), Spin(Q,))+,

- LDy +@+1LD),+(1 1),
+ (Spin(g + 1), Spin(Q,))+,

- L) +(q)+ QD+ @A Dy

+ (Spin’(¢), Spin(Q,)) + (Spin”(g), Spin(Q,)),
(A11)

where, besides the obvious irrepr. decompositions deter-
mining the last two lines of (A11), one should recall that

(Spin(g + 1), Spin(Q,)) — (Spin’(¢), Spin(Q,))

+ (Spin”(q), Spin(Q,)),
(A12)

where the primes discriminate between the two spinor
irreprs. of SO(g) X A,. The branching of electric charges
corresponding to (A11) reads

4i = (g1 4.1, 90,1, 9(q.1) 9(Spin'(g) Spin(Q,)

Q(Spin”(q),Spin(Qq)))- (A13)

In the first four lines of (A11) subscripts denote the weight
with respect to SO(1, 1), whereas in the fifth and sixth lines
they just discriminate between the three singlets of
S50(q) X A,.
Therefore, with respect to SO(q) X A, one obtains
(i) three singlets [notice that (1, 1); is also a singlet of
§0(q, 1) X A, and of G4 X A, and that (1, 1)y is
a singlet of SO(g, 1) X A, as well];
(ii) a vector (q, 1);
(iii) two (double) spinors (Spin’(g), Spin(Q,)) and
(Spin”(g), Spin(Q,)).

As a feature peculiar to (A11), the vector (q, 1) and the
two  (double) spinors  (Spin’(¢), Spin(Q,)) and
(Spin”(g), Spin(Q,)) do exhibit a “triality symmetry,”
realized differently depending on ¢ = 8, 4, 2, 1, as given
in Appendix A 1.

The representation decomposition (A11) yields that d'/*
decomposes in such a way that the manifest “triality”
exhibited by the branching of Ry is removed, and the
two (double) spinors are put on a different footing with
respect to the vector. As a consequence,

(i) (1, Dy, (L, Dy, and (q, 1);

(ii) (Spin’(g), Spin(Q,)) and (Spin”(g), Spin(Q,))

separately have the same couplings inside (R Q)3.

The position which solves [with maximal-—compact—
symmetry SO(q) X A,] the small lightlike Gs-invariant
defining constraints (4.51) in bare charges (and in a way
consistent with an orbit representative having Z = 0) reads
as follows:
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4qn =0, q(spin'(q)Spin(0,) = O

(A14)
4 (spin”(g),Spin(0,) = O;

with the three singlets g 1), 9(1,1),» and ¢(1,1), constrained
by

d 2

A0 DD D (1,1,

+2d(1,1)1(1,1)n(1,1)mq(l,l)nq(lvl)m =0.
+ d(l,l)l(l,l)m(l,l)m 41,1,

9,1y (A15)

Notice that in (A14) the charges related to the vector and to
the two (double) spinors are on equal footing, thus exhib-
iting a triality symmetry, as already mentioned above.

Notice that SO(g, 1) X A, is the unique group which is
maximally [if one considers also the factor SO(1, 1)] and
symmetrically embedded into G X A, X SO(1, 1), and
also which has SO(gq) X A, as MCS. Therefore, it follows
that SO(g, 1) X A, is also the maximal semisimple sym-
metry of Ojighgike, ngps, Which is thus given by Eq. (4.24).

As mentioned above, the origin of RGPIn(@+1.spin(Qy)) jp
the stabilizer of (Olighﬂike,ans will be explained through the
procedure of suitable Inonii-Wigner contraction performed
in Appendix B 1.

d. Details

We now give some details of the treatment of symmetric
magic RSG.

