

LHCb Silicon Tracker operations and performance with first data

Outline

- Introduction
- Commissioning and encountered problems
- Current status
- Detector Performance:
 - Time Alignment
 - Efficiency
 - Occupancies
- Summary

For tracking and alignment performance see talk of M. Gersabeck

Tracker Turicensis

- Four planes of Silicon $(0^{\circ}, +5^{\circ}, -5^{\circ}, 0^{\circ})$
- 500 μm thick, 183 μm pitch, 7-sensor ladders.
- Strip lengths up to 37 cm, Capacitance 56 pF
- Area of 8.2 m² covered by Silicon, 143 k strips
- 7 % radiation length
- Detector operated at 5 °C

Inner Tracker

- 3 stations (~4 % X0 each)
- Box contains 4 layers $(0^{\circ}, 5^{\circ}, -5^{\circ}, 0^{\circ})$
- Readout pitch 198 µm
- 320 µm thickness, 1 sensor ladders
- 410 µm thickness, 2 sensor ladders
- Area of 4 m² covered
- 336 ladders, 130 k readout strips
- Detector operated at 5 °C

Front end on detector < 1 Mrad in 10 years

Tell1 readout boards in counting House: Zero Suppression

Access

Tracker Turicensis

- Detector opening + closing relatively straightforward
 - Module replacement smoothly performed several times
- Service boxes located to side of station: easy access

Inner Tracker

- Shares floor space with OT
- Detector box access only possible when IT/OT open, beam-pipe vented
- Service boxes located below detector, access difficult without opening IT and OT

Tracker Turicensis repair work easier than Inner Tracker

Commissioning Timeline

Cosmics running and injection tests

June 2008

Detector installation complete

Learning to run

Oct 2008

High rate tests + repair work

June 2009

Injection tests

Oct 2009

High rate tests

Injection tests

First collisions

June 2010

A lot of valuable operational experience gained before collisions

Standalone running

Weekly pedestal runs + 1 MHz tests to identify readout problems/debug Tell1 firmware

2008 Cosmic running

Small acceptance but 3 reconstructed cosmic tracks in 2.6 million triggers giving hits in all 3 IT stations

2008/2009 TED runs

Spills of 5 ×10⁹ protons dumped on a tungsten beam-stopper (the 'TED') 350 m downstream of LHCb. First time/space alignment

Encountered Problems

- Oscillations in the LV power supplies:
 - Filter out with capacitors
- Failing voltage regulators:
 - Did not test with all different load scenarios
 - Replaced (~ 30 out of 1992)
- Power from VCSEL diode less than -11 dBm sensitivity of Orx
 - Bad alignment between the diode and the optical fiber (damage during mounting)
 - Replaced in IT: 30 out of 1008 diodes, TT: 95 out of 1152
- Internal swaps in optical fiber bundle, bad connections,
- Failing Tell1 readout boards (bad vias)

Readout Problems

Fast learning curve to identify,understand + fix readout problems

Hardware repairs

Modify service box mechanics to ease repair Identify and repair problematic digitizer boards/service boxes Measurement of optical power, replacement lower power VCSEL diodes

Tell1 Firmware modification

Allow for missing front-end data

Make robust against bit errors/ signal glitches

Decoding Software

Handle missing + corrupted data Reporting of errors

Day-to-Day control of detector in hands of central LHCb shift crew

- Detailed monitoring of detector status/DQ
- Automatic actions/alarms in case of problems
- Experts/piquet on-call

TT Status

99.8 % of the detector functional

- Repair work in 2009
 - Remove + replace module with HV problem [crack on readout hybrid]
 - Remove + replace modules with broken bonds

99 % of the detector functional

Inefficiency dominated by 2 modules with problems inside detector box

• One with HV fault, one that does not configure

- Different cable lengths for different detector parts
- Time of flight different per station
- Time delay scans (collected charge vs sampling time)

