Géraldine Conti (EPFL)

On Behalf of the LHCb Collaboration

Prospects for CP Violation at LHCb

Physics at LHC 2010, 7 - 12 June 2010, DESY, Hamburg

Outline

- I. The LHCb Detector
- 2. CP Violation Studies at LHCb :

- Mixing-induced CP-Violation in $B_s \rightarrow J/\psi \phi$
- Determination of the CKM angle γ

3. Conclusions

Géraldine Conti (EPFL)

The LHCb Detector

See talk of Andrei Golutvin Tracking System : See talk of Florin Maciuc See talk of Dirk Wiedner I. VErtex LOcator 2. Dipole Magnet 3. Tracking Stations (TT,TI-3)

CP Violation Studies at LHCb

The CKM matrix can be parameterized using four independent phases. A useful parameterization is given in terms of **four** (rephasing invariant) **angles** :

Mixing-induced CP violation in $B_s \rightarrow J/\psi \phi$

How to measure $\Phi_{J/\psi\phi}$: Angular Analysis

Pseudo-Scalar to Vector-Vector decay:
$$\underset{S=0}{\overset{}{\underset{}}} \xrightarrow{} \underset{S=0}{\overset{}{\underset{}}} \xrightarrow{} \underset{S=1}{\overset{}{\underset{}}} \xrightarrow{} \underbrace{J/\psi}_{S=1} (\rightarrow \mu^+ \mu^-) \qquad \underbrace{\phi}_{S=1} (\rightarrow K^+ K^-)$$

 $CP \ eigenvalues \ of \ the \ final \ state : \ Admixture \ of \ CP-odd \ and \ CP-even \ states \\ CP \ eigenvalue \ of \ the \ final \ state = \ CP(J/\psi) \cdot CP(\phi) \cdot (-1)^L, \ with \ L=0,1,2$

 \rightarrow Decomposition of the decay amplitudes in terms of linear polarization of the J/ ψ and ϕ .

Need for an Angular Analysis to disentangle statistically the CP states :

→ $\Phi^{J/\Psi\phi}$ depends on the fractions of CP-odd and even components ($|A_o(o)|^2$, $|A_\perp(o)|^2$).

Géraldine Conti (EPFL)

Steps towards $\Phi^{J/\psi\phi}$

Géraldine Conti (EPFL)

18

16

14

12

10

5000

LHCb

Preliminary

 $\sqrt{s} = 7$ TeV Data

Events/6MeV/c²

The Control Channels

The $B_d \rightarrow J/\psi K^*$ and $B_u \rightarrow J/\psi K^+$ are used as control channels to :

y (mm)

0.5

0.4

0.3

0.2

0.1

1. Check the angular acceptance description (B_d) :

-8% distortion expected for the angular distributions

2. Flavour tagging calibration of the initial B_s flavour

65 candidates in

the mass window

~ 12.8nb⁻¹

5400 J/ψK⁺ invariant mass (MeV/c²)

3. Check the proper time resolution

 $B_u \rightarrow J/\psi K^+$

 $B^+(PDG) \pm 60 MeV/c^2$

5200

Géraldine Conti (EPFL)

LHCb Sensitivity to $\Phi^{J/\psi\phi}$ for 7 TeV

3-angle tagged analysis :

Géraldine Conti (EPFL)

Global fit to all the tree measurements to obtain the best sensitivity to $\boldsymbol{\gamma}$:

~7° for 1 fb⁻¹ at 7 TeV

With only 100 pb⁻¹, LHCb can improve some B-factory measurements

Loop-Level Measurements π^+ (K^+) Combined measurement of $B_d \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^ B^0 \left(B^0_s ight)^{\overline{b}}$ – $\pi^{-}(K^{-})$ d(s)d(s)The sensitivity to γ arises from interferences between tree and penguin diagrams : **CP-eigenstate** $\mathcal{A}_{CP}(t) = \frac{\Gamma(\overline{B^0}_{d/s}(t) \to f) - \Gamma(B^0_{d/s}(t) \to f)}{\Gamma(\overline{B^0}_{d/s}(t) \to f) + \Gamma(B^0_{d/s}(t) \to f)}$ $= \frac{-C_{CP}\cos\Delta mt + S_{CP}\sin\Delta mt}{\cosh\frac{\Delta\Gamma}{2}t - A^{\Delta\Gamma}_{CP}\sinh\frac{\Delta\Gamma}{2}t}$ Magnitude and phase of the penguin-to-tree Depend on γ , (d (d') and θ (θ ')) amplitude ratio + U-spin symmetry (invariance of the strong interaction

+ U-spin symmetry (invariance of the strong interaction under the d and s quarks exchange) \rightarrow d=d' and $\theta=\theta'$

Sensitivities to γ (2 fb⁻¹ at 14 TeV) ~7^{-10°} (depending on U-spin scenarios)

On the way to γ...