We start by giving the explicit form of Egs. (A4) and
(AS5) for all ¢ = 8, 4, 2, 1 classifying symmetric magic
RSG.

i) ¢ =8 (JD):

MCS
Eg—2) 2 SO(9,1) X SO(1,1) 2 S0(9),

27_’ 1+4 + 1072 + 16+] - 11 + 9 + IH + 16.
(A16)

(i) ¢ =4 (JF) [SO(5, 1) ~ SU*(4), SO(5) ~ USp(4)]:

SU*(6) 2 SO(5,1) X SO(3) X SO(1, 1)

MCS
> S0(5) X SO(3),
15 - (1! 1)+4 + (6! 1)—2 + (4’ 2)+l
- L1 +6 1D+ 11D+ 4,2). (A17)

(i) ¢ =2 (%) [SL(2,C)~SO0@3, 1), GL(1,C)~
S0(2) X SO(1, 1)]:
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SL(3,C) 2 SL(2,C) X SL(1,C) X GL(1, C)

max
MCS
> S0(3) X SO(2),
9— (1g)4q + Bp+1g)p + (25 +2_3)4,
— (Ip) +3p + (g + 23 + 25, (AIB)

where the first subscript in the second step and the
subscript in the last step denote charges with re-
spect to (w.r.t.) SO(2) ~ U(1), and the second sub-
script in the second step denotes weights w.r.t.
SO(1, 1). In order to derive (A18), the decomposi-
tions of the irreprs. of SL(3, C) under SL(2,C) X
SL(1,C) X GL(1,C) ~SL(2,C) X SO(2) X SO(1, 1)
have been recalled [the charges and weights w.r.t.
SO(2) and SO(1, 1) are given]:

3-21-1)+(@1,-22), (A19)
3-2-1,-1)+(1,22), (A20)
32 -1,1)+ (1,2 -2), (A21)
3211+ -2 -2). (A22)

Thus, through (A19) and (A20), the irrepr.
R,,=9=3x3 (A23)

branches as given by (A18).
(iv) ¢ =1 [SL2, R) ~SOQ2, 1]:
MCS
SL(3,R) 2 SO(2,1) X SO(1,1) 2 SO(2),

max
6/_)1+4+3—2+2+1_)11+2+1H+2r
(A24)
where the normalizations and conventions of
Table 58 of [58] have been adopted.

Next, we write down Egs. (A10) and (A11) forall ¢ = 8,
4,2, 1 classifying symmetric magic RSG.

(i) ¢ =8 (UD):

Eg26 2 SO(9,1) X SO(1,1) 2 SO(8, 1)

% S0(1,1)'3 S0@),
27— 1,,+10 ,+16,, —1,, +9 ,+1,
+16,,— 1, +8, + Iy + 1 + 8, + 8.
(A25)

The triality in irreprs. of SO(g) is implemented here
through the triality of (8,, 8,, 8.) of SO(8).
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(i) ¢ =4 (J3):
SU*(6) 2 SO(5,1) X SO(3) X SO(1, 1)

max

> 50(4, 1) X SO(3) X SO(1, 1)

max

MCS
> SO(4) X SOB3) ~ SU(2)

X SU(2) X SU(2), (A26)

15— 1Dy + (6,1, +(4,2)4

— LD +ED,+ 1ML 1D,+4,2),

- (1, 1, 1)1 + (2, 2, 1) + (1, 1, I)HI + (1, 1, I)H

+(1,2,2) +(2,1,2). (A27)
Thus, the triality in irreprs. of SO(q) X A, is im-
plemented for g =4 through the triality of
(2,2,1),(2,1,2),(1,2,2)) of SUQ2) X SU(2) X
SU(2).
(iii) ¢ =2 (J9):
SL(3,C) 2 maxSL(2,C) X SL(1,C) X GL(1,0C)
2,502, 1) X SO2) X SO(1, 1)

MCS
2 S0(2) X SO(2), (A28)

9 — (1g)4s + Bo +19) 2 + (235 +2-3)4,
= (Lo)+s4 T Bp)2 + (1g)—2 + (23)4,
+(2-3)4,
— (Lo + 20 + () + Q) + 23 + 2-3.
(A29)

Thus, the triality in irreprs. of SO(g) X A, is
implemented for ¢ = 2 through the triality of
(29, 23,2_3) of SO(2) X SO(2) [notice the different
charges wrt. A,_, = SO(2) ~ U(1)].

