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Abstract

A measurement of the underlying activity in scattering processes with pT scale in
the GeV region is performed in proton-proton collisions at

√
s = 0.9 TeV, using data

collected by the CMS experiment at the LHC. Charged hadron production is studied
with reference to the direction of a leading object, either a charged particle or a set of
charged particles forming a jet. Predictions of several QCD-inspired models as im-
plemented in PYTHIA are compared, after full detector simulation, to the data. The
models generally predict too little production of charged hadrons with pseudorapid-
ity |η|< 2, pT > 0.5 GeV/c, and azimuthal direction transverse to that of the leading
object.
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1 Introduction
In the presence of a “hard” process characterized by large transverse momenta pT with respect
to the beam direction, the hadronic final states of hadron-hadron interactions can be described
as the superposition of several contributions: products of the partonic hard scattering with the
highest pT, including initial and final state radiation; hadrons produced in additional “multiple
parton interactions” (MPI); and “beam-beam remnants” (BBR) resulting from the hadroniza-
tion of the partonic constituents that did not participate in other scatters. Products of MPI and
BBR form the “underlying event” (UE). The UE cannot be uniquely separated from initial and
final state radiation.

A good description of UE properties is crucial for precision measurements of Standard Model
processes and the search for new physics at the CERN Large Hadron Collider (LHC) [1]. Multi-
plicity distributions measured by the UA5 collaboration at the Spp̄S collider [2] were modeled
in Monte Carlo (MC) simulations [3]. Detailed UE studies performed at the Tevatron by the
CDF collaboration [4–6] led to significant progress in MPI modeling [7]. The UE dynamics is,
however, not fully understood, especially the centre-of-mass energy dependence. A new en-
ergy domain is opening with the LHC, where UE properties can be studied with data taken at√

s = 0.9, 7, and 14 TeV. The data at 0.9 TeV analyzed in this paper provide a valuable reference
point to progress in the understanding of UE and MPI.

UE properties are conveniently analyzed with reference to the direction of the particle or of
the jet with largest pT. This “leading” object is expected to reflect the direction of the parton
produced with the highest transverse momentum in the hard interaction. Three distinct topo-
logical regions in the hadronic final state are thus defined by the azimuthal angle difference ∆φ
between the directions, in the plane transverse to the beam, of the leading object and that of any
charged hadron in the event. Hadron production in the “toward” region with |∆φ|< 60◦ and
in the “away” region with |∆φ|> 120◦ is expected to be dominated by the hard parton-parton
scattering and radiation. The UE structure can be best studied in the “transverse” region with
60◦< |∆φ|<120◦.

UE dynamics is studied through the confrontation of models with the data. In this paper,
MC predictions for charged particle production are compared after full detector simulation to
the data, uncorrected for detector effects. The predictions for inelastic events are calculated
using several tunes of the PYTHIA programme, version 6.420 [3, 8], which provide different
descriptions of the non-diffractive component: D6T [9, 10], DW [10], Pro-Q20 [11], Perugia-0
(P0) [12], and CW, the last being adapted from the DW tune as described below. They dif-
fer, in particular, in the implementation of the regularization of the formal 1/ p̂4

T divergence
of the leading order partonic scattering amplitude as the final state parton transverse mo-
mentum p̂T approaches 0. In PYTHIA this divergence is regularized through the replacement
1/ p̂4

T → 1/( p̂2
T + p̂2

T0
)2. The energy dependence of the cutoff transverse momentum p̂T0 is pa-

rameterized as p̂T0(
√

s) = p̂T0(
√

s0) · (
√

s /
√

s0)ε, where
√

s0 is the reference energy at which
p̂T0 is determined and ε is a parameter describing the energy dependence. CDF studies [4, 5]
favour a value of p̂T0 = 2.0 GeV/c for

√
s0 = 1.8 TeV. Because a single value of p̂T0 is used to

regularize both MPI and hard scattering, this parameter governs the description of the amount
of MPI in the event. More MPI activity is predicted for smaller values of p̂T0 .

