

A Cherenkov Detector for Monitoring ATLAS Luminosity

A. Sbrizzi On behalf of the ATLAS luminosity and forward detectors group

Outline

- Concept of Luminosity
- The LUCID Detector
- LUCID performance in 2009/2010
- Future Prospects

LHC: a pp collider at 7 TeV

To observe rare processes (Higgs), high luminosity needed (LHC design: 10³⁴ cm⁻²s⁻¹).

IPRD10 - A. Sbrizzi

Concept of Luminosity

Luminosity (*L*) relates physics process rates ($\propto \mu_{BX}$) to their cross sections (σ).

$$L = 40 \text{ MHz} \frac{N_{BX}}{3564} \frac{\mu_{BX}}{\sigma}$$
Physics definition

$$L = 40 \text{ MHz} \frac{N_{BX}}{3564} \frac{N_{protons/BX}^2}{4\pi\sigma_x \sigma_y}$$

Dependence on "beam parameters"

N _{BX}	Number of filled bunches			
μ_{BX}	Mean number of interactions per bunch crossing			
N _{protons/BX}	Number of protons per bunch crossing			
$\sigma_{x,} \sigma_{y}$	Beam width in x and y			

- Absolute luminosity is measured in "dedicated runs" with a "beam separation scan" with an accuracy of 10%, the largest contribution coming from the number of protons. Later on, it will be more precisely measured from *elastic pp collisions* (<3%).
- In "physics runs", luminosity is measured with relative monitors. LUCID is sensitive to *inelastic pp* collisions: $\sigma_{phojet} = 84.5 \text{ mb} \rightarrow \mu_{BX} \sim 25 \text{ at } 10^{34} \text{ cm}^{-2} \text{s}^{-1}$.

09/06/2010

IPRD10 - A. Sbrizzi

LUCID: the ATLAS luminosity monitor

Location of LUCID modules inside ATLAS

- The two LUCID detector modules are located in the forward ATLAS region at 17 m from the IP
- LUCID detects charged particles pointing to the primary *pp* collision
- LUCID is designed to measure the luminosity up to $L = 4 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

Technical challenge: locate the detector in a high radiation area 7 Mrad/year @ highest luminosity (10³⁴ cm⁻²s⁻¹)

LUminosity measurement with a Cherenkov Integrating Detector

 C_4F_{10} pressure at 1.1 bar (Leak <20 mbar/day/module).

LUCID detector principle

- Background suppression:
 - Cherenkov threshold: 10 MeV for e^{-} and 2.8 GeV for π , in the gas.
 - Geometry: tubes are pointing to the *pp* interaction region.
- The fast response (few ns) allows for single bunch crossing detection.
 - Increase the accuracy of the luminosity measurement.

Simulation of LUCID response to pp collisions

- A hit is defined with a threshold of 15 *p.e*.
- Particles below threshold cross only partially a tube.
- Maximum number of hits: 30 (saturation).

Definition of detected interaction

Single side mode (OR)	at least 1 hit in a module
Coincidence mode (AND)	at least 1 hit in both modules

The presence of hits in the detector might be due particles crossing the detector and "not directly related" to the primary pp collisions

The coincidence method suppresses "accelerator background".

Effect of coincidence in physics

The inelastic event is made of 3 components: non-diffractive, single and double-diffractive.

09/06/2010

Measurement of μ_{BX}

 ${\cal E}_{pp}$

Hit counting ($\mu < 0.01$)

$$\mu_{BX} = \frac{N_{hits/BX}}{N_{hits/pp}}$$

P _{hits/BX}	Mean number of events detected per bunch crossing		
$arepsilon_{pp}$	LUCID efficiency to detect a <i>pp</i> interaction		
N _{hits/BX}	Mean number of hits per bunch crossing		
N _{hits/pp}	Mean number of hits per pp interaction		

Simple linear formula is valid for μ < 0.01 (first LHC data). For larger values the relation is not linear (need corrections).

Luminosity measurement 2009/2010

- Good agreement between luminosity measurement provided by different detectors.
 - LUCID (16+16 cherenkov tube covering $5.6 < |\eta| < 5.9$)
 - Minimum Bias Trigger Scintillators (16+16 scintillators covering $2.1 < |\eta| < 3.8$)
 - Liquid Argon (Electromagnetic and Hadronic calorimeter covering $|\eta| < 4.9$)
- LUCID feature: high stability, low background (cosmics/noise < 3%, beam related < 0.1%)
- In addition, LUCID provides luminosity also when ATLAS is down.