(iv) ¢ =1%:
SL(3,R) 2 SO(2,1) X SO(1, 1)

max

MCS
2 S0(1,1) X SO(1,1) 2 1,

6 —1,,+3,+2,,—1,,+2,
+1.,+24,
-1+ 1+ Iy + Iy + 1y + 1y,
(A30)
where in the second line “1”” denotes the identity

element. Notice that there is no compact symmetry
in Oyigpike, nBps, JR,d5- as also given by the fact that
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Thus, the triality of irreprs. of SO(g) in this case
trivially degenerates into a “‘sextality” [six singlets
in the last line of (A30)].

2. Dressed charge basis

Concerning the resolution of the Gs-invariant (sets of)
constraints in the basis of dressed charges, one should
notice that for each of the four magic symmetric RSG’s a
unique noncompact, real form Hs of the compact group
Hs = MCS(Gs5) exists with maximal symmetric embed-
ding into G5 (see e.g. [57]; also recall Sec. IIID and
Table I):

Gs 2 H,.

max

(A31)

a. (Qlightlike,BPS

In order to solve the small lightlike Gs-invariant defining
constraints (4.51) in dressed charges in a way consistent
with an orbit representative with Z # 0, let us further
embed

hs=MCS(Hs) =SO0(g +1) X A, (A32)
thus obtaining
- MCS
Gs(2 Hy) 2 SO(g+ 1) X A,  (A33)

max

where the brackets denote the auxiliary nature of the
embedding. Thus, under the branching (A33) R, decom-
poses as follows:

Ry~ 1+R)—= (1L 1)+ (q+11)

+ (Spin(q + 1): Spin(Qq)) + (lr I)Hr
(A34)

where R is an irrepr. of Hs used as an intermediate step.
Equation (A34) corresponds to the branching

Z =(2,2,) = (Z Zavyp Zigr11) Zispin(g+1)Spin(0,)>
(A35)

where

Z(l,l)I =7 (A36)

throughout. Therefore, with respect to SO(g + 1) X A,
one obtains

(1) two singlets;

(ii) one vector (q + 1,1);

(iii) one (double) spinor (Spin(g + 1), Spin(Q,)).

The position which solves [with maximal-—compact—
symmetry SO(g +1) X A,] the small lightlike
Gs-invariant defining constraints (4.51) in dressed charges
(and in a way consistent with an orbit representative having
Z # 0) reads as follows:
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Zg+1,y =0, Z(spin(g+1),Spin(0,)) = 0, (A37)

with Z and Z 3y, constrained by

Z = 225, — O Tanyanyan i, = O
(A38)
Notice that SO(g + 1) X A, is the unique group which is
maximally (and symmetrically) embedded into Hs and
which has SO(g + 1) X A, as (in this case, improper)
MCS [actually, SO(¢q + 1) X A, =MCS(Hs)]. There-
fore, it follows that SO(g + 1) X A, is also the maximal
semisimple symmetry of @lightlike’Bps, which is thus given
by Eq. (4.14).
The explicit form of Egs. (A33) and (A34) for all g = 8,
4, 2, 1 classifying symmetric magic RSG is given below.

(i) g =8 (D)

MCS
Eg(—26)( 2 Fy—20) 2 SO(9), (A39)

27(—1+26)— 1, + 9+ 16 + 1.

(ii) ¢ =4 (J%):

MCS
SU*(6)(2 USp(4,2)) 2 USp(4) X USp(2)

~ SO0(5) X SO(3),
15(—=1+14)— (1, 1); +(51)
+(4,2) + (1, 1). (A40)

(i) ¢ =2 (J$):

MCS
SL(3,C)(2 SUR, 1) 2 SUR) X U(1)

~S0(3) X SO(2),
9(_’ 1+ 8) i (10)1 + 2,3 + 23

+ 3¢ + (o). (A41)

Z2=(22)—(Z Zavy Zanw Zq1y Zspin'(¢)Spin(0,) Z(Spin’(q)Spin(0,))-

Therefore, with respect to SO(¢q) X A, besides Z, one
obtains

(i) two singlets [note that (1,1); is a singlet of

S0(g, 1) X A, as well];
(ii) one vector (q, 1);
(iii) two (double) spinors (Spin’(g), Spin(Q,)) and
(Spin”(g), Spin(Q,)).

