

A Cherenkov Detector for ATL-LUM-SLIDE-2010-126 Monitoring ATLAS Luminosity 10 June 2010**Exploration**

A. Sbrizzi On behalf of the ATLAS luminosity and forward detectors group

Outline

- Concept of Luminosity
- The LUCID Detector
- LUCID performance in 2009/2010
- Future Prospects

LHC: a pp collider at 7 TeV

To observe rare processes (Higgs), high luminosity needed (LHC design: 1034 cm-2s-1).

09/06/2010 IPRD10 - A. Sbrizzi 3

Concept of Luminosity

Luminosity (*L*) relates physics process rates ($\propto \mu_{BX}$) to their cross sections (σ).

$$
L = 40 \text{ MHz} \frac{N_{BX}}{3564} \frac{\mu_{BX}}{\sigma}
$$

$$
L = 40 \text{ MHz} \frac{N_{BX}}{3564} \frac{N_{protons/BX}^2}{4\pi\sigma_x\sigma_y}
$$

Physics definition **Dependence on "beam parameters"**

- Absolute luminosity is measured in "dedicated runs" with a "beam separation scan" with an accuracy of 10%, the largest contribution coming from the number of protons. Later on, it will be more precisely measured from *elastic pp collisions* (<3%).
- In "physics runs", luminosity is measured with relative monitors. LUCID is sensitive to *inelastic pp* collisions: $\sigma_{phojet} = 84.5 \text{ mb} \rightarrow \mu_{BX} \sim 25 \text{ at } 10^{34} \text{ cm}^{-2} \text{s}^{-1}$.

09/06/2010 IPRD10 - A. Sbrizzi 4

LUCID: the ATLAS luminosity monitor

Location of LUCID modules inside ATLAS

The two LUCID detector modules are located in the forward ATLAS region at 17 m from the IP

- LUCID detects charged particles pointing to the primary *pp* collision
- LUCID is designed to measure the luminosity up to $L = 4 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

Technical challenge: locate the detector in a high radiation area 7 Mrad/year @ highest luminosity (1034 cm-2s-1)

LUminosity measurement with a Cherenkov Integrating Detector

 C_4F_{10} pressure at 1.1 bar (Leak <20 mbar/day/module).

LUCID detector principle

- Background suppression:
	- Cherenkov threshold: 10 MeV for e^- and 2.8 GeV for π , in the gas.
	- Geometry: tubes are pointing to the *pp* interaction region.
- The fast response (few ns) allows for single bunch crossing detection.
	- Increase the accuracy of the luminosity measurement.

Simulation of LUCID response to pp collisions

- A hit is defined with a threshold of 15 *p.e.*
- Particles below threshold cross only partially a tube.
- Maximum number of hits: 30 (saturation).

Definition of detected interaction

The presence of hits in the detector might be due particles crossing the detector and "not directly related" to the primary *pp* collisions

The coincidence method suppresses "accelerator background".

Effect of coincidence in physics

The inelastic event is made of 3 components: non-diffractive, single and double-diffractive.

Measurement of $\mu_{\rm BX}$

Hit counting $(\mu < 0.01)$

$$
\mu_{BX} = \frac{N_{hits/BX}}{N_{hits/pp}}
$$

Simple linear formula is valid for μ < 0.01 (first LHC data).

Luminosity measurement 2009/2010

- Good agreement between luminosity measurement provided by different detectors.
	- LUCID (16+16 cherenkov tube covering $5.6 < |\eta| < 5.9$)
	- Minimum Bias Trigger Scintillators (16+16 scintillators covering 2.1 < |η| < 3.8)
	- Liquid Argon (Electromagnetic and Hadronic calorimeter covering $|\eta| < 4.9$)
- LUCID feature: high stability, low background (cosmics/noise < 3%, beam related < 0.1%)
- In addition, LUCID provides luminosity also when ATLAS is down.

Integrated luminosity up to now: 10 nb-1

Going towards high µ: Migration effect

- The spectrum get flattened when μ increases ($>$ 1 particle through the same tube)
- This effect is called "migration" of secondary particles above threshold

09/06/2010 IPRD10 - A. Sbrizzi 13

Going towards high µ: Non linearity

- Relation between μ_{meas} and μ_{true} is not linear at high luminosity
- Underestimate of μ is due to "saturation effect"
- Overestimate of u at intermediate values is due to "migration effect"
- In addition, coincidence mode suffers of non- linear effects due to combinatorial and Poisson statistics, which can be calculated (solid line)
- