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We summarise predictions for tt̄bb̄ production at the LHC in next-to-leading order QCD. The precise descrip-
tion of this background process is a prerequisite to observe associated tt̄H production in the H → bb̄ decay
channel. The one-loop amplitudes are computed using Feynman diagrams and numerical tensor reduction. This
approach provides very high numerical stability and CPU efficiency. We find that the scale choice adopted in
ATLAS simulations underestimates the tt̄bb̄ background by a factor two and introduce a new dynamical scale
that stabilises the perturbative predictions. In the regime of highly boosted Higgs bosons, which offers better
perspectives to observe the tt̄H(H → bb̄) signal, the corrections induce significant distortions in the kinematic
distributions.

1. Introduction

The discovery of the Higgs boson and the mea-
surement of its interactions with massive quarks
and vector bosons represent a central goal of the
Large Hadron Collider (LHC). For a light Higgs
boson,MH

<∼ 130GeV, associated t̄tH production
provides the opportunity to observe the Higgs bo-
son in the H → bb̄ decay channel and to measure
the top-quark Yukawa coupling. However, the ex-
traction of the t̄tH(H → bb̄) signal from its large
QCD backgrounds, pp → t̄tbb̄ and t̄tjj, repre-
sents a serious challenge. The selection strategies
elaborated by ATLAS and CMS [1,2] anticipate
a statistical significance around 2σ and a signal-
to-background ratio as low as 1/10. This calls
for better than 10% precision in the background
description, a very demanding requirement both
from the experimental and theoretical point of
view. Very recently, a novel selection strategy
based on highly boosted Higgs bosons has opened
new and very promising perspectives [3]. This ap-
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proach might increase the signal-to-background
ratio beyond 1/3. Moreover, three b-taggings
would be sufficient to strongly suppress the t̄tjj
contamination so that the background would be
completely dominated by t̄tbb̄ production.
The calculation of the next-to-leading-order

(NLO) QCD corrections to the irreducible t̄tbb̄
background, first presented in Refs. [4,5,6] and
subsequently confirmed in Ref. [7], constitutes
another important step towards the observability
of t̄tH(H → bb̄) at the LHC. These NLO predic-
tions are mandatory in order to reduce the huge
scale uncertainty of the lowest-order (LO) t̄tbb̄
cross section, which can vary up to a factor four if
the QCD scales are identified with different kine-
matic parameters [8]. Motivated by results for the
signal process pp → t̄tH [9], where a moderate K
factor (K ≃ 1.2) had been found [9], experimen-
tal groups adopted the scale µR,F = mt +mbb̄/2
for the LO simulation of the t̄tbb̄ background [1].
However, at this scale the NLO corrections to
pp → t̄tbb̄ turn out to be large (K ≃ 1.8) [5,7].
The calculation of the NLO corrections to

pp → t̄tbb̄ constitutes also an important techni-
cal benchmark. The description of many-particle
processes at NLO plays a central role for the LHC
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physics programme, and the technical challenges
raised by these calculations have triggered an im-
pressive amount of conceptual and technical de-
velopments. Within the last year, this progress
has lead to the first NLO results for six-particle
processes at the LHC, namely for pp → t̄tbb̄ [5,7],
pp → t̄tjj [10], the leading- [11] and the full-
colour contributions [12] to pp → Wjjj, for
pp → Z/γjjj [13] and for the qq̄ contribution to
pp → bb̄bb̄ [14].

To compute the virtual corrections to t̄tbb̄
production we employ explicit Feynman-
diagrammatic representations of the one-loop
amplitudes and numerical reduction of tensor
integrals [15]. The factorisation of colour matri-
ces, the algebraic reduction of helicity structures,
and the systematic recycling of a multitude of
common subexpressions—both inside individ-
ual diagrams and in tensor integrals of different
diagrams that share common sub-topologies—
strongly mitigate the factorial complexity that
is inherent in Feynman diagrams and lead to a
remarkably high CPU efficiency. Our results have
been confirmed with theHELAC-1LOOP imple-
mentation of the OPP method [16,17,18] within
the statistical Monte Carlo error of 0.2% [7].

2. Outline of the calculation

In LO, the hadronic production of t̄tbb̄ pro-
ceeds via the partonic processes qq̄ → t̄tbb̄ and
gg → t̄tbb̄, which are described by 7 and 36 tree
diagrams, respectively. The corresponding vir-
tual NLO QCD corrections involve 188 and 1003
one-loop diagrams. The real emission contribu-
tions comprise the crossing-symmetric channels
qq̄ → t̄tbb̄g, qg → t̄tbb̄q, and gq̄ → t̄tbb̄q̄, which
involve 64 tree diagrams each, and the channel
gg → t̄tbb̄g with 341 diagrams. Each of these
contributions has been worked out twice and in-
dependently, resulting in two completely indepen-
dent computer codes.