The position which solves [with maximal-—compact—

symmetry SO(q) X A,] the small lightlike Gs-invariant
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(iv) ¢ =1 (J5):

MCS
SLB,R)(2 SO(2, 1)) 2 SO2),

max

6(—1+5—-1,+2+2+1; (A42)

As mentioned in the resolution in the basis of bare
(electric) charges ¢, the origin of R(Pin(a+1:spin(Q0) jp the
stabilizer of Ojigpiikegps Will be explained through the
procedure of suitable Indnii-Wigner contraction performed
in Appendix B 1.

b. O\igntiike,nBPs

In order to solve the small lightlike Gs-invariant defin-
ing constraints (4.51) in dressed charges in a way consis-
tent with an orbit representative having Z = 0, the
embedding (A31) has to be further elaborated as follows:

N . MCS
Gs(2 Hs) 2 hs 2 SO(¢9) X A, (A43)
max max
where
hs=50(q, 1) x A, (A44)

is the unique noncompact form of 45 [defined by (A32)] to
be embedded maximally and symmetrically into Hs (see
e.g. [57)).

Thus, under the branching (A43), R, decomposes as
follows:

Ry—1+R)— (1, 1), +(q+11)
+ (Spin(g + 1), Spin(Q,)) + (1, Dy
=L+ (g D+ @Dy
+ (Spin’(g), Spin(Q,))
+ (Spin”(g), Spin(Q,)) + (1, Dy,
(A45)

Equation (A45) corresponds to the branching [recall
Eq. (A36)]

(A406)

|

defining constraints (4.50) in dressed charges (and in a way
consistent with an orbit representative having Z = 0) reads
as follows:

Z=Zyy, =0, Zgn =0, (A47)

4(spin'(q),Spin(0,) = 0 4(spin”(g).Spin(0,) = 0,

with the two singlets Z ), and Zy ), constrained by
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2 2 —
T(l,l)u(l,l)u(l:l)llZ(l,l)” + 3T(1v1)1|(lyl)m(l,l)mZ(l,l)m =0
(A48)

Besides SO(¢g + 1) X A, the only other group which is
maximally (and symmetrically) embedded into Hs and
which has SO(q) X A, as MCS is SO(q,1) X A,.
Therefore, SO(g, 1) X A is also the maximal semisimple
symmetry of Ojigpike gps» Which is thus given by Eq. (4.24).

The explicit form of Egs. (A43)—(A45) for all ¢ = 8, 4,
2, 1 classifying symmetric magic RSG is given below.

(i) ¢ =8 (D)

MCS
Eg(—26)( 2 Fa20) 2 SO, 1) 2 SO®),

max max

27(—1+26)—1;+9 + 16 + 1y
i 11 + 8,, + IIH + IH + 85 + 80.
(A49)

() g =4 Y [USp(2,2) ~SOG,1),
SUQ):

USp(2) ~

SU*(6)(2 USp(4,2)) 2 USp(2,2) X USp(2)

max max

MCS
2 USp(2) X USp(2)

X USp(2), (A50)

15(—-1+14)—-1,1), + 51+ 42+ 1,1y
- 1LL1,+(1L1L 1Dy
+221)+(21,2)

+(1,2,2)+ (1,1, 1) (A51)
(iii) ¢ =2 (J9):
SL(3,C)(2 SU2, 1)) 2 SU(1, 1) X U(1)
MCS
2 U()xu(),
9(—’ 1 + 8) b (10)1 + 23 + 2,3 + 30

+ (Lo
b (10)1 + 20 + 23 + 2_3
+ (g + Ty (AS52)
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(iv) ¢ =1 (J5):

MCS
SLB,R)(2 SO, 1)) 2 So(1,1) 2 1,

6/(—>1+5)—’11+2+1H+2
=1L+ 1+ 1y + 1y

+ 1y + 1y, (AS53)

where “1”” denotes the identity element.