All tunes considered in this paper are consistent with the UE measurements by CDF. Tunes DW,
P0, and Pro-Q20 use ε = 0.25, in agreement with CDF data at

√
s = 630 GeV and 1.8 TeV. Tune

D6T uses the value ε = 0.16, which is motivated by the energy dependence of charged particle
multiplicities measured by the UA5 collaboration at the Spp̄S collider [13]. For tune CW, p̂T0 is
decreased to 1.8 GeV/c and ε is increased to 0.30, while the parameters controlling the relative
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weighting of possible color connections in the matrix elements are changed back from the DW
values to the PYTHIA defaults; these changes lead to a large increase of the simulated MPI
activity at

√
s = 0.9 TeV and to an increase of a few percent at the Tevatron with

√
s = 1.8 TeV,

while remaining consistent with the CDF results. The parton distribution functions used to
describe the interacting protons are the CTEQ6LL set for D6T and the CTEQ5L set for the other
tunes [14, 15]. Tunes P0 and Pro-Q20 use LEP results to describe hadron fragmentation at high
z, where z denotes the fraction of the parton momentum carried by a final state particle. Tune
P0 uses the new PYTHIA MPI model [16], which is interleaved with parton showering.

2 Detector Description and Event Selection
A detailed description of the CMS detector can be found in [17]; features most relevant for the
present analysis are described in the following. A right-handed coordinate system is used with
the origin at the nominal interaction point (IP). The x axis points to the centre of the LHC ring,
the y axis is vertical and points upward, and the z axis is parallel to the anti-clockwise beam
direction. The azimuthal angle φ is measured with respect to the x axis in the xy plane and the
polar angle θ is defined with respect to the z axis.

The pixel and silicon strip tracker, immersed in the axial 3.8 T magnetic field provided by the
6 m diameter superconducting solenoid, measures charged particle trajectories in the pseudo-
rapidity range |η| < 2.5, where η = − ln(tan(θ/2)). The pT resolution for 1 GeV/c charged
particles is between 0.7% at η = 0 and 2% at |η| = 2.5 [17]. The modules composing the tracker
system were aligned with cosmic ray data taken prior to LHC commissioning, with a precision
of 3–4 µm in the barrel region [18].

Three subsystems were involved in the trigger of the detector readout: the forward hadron
calorimeter (HF), the Beam Scintillator Counters (BSC) [17, 19], and the Beam Pick-up Timing
for eXperiments (BPTX) [17, 20]. The steel–quartz-fibre HF covers the region 2.9< |η|<5.2. The
two BSCs, each of which consists of a set of 16 scintillator tiles, are located along the beam line
on each side of the IP at a distance of 10.86 m and are sensitive in the range 3.23 < |η|< 4.65;
they provide information on hits and coincidence signals with an average detection efficiency
of 96.3% for minimum ionizing particles and a time resolution of 3 ns, compared to a minimum
inter-bunch spacing of 25 ns. The two BPTX devices, which are located around the beam pipe
at a distance of 175 m from the IP, are designed to provide precise information on the structure
and timing of the LHC beams, with a time resolution better than 0.2 m. The data analyzed in
this paper were selected by requiring a signal in both BSC counters, in coincidence with BPTX
signals from both beams. During data taking, interaction rates were typically 11 Hz and the
probability for multiple inelastic collisions to occur in the same proton bunch crossing was less
than 2× 10−4.

The event selection requires one reconstructed primary vertex [21] with z coordinate within
15 cm of the centre of the beam collision region, of which the rms size is about 4 cm. Three or
more tracks must be identified as originating at the vertex. Table 1 gives the numbers of events
that pass these selection criteria. A study of data collected with non-colliding beams showed
that beam-induced backgrounds are negligible.

Kinematic selections are based on the transverse momentum of the leading charged particle or
of the leading track-jet, which must be reconstructed with pseudorapidity |η|<2. The leading
charged particle, or “leading track”, must be reconstructed in the tracking detector. The leading
track-jet is defined using the SISCone algorithm [22] as implemented in the fastjet package [23]
with a clustering radius R =

√
(∆φ)2 + (∆η)2 = 0.5. Only charged particles reconstructed
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Table 1: Numbers of events in the data satisfying the selection criteria, and corresponding
cumulative event fractions in the data and for the simulation based on PYTHIA with tune D6T.
In the lower part of the table, the effects of various selection cuts applied to the leading object
with |η|<2 are given, each fraction being given with respect to the previous cut.

