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The Context.the ATLAS Tile Calorimeter
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TileCal is the central hadronic calorimeter of ATLAS. With the central LAr EM calorimeter, it measures the energy and direction of
particle jets and contribute to the determination of the missing transverse energy in selected events, in the region of |n| < 1.7.

TileCal is made up by two barrels (a central, Long Barrel LB, and two Extended Barrels EB) divided along phi in 64 modules. The
modules are divided in three radial layers, and cells with a of 0.1. Each side of the Long Barrel, and each of the Extended Barrels
constitutes one partition

TileCal is a sampling calorimeter using iron as absorber and tiles of scintillating plastic as the
active material. The tiles are oriented perpendicularly fo the beam direction. The light readout
is assured by WLS optical fibers, that are connected to PMTs in the outer part of each module.
In the outer part of each module also are placed the detector electronics services: the
electronics for signal shaping, digitization and integration, for the analog trigger, the charge
injection calibration system, the low voltage power supply and a set of optical fibers dedicated
for the Laser calibration system.
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The calibration systems

The response of TileCal is regularly monitored and corrected using a series of calibration systems that focus on each main
detector component:

- The Charge Injection System (CIS) generates calibrated amplitude pulses, sent to electronics channel. It allows tfo compute
the calibration constants for the conversion of the number of ADC counts to pC.

 The Laser system provides calibrated light pulses that are sent to all TileCal PMTs using an optical fiber distribution system.
It allows the measurement and the correction of the PMT gain stability and linearity as function of the time.

- The Cesium calibration uses an hydraulic system to move a Cesium-137 source through all the TileCal cells. This system Is
— ——————— 11— used to set the gain of the TileCal PMTs to correct for non uniformity of the optics elements.
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