The origin of RGPin(a*+Dspin(Q) in the stabilizer of
Ojightiike,sps Will be explained through the procedure of
suitable  Inonii-Wigner contraction performed in
Appendix B 1.

APPENDIX B: EQUIVALENT DERIVATIONS

In this appendix, we determine the general form of small
charge orbits of symmetric magic RSG [see Egs. (4.14),
(4.24), and (4.29)] through suitable group theoretical pro-
cedures, namely,

(i) Inonii-Wigner contractions, for small lightlike orbits

(Appendix B 1),
(i) SO(1,1) three-grading, for small critical orbits
(Appendix B 2).

Such procedures will clarify the origin of the non-semi-
simple Abelian (namely, translational) factor [recall
Eq. (4.1), definitions (4.17) and (4.18), and see Eq. (B41)
below]

T = [Rpin(g+1).spin(Q,)) (B1)

in all three classes (lightlike BPS, lightlike non-BPS,
and critical BPS) of small orbits (for each relevant g =
8,4,2,1).

1. Inénii-Wigner contractions

a. @lightlike,BPS
In order to deal with O;gngike gps, We start from the group
embedding (A33). This determines the following decom-
positions of irreprs. (Adj and Fund, respectively, denoting
the adjoint and fundamental irrepr.):

Adj(Gs) — Adj(As) + Fund(A5),  (B2)
and further
Adj(Hs) — (Adj(SO(q + 1)), 1) + (1, Adj(A,))
+ (Spin(g + 1), Spin(Q,));, (B3)

Fund(As) — (1,1) + (q + 1, 1)
+ (Spin(f] + 1)» Spin(Qq))H’ (B4)

where  trivially  Adj(SO(g + 1)) = q(qzﬂ)'
tions (B2)—(B4) thus imply

Equa-
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Adj(Gs) — (Spin(g + 1), Spin(Q,))
+ (Adj(SO(g + 1)), 1) + (1, Adj(A,))
+@LD+(q+11)

+ (Spin(g + 1), Spin(Q,))x. (BS)

The decomposition of the branching (B3) yields
Adj(Hs) = (Adj(SO(g + 1)), 1) + (1, Adj(A,))
%,_J “ J

'S
8iis B

(B6)

o (Spin(q + 1), Spin(Q,);

f,;s
The coset [recall Eq. (3.62)]
— [:IS
SO0(g+1)xX A,

A
MCS(#5)

= MnBPS,laIge (B7)

is symmetric, with real dimension, Euclidean signature
and character, respectively (see e.g. [57,59]; here ‘“‘c”
and “nc,” respectively, stand for ‘“‘compact” and ‘“‘non-

compact’):

dimp = 2g, (¢, nc) = (0, 2¢9),

(B8)
X =c—nc=—2gq.

By definition, the symmetricity of M ,gps jaree implies that

[(0a,, 0a.] = ba., (g, ta,] = ta,
[H; st] bHs

The “decoupling” of ) i1,» With subsequent transformation
of the irrepr. (Spin(g + 1), Spin(Q,)); of SO(g + 1) X
ﬂlq into the non-semisimple, Abelian (namely, transla-
tional) part of the stabilizer of Ojigpgikeps, 1S achieved
by performing a uniform rescaling of the generators of f s

(B9)

tg, — Mg, A E Ry, (B10)
and then by letting A — o0. This amounts to performing an

IW contraction [50,51] on fgs. Thus [recall Egs. (4.14) and

(4.16)]
IW(OnBPS,large = g—Z)(A 33)(911ght11ke BPS
- (SO(g + 1) X ﬂqG);[Rg(Spin(q+l),Spin(Qq))’ (BID)
T lightlike, BPS = = [RGpin(g+1).spin(Q,)) (B12)

Thus, Tlightlike,BPS given by (B12) is the fﬁs part of the
decomposition (B6) of the Lie algebra g, of Hs with
respect to MCS(Hs) = SO(q + 1) X A,, which then
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gets “decoupled” from gz and Abelianized through the
IW contraction procedure (B10) and (B11).