Event selection Data [nb. events] Data [%] MC [%]
triggered 255 122 100 100

+ 1 primary vertex 239 038 93.7 92.9
+ 15 cm vertex z window 238 977 93.7 92.8

+ at least 3 tracks associated 230 611 90.4 88.7
leading track, pT >0.5 GeV/c 216 215 93.8 93.2

pT >1.0 GeV/c 131 421 60.8 55.0
pT >2.0 GeV/c 28 210 21.5 19.5

leading track-jet, pT >1.0 GeV/c 155 005 67.2 62.9
pT >3.0 GeV/c 24 928 16.1 15.9

Table 2: Numbers of tracks in the selected event sample for successive track selection criteria,
and corresponding fractions in the data and for the simulation based on PYTHIA with tune
D6T. Each fraction is given with respect to the previous selection cut.

Track selection Data [nb. tracks] Data [%] MC [%]
reconstruction algorithm 4 004 923 100 100

+ pT >0.5 GeV/c 1 707 998 42.6 44.0
+ |η|<2.5 1 689 910 98.9 98.7

+ |η|<2 1 399 344 82.8 81.5
+ dxy/σ(dxy)<5 1 235 193 88.3 88.8

+ dz/σ(dz)<5 1 204 979 97.6 97.9
+ σ(pT)/pT <5% 1 168 530 97.0 96.9

Total 1 168 530 29.2 29.8

in the tracker, with pT > 0.5 GeV/c and |η| < 2.5, are used to define the track-jet. No further
correction is applied to the track-jet pT. The η range of the charged particles used to define the
track-jet (|η|< 2.5) is chosen to be wider than that used for the UE analysis (|η|< 2) in order
to avoid a kinematic bias. A simulation-based study of jets with pT > 5 GeV/c indicates that
track-jets in CMS are found with high efficiency and good angular and energy resolutions [24];
this has been verified for softer jets in the present analysis. The results of selection cuts on the
leading track and leading track-jet pT are given in Table 1.

A detailed simulation of the CMS detector response was performed, based on the GEANT4
package [25] with event simulation using PYTHIA tune D6T. The position and shape of the
beam interaction region were adjusted to agree with the data [21]. Simulated events were pro-
cessed and reconstructed in the same manner as collision data, and the results of the simulation
are also reported in Table 1.
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Table 3: Systematic uncertainties on track selection and reconstruction (see description in text).
The uncertainties, expressed in %, are quoted for characteristic values of variables used for UE
studies in the transverse region. For the first two variables, pT designates the minimal value
of the track-jet pT; for the last three variables, events with a leading track-jet with pT >3 GeV/c
are selected.

track tracker tracker bg. trigger dead beam total
sel. align. mater. cont. ch. spot

d2Nch/dηd(∆φ) (pT = 3.5 GeV/c) 0.3 0.3 1.0 0.8 0.6 0.1 0.5 1.8
d2ΣpT/dηd(∆φ) (pT = 3.5 GeV/c) 0.4 0.3 1.0 0.8 1.1 0.1 0.5 1.8

dNev/dNch (Nch = 4) 0.6 0.6 1.2 1.0 1.2 0.2 0.6 2.3
dNev/dΣpT (ΣpT = 4.5 GeV/c) 0.5 0.2 0.6 0.5 1.2 0.2 0.4 1.6

dNch/dpT (pT = 1 GeV/c) 0.8 0.6 1.0 0.8 1.0 0.2 0.5 2.0

3 Track Selection and Systematic Uncertainties
A charged particle track is selected for the UE analysis if it originates from the primary vertex
and is reconstructed in the pixel and silicon strip tracker with transverse momentum pT >
0.5 GeV/c and pseudorapidity |η| < 2. A high purity reconstruction algorithm (see Section 3
of [21]) is used, which keeps low levels of fake and poorly reconstructed tracks. To decrease
contamination by secondary tracks from decays of long-lived particles and photon conversions,
the distance of closest approach between track and primary vertex is required to be less than
five times its estimated uncertainty, both in the transverse plane, dxy/σ(dxy) < 5, and along
the z axis, dz/σ(dz) < 5. Poorly measured tracks are removed by requiring σ(pT)/pT < 5%,
where σ(pT) is the uncertainty on the transverse momentum measurement. In the selected
track sample with |η| < 2, these cuts result in a background level of 3%, 1% from K0

S and Λ0

decay products and 2% from fake tracks.