The virtual corrections are calculated in the
Feynman-diagrammatic approach. The diagrams
are generated with two independent versions of
FeynArts [19,20] and algebraically simplified
with two in-house Mathematica programs that
generate Fortran77 code in a fully automatised

way. One of the two programs relies on Form-

Calc 5.2 [21] for preliminary algebraic manip-
ulations. The virtual corrections are obtained
from the interference of the one-loop and LO
matrix elements on a diagram-by-diagram basis.
Owing to colour factorisation for individual

(sub)diagrams colour sums can be performed very
efficiently. The colour-summed result is given
by a combination of previously computed colour–
Born interference terms. This requires a single

evaluation of the non-trivial colour-stripped am-
plitude of each (sub)diagram.
Helicity structures are handled in a similar

way. The helicity-dependent parts of all dia-
grams are reduced to a common basis of so-called
Standard Matrix Elements (SMEs), and helicity
sums are performed once and for all at the level
of the SMEs–Born interference. The diagram-
independent treatment of the helicity-dependent
parts of loop graphs is made possible by the co-
variant decomposition of tensor integrals.
The one-loop amplitudes are expressed as lin-

ear combinations of tensor-integral coefficients.
The latter are evaluated by two independent nu-
merical Fortran libraries that recursively re-
duce them to master integrals using the meth-
ods of Ref. [15]. Avoiding an explicit reduction
of analytic expressions to master integrals, this
numerical approach prevents prohibitively large
expressions and permits to adapt the reduction
strategy to the specific numerical problems that
appear in different phase-space regions. An auto-
matic cache system is implemented that strongly
boosts the reduction by recycling a multitude of
tensor integrals among Feynman diagrams with
common sub-topologies.
Ultraviolet (UV) divergences are regularized di-

mensionally throughout, but infrared (IR) diver-
gences are treated in different variants, which
comprise pure dimensional regularization with
strictly massless light quarks and a hybrid scheme
with small quark masses. The corresponding
scalar integrals are evaluated using the methods
and results of Ref. [22,23], and different regular-
ization schemes are translated into each other as
described in Ref. [24].
The treatment of rational parts is greatly sim-

plified by the fact that rational terms result-
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ing from 1/ǫ and 1/ǫ2 poles of IR kind vanish
in truncated one-loop amplitudes [4]. Rational
terms arising from UV poles of tensor integrals
with D-dependent coefficients are automatically
extracted by means of a catalogue of residues.
The reduction to SMEs is performed in such

a way that no spurious poles are generated
that might cause numerical instabilities. It
starts with process-independent D-dimensional
relations such as momentum conservation, Dirac
algebra, transversality, and gauge-fixing condi-
tions for the gluon-polarisation vectors. Once
rational terms are extracted, we further reduce
SMEs with two alternative algorithms in four di-
mensions. For the gluon induced process, the first
algorithm splits each fermion chain into two con-
tributions, u(pi) =

∑

λ=± ωλu(pi), via insertion
of chiral projectors ω± = (1±γ5)/2. This permits
to employ various relations of type γµγαγβω± ⊗
γµ = γµω± ⊗

(

γµγ
βγαω± + γαγβγµω∓

)

, which
connect Dirac matrices of different fermion
chains [4,25], to reduce the full amplitude to
502 SMEs [6]. Besides this procedure, which
depends on process-specific aspects, we im-
plemented a simple process-independent reduc-
tion based on a single four-dimensional identity
of type γµ1γµ2γµ3γµ4γµ5 = gµ1µ2γµ3γµ4γµ5 −
gµ1µ2gµ3µ4γµ5 + perm., which eliminates spinor
chains with more than three Dirac matrices with-
out introducing γ5 [6]. This leads to 970 SMEs.
In spite of the factor-two difference in the num-
ber of SMEs, the numerical codes based on the
two different reductions have the same—and re-
markably high—CPU speed: about 180ms per
phase-space point. Thus, the obtained CPU per-
formance, at least for this process, does not de-
pend on process-dependent optimisations.
To handle singularities in the real corrections

we employed the dipole subtraction method [26],
in particular the MadDipole implementation
[27] in one of our calculations. The 2 → 5 matrix
elements were generated with Madgraph [28]
and checked against analytic calculations with the
Weyl–van der Waerden spinor formalism and in-
house code based on off-shell recursions. More
details are given in Ref. [6].