b. Ojigntiike.nBPs
On the other hand, the treatment of @lightlikevnBPS requires
one to start from the embedding (A43) [actually, without
the last step involving SO(q) X A, = MCS(/s); recall
Eq. (A44)]:

Gs 2 Hs 2 hs = 50(q,1) X A,

max max

(B13)

The subsequent decompositions of Adj(Gs), Adj(Hs),
and Fund(H;) are given by Eqgs. (B2)—(B4), respectively,
thus yielding the same decomposition as in (B5). Con-
sequently, the decomposition of the branching (B3) yields
the same result as in (B6).
The coset [recall Eq. (3.62)]
Hs Hs

it AR . R Bl4
hs SO(g, 1) X A, (B14)

is symmetric, with real dimension, Euclidean signature and
character, respectively:

dimp = 2g, (c,nc) = (q, q), x=c—nc=0.

(B15)

By definition, the symmetricity of = 5 1mplies the same

relations as in (B9).
Thus, the decoupling of f);_, with subsequent transfor-

mation of the irrepr. (Spin(q + 1), Spin(Q,)); of
SO(g,1) X A 4 into the non-semi-simple, Abelian
(namely, translational) part of the stabilizer of

Ojightiike,nBps» 1S achieved by performing a uniform rescal-
ing of the generators of f[_']s as given by Eq. (B10), and then
by letting A — oo. This amounts to performing an IW
contraction [50,51] on fgs. Therefore, one obtains [recall
Egs. (4.24) and (4.26)]

(A.43)
w ((gnBPS large) - (Ohghthke nBPS

_ Gs
(S0(g + 1) x szlq)x[r‘g(spin(w1),spin(Q4))

(B16)

— [Rlspin(g+1)spin(Q,))
(B17)

Tlightlike,nBPS = Tlightlike,BPS

Thus, T lightlike,nBPs Z1ven by (B17) is the fﬁj part of the
decomposition (B6) of the Lie algebra gz  of H; with
respect to hs = SO(g, 1) X A,, which then gets de-
coupled from g5 and Abelianized through the IW con-
traction procedure [see Egs. (B10) and (B16)].

Note that the IW contraction does not change the di-
mension of the starting orbit. Indeed @lightlike’Bps, obtained
through the IW contraction of O, gps jree along the branch-
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ing (A33), has the same real dimension of O, gps jaree itself.
Analogously, also Oj;gpike pps» Obtained through the TW
contraction of O,pps juree along the branching (A43), has
the same real dimension of O,,pps jaree itself.

PHYSICAL REVIEW D 82, 085010 (2010)

(B8), (B11), and (B14)-(B16), for all ¢ = 8§, 4, 2, 1 clas-
sifying symmetric magic RSG.
(i) g =8P