- Dedicated run taken reading out samples spaced by 25 ns
- Repeat shifting sampling point by -6,6, 12 ns
- Fit landau to cluster charge distribution for each sample
- Plot MPV versus sample time and fit pulse shape:

$$f = A \cdot e^{-x} \cdot (x^2/2 - x^3/6)$$

$$x = (t - t_0)/t_{rise}$$

$$t_{max} = (3 - \sqrt{3}) \cdot t_{rise} + t_0$$

- Sampling point tunable per service box
- Scans use all clusters in event with S/N > 5
- Can be performed with clusters (ZS data) or NZS data (to see undershoot)

Detector internally time aligned with a resolution of < 1 ns

S/N for clusters assigned to tracks with p > 5 GeV

TT: S/N 13 - 15

IT: S/N ~ 16.5 (Long), 17.5 (Short)

Within 10 - 20 % of expectations

TT Efficiency

TT Efficiency measured with tracks

- High momentum, p > 10 GeV
- Isolated: little extra activity in 5 mm
- TT hits are not required by the pattern recognition to be on Velo-T tracks
- 2.5 mm window needed to estimate efficiency

Efficiency measured to be 99.3 %

- Clustering threshold, S/N > 5
- Noise cluster rate: 10⁻⁵
- 1 sector ~90 efficiency: broken bonds

IT Efficiency

Efficiency with tracks

- Tracks with hits in VELO
- High momentum, p > 10 GeV
- Isolated: little extra activity in 5 mm

Detector efficiency ~ 99.8 %

- Clustering threshold, S/N > 5
- Noise cluster rate: 10⁻⁵
- Two low efficiency modules
 - Large Common mode (1.5]
 - Weak optical link

Occupancies in 7 TeV Min bias events with 1 reconstructed PV

TT 260 clusters/event (MC: 200)

IT 230 clusters/event (MC: 160)

Shapes well described

Outlook

- Detector runs reliably, main concern new optical links with low power
- Since November 2009 5 links (3 TT, 2 IT) show problems
- Seems to be a sudden degradation (the VCSEL diode goes 'black')
- TT: disable + replace when possible, IT disable until end of run
- Assuming current failure rate ~98 % detector working by end 2011

Intervention forseen to fix all remaining IT and TT problems in 2011 shutdown

- LHCb Silicon Tracker installed and running reliably
- Performance of the detector is excellant
- S/N 16-18 (IT) , 13- 15 (TT)
- > 99 % of the detector channels are functional
- Efficiency measured to be > 99 % with tracks
- Valuable experience in achieving this gained with cosmics + TED runs in 2008/2009

Backup

TT Layer Efficiency

IT Occupancy

IT Material

TT Broken Bonds

9 hybrids on 7 readout sectors effected

- Innermost bond row effected, mainly heel breaks
- Effect not reproduced in the lab despite extensive tests + thermal cycling
- Generally breaking (but not always) occurs on pitch adaptor side
- Majority of problems soon after installation, 2 developed in October 2008, one in June 2009

Possible causes of bad bonds:

- Initial cracks due to the bonding process, typically occur at first bonds
 - In this case would expect on Beetle side
- Loop height: should be > 25 % of the bond spacing
- Vibrations/Thermal cycling

bond row	distance between	bond loop height
	bond pads	above pitch adaptor
innermost	2 1.35 mm	0.48 mm
second	1.70 mm	$0.66 \mathrm{\ mm}$
third	2.05 mm	0.84 mm
outermost	2.40 mm	$1.02~\mathrm{mm}$

Bond heights for innermost bonds are tight, but if increased outermost bonds become too high

It was not possible to take a picture from a better angle because of collisions with the elektron gun. So I can't quantify the loop height of the bonds.

TT Broken Bonds

One of the problem hybrids is somewhat atypical

- Broken bonds on Beetle side (first bonds)
- SEM pictures shows presence of initial cracks from bonding