 $B^{\circ} \rightarrow D^{+}\pi^{-} + B^{+} \rightarrow D^{\circ}\pi^{+}$

CP-Violation Studies at LHCb

I4.

Conclusions

The journey has started for the LHCb collaboration towards the measurements of the CP-violating weak phases $\Phi^{J/\psi\phi}$ and γ ...

With I fb⁻¹ (at 7 TeV) :

 $\sigma(\Phi^{J/\psi\phi}) \sim 0.07$ $\sigma(\gamma) \sim 7^{\circ}$

(N.B. : from MC studies assuming some selection & trigger efficiencies)

Both measurements made at LHCb will improve a lot the knowledge we have about CP-violation due to their high sensitivities. They could also potentially lead to an indirect discovery of New Physics !

Thank you for your attention

N.B. : The list of routes mentioned in this talk towards $\Phi^{J/\psi\phi}$ and γ is not exhaustive, thanks to the richness of the LHCb physics program.

Géraldine Conti (EPFL)

Bibliography

All measurements cited in this talk : <u>http://arxiv.org/abs/0912.4179</u> Other promising routes to Φ :

Bs→J/ ψ f° : <u>http://arxiv.org/abs/0812.2832</u>, LHCb-2009-037 Bs→ $\phi \phi$: LHCb-PUB-2009-025

Measurement of the $\boldsymbol{\gamma}$ angle at tree-level :

GLW/ADS method : LHCb-2006-066, LHCb-2008-011, LHCb-2009-011

GGSZ method : LHCb-2007-048, LHCb-2007-141, LHCb-2007-142, LHCb-2008-028

ADS extended to multi-body decays : LHCb-2007-098, LHCb-2009-002

GLW/ADS to neutral B : LHCb-2007-050, LHCb-2008-038

Time-dependent : LHCb-2008-035, LHCb-PUB-2009-003, LHCb-PUB-2010-009 ...

Géraldine Conti (EPFL)

CP-Violation Studies at LHCb

17.

Differential Decay Rate

Géraldine Conti (EPFL)

 B_s →J/ψφ Tagging Efficiency = 57% Mistag rate ~ 33%

CP-Violation Studies at LHCb

PLHC 2010, DESY

Others ways to Φ ...

 $\mathbf{B}_{s} \rightarrow \phi \phi$ is dominated by a penguin :

New Physics could enter in the penguin and/or in the box diagram. $\Phi_{\phi\phi}=0$ in SM ; $\Phi_{\phi\phi}=\Phi_{M}-2\Phi_{D}$ in NP $\sigma(\Phi_{\phi\phi})=0.06$ (10fb⁻¹)

Pure CP eigenstates	Yield (10 ³ /2 fb ⁻¹)	σ(Φs)	
$\mathbf{B}_{s} \rightarrow \boldsymbol{\eta}_{c} (\mathbf{h}^{-} \mathbf{h}^{+} \mathbf{h}^{-} \mathbf{h}^{+}) \boldsymbol{\phi} (\mathbf{K}^{+} \mathbf{K}^{-})$	3	~0.II	
B _s →J/ψ(μ⁻μ⁺) η(γγ)	8.5	~0.II	Higher background than $B \rightarrow Ihv(u^{-}u^{+})\phi(K^{+}K^{-})$
$\mathbf{B}_{s} \rightarrow \mathbf{D}_{s}(\mathbf{K}^{+}\mathbf{K}^{-}\pi^{-}) \mathbf{D}_{s}(\mathbf{K}^{+}\mathbf{K}^{-}\pi^{+})$	4.0	-0.13	$\int D_{s} = \int (\psi (\mu \mu) \psi (\mathbf{K} \mathbf{K}))$

 $\mathbf{B}_{s} \rightarrow \mathbf{J}/\psi \mathbf{f}_{o}(\pi\pi),...$

1 additional parameter N_{hh}

 N_{hh} = normalization factor

• only one normalization factor left \rightarrow over-constrained system (6dof:5param)

ADS / GLW measurements for B°

Analysis very similar to ADS/GLW for B[±]...

 $\delta_{D}=22^{\circ}$ (+11+9) (-12-11) ° (Phys. Rev. D 78, 012001 (2008))

GGSZ Method

Differences in Dalitz plots for $B^+ \rightarrow DK^+$ and $B^- \rightarrow DK^-$ decays (with $D=\{D^\circ, \overline{D}^\circ\}$ and $D\rightarrow K_s\pi^+\pi^-$)