The numbers of tracks accepted at the different selection steps and the corresponding fractions
are given in Table 2, together with the fractions calculated using simulated data. Agreement is
observed at the percent level between data and simulation, for all selection steps.

Several systematic uncertainties may affect the comparison of models with the data. The
sources of these uncertainties include the implementation in the simulation of track selection
criteria, tracker alignment and tracker material content, background contamination, trigger
conditions, and run-to-run variations of tracker and beam conditions.

The uncertainty in the simulation of track selection has been evaluated by applying various
sets of criteria and comparing their effects to the data and to simulated events.

The tracking performance depends on occupancy; because efficiencies and fake rates computed
using different models are found to be consistent within statistical uncertainties, no systematic
uncertainty due to occupancy variation is assigned. The effects of tracker misalignment are
found to change the results by less than 1%. The description in the simulation of inactive
tracker material has been found to be adequate within 5%; increasing the material densities by
5% in the simulation induces a change smaller than 1% in the tracking efficiency and has no
significant effect on background rates.

The simulation has been found to underestimate K0
S and Λ0 production as well as photon con-

version rates. These discrepancies induce changes of less than 0.5% in the background contam-
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ination. Increasing the combinatorial background by a conservative 30% leads to a combined
0.8% uncertainty due to background description.

The uncertainty related to the simulation of the BSC-based trigger is taken to be half of the dif-
ference between the distributions obtained with and without trigger simulation. This estimate
of the trigger-related systematic uncertainty was verified by means of HF-triggered events for
which the BSCs had not generated a trigger.

The number of inactive tracker channels changes from run to run; reproducing this effect in
the simulation induces a change of less than 0.5% in the observed distributions. The beam
collision region is not perfectly centred within the detector, and its position changes from run
to run; simulating different beam spot positions, consistent with those observed in different
runs, leads to a 0.5% uncertainty.

The systematic uncertainties are largely independent from one another, but they are correlated
among data points in the experimental distributions. Table 3 gives the main uncertainties for
selected events with a leading track-jet with pT >3 GeV/c, for characteristic values of variables
used for UE studies in the transverse region. Most uncertainties increase by typically 50% when
the selection requires a leading track with pT >2 GeV/c.

4 Results
Predictions from the various PYTHIA models, after full detector simulation, are compared to
the data. The scale of an interaction at parton level is defined by the pT value of the leading
object, either a track or a track-jet with |η| < 2. As can be observed in Table 1, demanding a
leading particle with pT > 2 GeV/c or a leading track-jet with pT > 3 GeV/c reduces the sample
size by a similar factor of about 10.
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Figure 1: Average multiplicity, per unit of pseudorapidity, of charged particles with pT >
0.5 GeV/c, as a function of η. The leading track-jet is required to have |η| < 2 and (left)
pT >1 GeV/c, or (right) pT >3 GeV/c (note the different vertical scales). Predictions from several
PYTHIA MC tunes, including full detector simulation, are compared to the data.