78 — 26 + 52, 52 — 36 + 16, B13)
¢. Details 26— 1+9+16y;
Below, besides (B2)—(B4), we write down the relevant
formulas of the derivations given above, namely, Egs. (B7),
|
H; Hs Fa20) )
—— = =M s = , d = 16, : = (0, 16),
MCS(H;) SO(g+ 1) X A, |, nBPS, large,J®,d=5 S0() impg (¢, nc) = ( ) o)
Eg(—26)\(A33) Eq(—26)
x = —16, IW((9,,Bps,1arge,1§j> = F4(20)> = @]ightlike,BPS,J? = SO(9R®’
A HAs Fy—20) .
e = , dimp = 16, ¢, nc) = (8, 8), =0,
hs  SO(g )X A, |,s SOG1) " (e.nc) =®8).  x
p (B20)
(A.43) _ 6(—26)
IW(@tlBPS,large,J?) - @ughtlike,nBPS,J? - W'
(ii) g =4 (J3):
35 — 14 + 21, 21— (4,2); +(10,1) + (1, 3), 14— 1,1)+ (5 1) + (4,2), (B21)
Hs Hs USp(4,2) .
—— = =M s = , d =g, : = (0, 8),
MCS(As)  SO(q+ 1) X A, | oy~ "BPSREesfd=S = G5, X USp(2) e (ene) = (0.8
B _ SU(6) |33 B SU*(6)
X =8 IW(@nBPs,laIge,Jg*] T USp42) = Ulightlike,BPS /8 = (S0(5) X SO(3))uR*D’ (B22)
H; H; USp(4,2) }
— = = , dimp = 8, (c,nc) = (4,4), =0,
hs SO )X A, |, USp(2,2) X USp(2) R X ®23)
(A.43) B SU*(6)
IW(@nBPS,large,JgH]) - @lightlike,nBPS,Jgﬂ - (50(4, 1) X S0(3))>4R(4’2) :
(i) g =2 (ch). Notice that in this case Eq. (B2) gets modified into
Adj(Gs) — Adj(As) + Adj(Hs), 16 —» 8 + 8, 8—3,+1,+2;+2_5. (B24)
Everything fits also because for ¢ = 2 it holds that
(@ +11) = (Adj(SO(g + 1)), 1) = 3, (L Adj(A,)) = (1, 1) = 1, (B25)
H; H; SU(2, 1) ,
= =M ) e = ——————— d =4, , =(0,4),
MCS(Fs)  S0(q+ )X A, |, nBPS large.s5.d=5 ~ SU02) % U(1) imp (c,nc) = (0,4)
_ _ SL(33, C)\a33) _ SL@3,0C)
X = —4, IW<@nBPS,1arge,J§ - m) - @lighllike,BPS,J‘SD - (S0(3) > SO(Z))XR(Z’Z). (B26)
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H; H; SU2,1) .
_— = =, d =4, , =(2,2), =0,
hs  S0g )X A, | SUGDXxUMD TR (Gne) =22 ®27)
(A.43) _ SL(3,C)
IW((QnBPS,large,J;C) - @lightlike,nBPS,];D - (50(2, 1) X S0(2))NR(2’2).
@iv) g =1 (Jg@). Notice that in this case Eq. (B2) gets modified into
Adj(Gs) — Adj(l:ls) + Spinszz(ﬁs), 8 - 3 + 5, 3 — 1[[ + 21, 5 g 11 + 2111 + 2[1. (B28)
Everything fits also because for ¢ = 1 it holds that
(q+1,1) = (Adj(SO(g + 1)), 1) = 2, (LAdj(A)) =11 =1 (B29)
H; H; S02,1) SuU(1,1) ,
—— = =M s = ~ d =2, , = (0, 2),
MCS(HS) SO(C] + 1) < ﬂq -1 izBPS,large,JgQ,de 50(2) U(l) 1Mmp (C IIC) ( )
SL(3, R)\(a33) SL(3, R)
X=-2 IW(@nBPS,large,Jg* = S0, 1)) " Vlightlike BPS, /¥ — SOQ)xR2” (B30)
H; H; S0, 1) ,
== 2 = , dimp = 2, (c,nc) = (1, 1), =0,
hs  SOg )X A, |, SO, 1) " )= x ®31)
(A.43) SL(3, R)
IW(@nBPs,large,J§) - (Olighuike,nlsPs,J§E - (SO(1, ))xR?2
2. SO(1, 1) three-grading and Oy;(;ica;,Bps W 3 = (Spin’(¢q + 2), Spin(Q,)) 3, (B35)
In order to deal with Oj;c. pps, We start from the group . . .
embedding (A1). As pointed out above, this is the unique W =3 = (Spin(q + 2), Spin(Q,)) -3, (B36)

maximal embedding (at least among the symmetric ones;
see e.g. [57]) into G5 to exhibit a commuting factor
SO(1,1).

Therefore, the Lie algebra gs, of Gs admits a three-
grading with respect to the Lie algebra R of SO(1, 1) as
follows:

G, = W3e, Woe, W3, (B32)

where as above the subscripts denote the weights with
respect to SO(1, 1) itself. At the level of branching of
Adj(Gs), the SO(1, 1) three-grading reads as follows:

Adj(Gs) — (1, 1)) + (Adj(Gg), 1)y + (1, Adj(A,))o
+ (Spin(g + 2), Spin(Q,)) -3
+ (Spin’(¢g + 2), Spin(Q,)) + 5.