Integrated luminosity up to now: 10 nb⁻¹

Going towards high µ: Migration effect

- The spectrum get flattened when μ increases (>1 particle through the same tube)
- This effect is called "migration" of secondary particles above threshold

Going towards high µ: Non linearity

- Relation between μ_{meas} and μ_{true} is not linear at high luminosity
- Underestimate of μ is due to "saturation effect"
- Overestimate of μ at intermediate values is due to "migration effect"
- In addition, coincidence mode suffers of non- linear effects due to combinatorial and Poisson statistics, which can be calculated (solid line)
- Deviation from prediction: $10\% @ \mu = 10$, when threshold is 50 *p.e.*

A MC based fit can be performed to provide the relation between μ_{meas} and μ_{true}

MC tuning: hit distributions

- Significant differences among models (especially in η).
 - $-\eta$ dependence also affected by 2 dead tubes.
- Possibility to constraint the MC at large pseudo-rapidity
 - Interesting because not many data available from past experiments.
- Before that, careful evaluation of systematic uncertainties
 - Effect of tube by tube variation.
 - Production of secondary particles in the beam pipe.

Conclusions

- Performance of measurement of luminosity with LUCID
 - High stability
 - Small background (< 3 %)
 - Total uncertainty smaller than 10% (with a calibration based on VdM scan)
- Plan for next 2 years: reach an integrated luminosity of 1 fb⁻¹.
- Going towards high luminosity:
 - Background goes down with luminosity. Anyway, possible accelerator related background" can be suppressed requiring hit coincidences.
 - "Coincidence effects" and "Detector related" effects (migration and saturation) are taken into account with a global fit to the Monte Carlo simulated events.
 - Other methods are currently under study fully based on data.
- Possibility to tune MC models by looking at hit distributions
 - Interesting for lack of data at high pseudo-rapidity from past experiments.

Backup slides

Efficiency table

Pythia cross sections are larger than Phojet ones and acceptance is smaller

Generator	ε^{OR}	ε^{AND}	N_{hits}^{OR}	N_{hits}^{AND}
PYTHIA MC09	0.6442 ± 0.0012	0.2171 ± 0.0011	1.7460 ± 0.0052	0.9200 ± 0.0051
PYTHIA DW	0.6398 ± 0.0012	0.2347 ± 0.0011	1.9070 ± 0.0059	1.1010 ± 0.0059
PYTHIA Perugia0	0.5785 ± 0.0013	0.1564 ± 0.0009	1.3940 ± 0.0046	0.6142 ± 0.0042
PYTHIA8	0.6665 ± 0.0012	0.2155 ± 0.0011	1.8260 ± 0.0053	0.9324 ± 0.0052
PHOJET	0.6938 ± 0.0012	0.2157 ± 0.0011	1.8640 ± 0.0052	0.9028 ± 0.0051

Table 1: LUCID efficiency and average number of hits per interaction for different MC generators of pp inelastic collisions at $\sqrt{s} = 7$ TeV and a full ATLAS detector simulation.

Energy	Threshold [p.e.]	$\Delta \varepsilon^{OR} \ [\%]$	$\Delta \varepsilon^{AND}$ [%]	ΔN_{hits}^{OR} [%]	ΔN_{hits}^{AND} [%]
$7 { m TeV}$	10	5.3710	15.2464	17.0103	25.2174
$7 { m TeV}$	11	4.0981	11.4694	12.7148	18.6957
$7 { m TeV}$	12	2.9494	8.1069	8.8774	13.1522
$7 { m TeV}$	13	1.9249	5.1129	5.6128	8.0978
$7 { m TeV}$	14	0.8848	2.3952	2.6346	3.8478
$7 { m TeV}$	15	0.0000	0.0000	0.0000	0.0000
$7 { m TeV}$	16	-0.8538	-2.2570	-2.2910	-3.3696
$7 { m TeV}$	17	-1.5989	-4.5601	-4.5246	-6.6630
$7 { m TeV}$	18	-2.3595	-6.3565	-6.4147	-9.2500
$7 { m TeV}$	19	-3.0891	-8.3372	-8.3047	-12.1087

Table 1: Variation of LUCID efficiency and average number of hits per interaction for pp inelastic collisions generated with PYTHIA MC09 and passed through a full ATLAS detector simulation.

LUCID read-out scheme

2×16 tubes are directly coupled to Photo-Multiplier Tubes (PMT). PMT must be radiation hard.

2×4 tubes are coupled to multi-anode PMT via Winston Cones and optical fibers.Better for high luminosity runs (MAPMT not exposed to high radiation doses).

Radiation hardness test

 γ : ⁶⁰Co, E = 1.22 MeVDose = 20±1 Mrad 30 years of LHC in phase I

n: ENEA-Casaccia reactor E = 100 KeV Dose = 10 years of LHC in phase I

Radiation hardness

Radiation hardness