Figure 1 presents, as a function of η, the average multiplicity Nch per unit of pseudorapidity
of charged particles with pT > 0.5 GeV/c; for this figure, the track selection is extended to
|η| = 2.5. Distributions are shown for two choices of the minimal value required for the pT
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of the leading track-jet. For a harder scale, the multiplicities are larger and charged particles
with pT >0.5 GeV/c are produced more centrally. The various PYTHIA tunes describe several
features of the data: the overall normalization, the η dependence of particle production, and the
effect of the leading track-jet pT cut. However, no simulation describes perfectly all elements
of the data, either in normalization or in shape. For both values of the minimal pT of track-
jets, the data show a significantly stronger η dependence than predicted by the PYTHIA tunes.
Predictions of tune CW are too high in normalization, whereas those of tunes D6T, P0, and
Pro-Q20 are generally too low, with DW being too low in the central region and too high at
large |η| values. The shape description is slightly better with tunes P0 and Pro-Q20. Similar
observations are made when the selection criteria are applied to the leading track pT. The
observed features can be due to shortcomings in the description of parton fragmentation and
radiation (essentially the toward and away regions), in the description of the UE (visible in the
transverse region), or in both.
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Figure 2: Average scalar sum of transverse momenta of charged particles with pT > 0.5 GeV/c
and |η|< 2, per unit of pseudorapidity and per radian, plotted as a function of the azimuthal
angle difference ∆φ relative to the leading track (the measurements have been symmetrized in
∆φ). The leading track, which is excluded from the pT sum, is required to have |η| < 2 and
(left) pT > 1 GeV/c, or (right) pT > 2 GeV/c (note the different vertical scales). Predictions from
several PYTHIA MC tunes, including full detector simulation, are compared to the data.

The production of charged particles with pT > 0.5 GeV/c and |η|< 2 in the different topolog-
ical regions and the quality of the MC description can be examined through the distribution
of the azimuthal separation ∆φ between the directions of the leading object and of any se-
lected track. As an example, Fig. 2 presents the distribution of d2ΣpT/dηd(∆φ), where ∑ pT
denotes the scalar sum of particle transverse momenta, excluding the leading track at ∆φ = 0.
The events are selected with two different values of the leading track minimal pT. The char-
acteristic features of two-jet parton-parton production with underlying activity are observed.
Although the leading track pT is not included in the calculation, the average ∑ pT in the to-
ward region, |∆φ|<60◦, shows substantial activity due to parton fragmentation and radiation.
Charged hadron production is also significant around the opposite direction, |∆φ|> 120◦; this
is attributed to the fragmentation of the second outgoing parton. In the transverse region with
60◦ < |∆φ|< 120◦, hadron production is depleted but it is nonzero, a feature that is attributed
mainly to MPI. Similar features of the event structure are observed for the average track multi-
plicity and for selections based on the leading track-jet pT.
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In the toward region, all PYTHIA tune predictions are significantly above the data, except for
tune P0 with the scale pT > 2 GeV/c. The poor description by tune Pro-Q20 compared to that
of P0 may appear surprising since both use LEP results on jet fragmentation. A difference
between these tunes is that P0 incorporates newer MPI modeling and pT ordered showering.
Model descriptions are better for the away region, except for the CW and DW tunes, both of
which are significantly above the data when the scale is large.

The transverse region is most relevant for understanding UE properties. Here, the best tunes
are CW and DW. The predictions of the CW model are slightly too high, especially for the
higher pT scale, and those of DW slightly too low; predictions of the other tunes are even lower.
In the following, studies of the UE using the transverse region will focus on the comparison
with data of the predictions of the CW and DW tunes.

Figures 3 and 4 provide detailed information on the production of charged particles with pT >
0.5 GeV/c and |η| < 2 in the transverse region with 60◦ < |∆φ| < 120◦. Figure 3 presents the
distributions of the average multiplicity, d2Nch/dηd(∆φ), and of the average scalar momentum
sum, d2ΣpT/dηd(∆φ), as a function of the scale provided by the pT of the leading track or of
the leading track-jet. At low pT of the leading object, the multiplicity and the scalar ∑ pT rise
rapidly with pT, which is attributed to MPI. This fast rise is followed by a slower increase
for leading tracks with pT ∼> 3 GeV/c (left plots) or leading track-jets with pT ∼> 4 GeV/c (right
plots), attributed to a saturation of MPI, plus additional radiation; as expected, a similar scale
is provided by a lower pT value for a leading track than for a leading track-jet. The behaviour
of the data is reproduced by both the CW and DW tunes, as well as by the other PYTHIA tunes
(not shown), with a better description by CW in the low pT region.