3. Predictions for the LHC

We study the process pp → t̄tbb̄ + X at√
s = 14TeV with mt = 172.6GeV and

massless b quarks. Massless final-state par-
tons with rapidity–azimuthal-angle separation
√

∆φ2 +∆y2 < D = 0.4 are recombined into jets
using a kT-algorithm, and we require two b jets
with pT,b > 20GeV and |yb| < 2.5. We use the
CTEQ6 set of PDFs but neglect the suppressed
contributions from b quarks in the initial state.
More details are given in Ref. [6]
In all recent ATLAS studies of t̄tH(H → bb̄)

[1,8,29] the signal and its t̄tbb̄ background were
simulated by setting the renormalisation and fac-
torisation scales equal to half the threshold en-
ergy, Ethr = 2mt + mbb̄. In Ref. [5] we found
that for this scale choice the NLO corrections to
pp → t̄tbb̄ are close to a factor of two. This
enhancement is due to the fact that pp → t̄tbb̄
is a multi-scale process involving various scales
well below Ethr/2. The inspection of differential
distributions reveals that the cross section is sat-
urated by b quarks with pT,b ≪ mt. Therefore
we introduced in Ref. [6] the dynamical scale

µ2

0 = mt

√
pT,bpT,b̄, (1)

which improves the perturbative convergence and
minimises NLO effects in the shape of distribu-
tions.
Using the scale (1), we discussed in Ref. [6] the

kinematic region mbb̄ > 100GeV and found that
for all distributions considered the NLO correc-
tions are at the level of 20–30% and have rela-
tively little impact on the shape of distributions.
On the other hand we the corrections still induce
significant distortions of the kinematic distribu-
tions in the regime of a highly boosted Higgs bo-
son, which offers better perspectives to observe
the t̄tH signal. Here we provide some distribu-
tions in this scenario with pT,bb̄ > 200GeV.
In Figure 1 we show the scale dependence of the

LO and NLO integrated cross sections. Renor-
malisation (µR) and factorisation (µF) scales are
varied around the central value (1),

µR = ξRµ0, µF = ξFµ0. (2)

in a uniform (ξF = ξR) and antipodal (ξF = ξ−1

R
)

way in the range 1/8 ≤ ξF, ξR ≤ 8. At the
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Figure 1. Scale dependence of the LO and NLO pp → t̄tbb̄ + X cross section. The left and the right
plots describe uniform (ξR = ξF = ξ) and antipodal (ξR = ξ−1

F
= ξ) scale variations, respectively.

central scale we obtain σLO = 451.8(2) fb and
σNLO = 592(4) fb corresponding to K = 1.31.
The shape of the scale-dependence curves in-
dicates good convergence and stability of the
perturbative expansion. The shifts induced by
factor-two variations of the QCD scales amount
to 79% in LO and 22% in NLO.

For distributions we provide LO and NLO pre-
dictions with uncertainty bands for factor-two
uniform scale variations, which have a larger im-
pact as antipodal variations. More precisely, all
observables are evaluated at three different scales:
ξF = ξR = 0.5, 1, 2.

The bb̄ invariant-mass distribution is displayed
in Figure 2. The NLO corrections induce an ap-
preciable shape distortion of about 20%, in par-
ticular near the physically interesting region of
mbb̄ ∼ 100GeV. Such an effect tends to mimic
a Higgs signal and should be carefully taken into
account in the t̄tH(H → bb̄) analysis.

For other distributions the shape distortion is
not as sizeable. As examples we show the distri-
bution in the azimuthal angle φbb̄ that represents
the azimuthal orientation of the b jets with re-
spect to the beam direction in the plane perpen-
dicular to the bb̄ momentum in Figure 3 and the
dependence of the cross section with respect to a
cut on the t̄tbb̄ invariant mass in Figure 4.

4. Conclusion

The observation of the t̄tH(H → bb̄) signal at
the LHC requires a very precise description of the
t̄tbb̄ irreducible background. The NLO QCD cor-
rections reveal that the scale choice adopted in
previous LO simulations of pp → t̄tbb̄ does not
account for the multi-scale character of this pro-
cess and underestimates its cross section by a fac-
tor of two. A suitably chosen dynamical scale
significantly reduces both the K factor and the
residual NLO scale uncertainty. For standard
cuts NLO effects feature a relatively small kine-
matic dependence, but in the regime of highly
boosted Higgs bosons significant distortions are
still present in the shape of some distributions.
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and J. Küblbeck, Guide to FeynArts 1.0 , Uni-
versity of Würzburg, 1992.

20. T. Hahn, Comput. Phys. Commun. 140

(2001) 418 [arXiv:hep-ph/0012260].
21. T. Hahn and M. Pérez-Victoria, Com-
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