Thus, the decomposition (B33) yields the following iden-
tification of the graded terms in (B32):

(1,1)y +(Adj(Ge), 1)y +(1, Adj(A,))o;

lexp lexp lexp
SO(1, 1) Ge ﬂq

(B33)

WO = (B34)

with “exp” denoting the exponential mapping.

Thus, Ojicaps 1S Obtained by cosetting Gs with the
+3-graded (or equivalently —3-graded) extension of
WO — (1, 1),, namely,

Gs

Ocritical,BPS = m, (B37)
+3(=3

where
N 3 =expl(W? = (1, 1)) &, W]
= exp[((Adj(Gs), 1) + (1, Adj(A,)))
®, (Spin’(¢ + 2), Spin(Q,)) 3]

= (Gg X j[q)xR(Spin(qﬂ),Spin(Qq))’ (B38)

N 5 =expl(W’ = (1, 1)) &, W]
= exp[((Adj(G). 1)y + (1, Adj(A,))o)
®, (Spin(q + 2), Spin(Q,)) 3]
= (Gg X sz[q)x]R(Spin(qﬂ),Spin(Qq))_ (B39)

Thus, it holds that Eqs. (B37) and (B38) [or equivalently
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Egs. (B37) and (B39)] are consistent with the general form
of Ojigcasps given by Eq. (4.29).
Therefore, in the stabilizer of O;cq pps, the factor

= [R(spin(g+2),spin(Q,)) — [R(spin(g+1).spin(Q,))
(B40)

T critical, BPS

is given by the exponential mapping of the Abelian sub-
algebra of ¢, contained into the +3-graded (or equiva-
lently —3-graded) extension of W?° — (1,1), through
the SO(1, 1) three-grading (B32), corresponding to the
irrepr.  (Spin’(g + 2), Spin(Q,)) 3 [or equivalently
(Spin(g + 2), Spin(Q,)) 3] of Gg X A (XSO(1, 1)).

The results obtained in Appendixes B 1 and B 2(and
reported in Tables III and I'V) allow one to conclude that all
small charge orbits of symmetric magic RSG (classified by
qg = 8, 4, 2, 1) share the same non-semi-simple, Abelian
(namely, translational) part of the stabilizer. Namely,
Egs. (B17) and (B40) yield

Tlightlike,BPS = Tlightlike,nBPS = Tcritical,BPS

_ R(spin(q+1),SPin(Qq))_ (B41)

Details

Below, we write down Egs. (B33)—-(B36) for all g = 8,
4,2, 1 classifying symmetric magic RSG.
i) ¢ =8 (U

Wo W3 w3
—— AN

78 — 1, + 45, + 16_; + 16/, ,. (B42)

PHYSICAL REVIEW D 82, 085010 (2010)
(i) ¢ =4 ()

wo w3
r /\ N I—J%
35 — (1, 1)0 + (15, 1)0 + (1, 3)0 + (4, 2)73
'W+3
—
+(4,2) 5. (B43)

(i) g =2 (Jg). In this case it should be recalled that
Adj(SL(3,C) =16
=3 X3 + 3 X3 — 2 singlets.
(B44)

Thus, by recalling Egs. (A19)-(A22), one can
compute that under SL(3,C) 2. SL(2, C) X
SL(1,C) X GL(1,C),

3X 3 — (3o + (1) + (23)_3 + (2-3); + (1y)o,
3% 3= (39)g + (1p)g + (2-3)—3 + (23); + (1p)o.

(B45)
Therefore,
Adj(SL(3,0))
wWeo w3
=16 — 2(39)o + 2(1p) + (23)_3 + (2_3)_3
'W+3
+(23)43 + 223) 45 (B46)
(iv) ¢ =1 (J%):
WO 'W*S w+3
— = N
8§ — 10 + 30 + 2,3 + 2+3. (B47)
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