The distributions of charged particle multiplicity, of scalar ∑ pT, and of particle pT are pre-
sented in Fig. 4 for events selected with a leading track-jet with pT > 3 GeV/c. The CW and
DW tunes bracket the data over most of the experimental range, and they describe the various
dependences rather well. Similar behaviours are observed for selections based on the leading
track pT.

The information is summarized in Fig. 5, which presents the ratio of the MC predictions to the
measurements, for the variables presented in Figs. 3 and 4. The shape of the steeply falling
hadron pT spectrum is well described by all tunes, in particular the P0 tune, which achieves
good agreement in the high-momentum tail because of its hard pT spectrum. The CW and
DW tunes globally describe the measurement of hadron production in the transverse region
best, both in normalization and in shape, with the CW predictions generally higher than the
data and the DW predictions lower. A small dependence on the choice of the leading object
is observed, with a preference for CW in the case of a leading track-jet and for DW in the case
of a leading particle (not shown). The predictions of tune D6T are too low and generally the
least consistent with the data. The predictions of tunes Pro-Q20 and P0 tend to lie between the
predictions of tunes D6T and DW.

5 Summary and Conclusions
This paper describes a study of the production of hadrons with pT > 0.5 GeV/c and |η|< 2 at
the LHC, in proton-proton collisions at

√
s = 0.9 TeV. Event selection required the presence

of a hard scale, provided by the transverse momentum of the leading charged particle or of
the leading track-jet. The minimal value of the scale was chosen in the range 1 to 3 GeV/c.
Particular attention has been devoted to the transverse region, defined by the difference in
azimuthal angle between the leading object and charged particle directions, 60◦< |∆φ|< 120◦,
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Figure 3: For charged particles with pT > 0.5 GeV/c and |η| < 2 in the transverse region,
60◦ < |∆φ| < 120◦: (upper plots) average multiplicity, and (lower plots) average scalar ∑ pT,
per unit of pseudorapidity and per radian, as a function of (left plots) the pT of the leading
track, and (right plots) the pT of the leading track-jet. The inner error bars indicate the sta-
tistical uncertainty and the outer error bars the total experimental uncertainty (statistical and
systematic uncertainties added in quadrature); statistical errors dominate. Predictions of the
DW and CW PYTHIA MC tunes, including full detector simulation, are compared to the data.
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Figure 4: For charged particles with pT > 0.5 GeV/c and |η| < 2 in the transverse region,
60◦ < |∆φ| < 120◦: (upper left) normalized multiplicity distribution; (upper right) normal-
ized scalar ∑ pT distribution; (bottom) pT spectrum. The leading track-jet is required to have
|η|< 2 and pT > 3 GeV/c. The inner error bars indicate the statistical uncertainty and the outer
error bars the total experimental uncertainty (statistical and systematic uncertainties added in
quadrature); statistical errors dominate. Predictions of the DW and CW PYTHIA MC tunes,
including full detector simulation, are compared to the data.
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which is most appropriate for the study of the underlying event.

The predictions of several PYTHIA MC models, after full detector simulation, have been com-
pared to the data. The models are all consistent with data taken at the Tevatron at

√
s = 1.8 TeV,

but they differ in the implementation of radiation, fragmentation, and multiple parton inter-
actions. They describe general features of the data. In the transverse region most tunes pre-
dict too little hadronic activity. An important parameter of simulation tuning in the PYTHIA
framework is the centre-of-mass energy dependence of the low p̂T0 cutoff aimed at regularizing
singularities in hard scattering and MPI. The present data favour an energy dependence of this
parameter along the lines of PYTHIA tune DW (ε = 0.25) or even stronger (ε = 0.30, as in tune
CW). Lower values of ε, as in tune D6T (ε = 0.16), are disfavoured.

The present measurements, together with results from Spp̄S, Tevatron, and RHIC, as well as
future LHC results at

√
s = 7 and 14 TeV, are expected to help in understanding better the prop-

erties of the underlying event and of multiple parton interactions in hadron-hadron scattering
at high energy. This is essential for precision measurements of Standard Model processes and
for the search for new physics at the LHC.
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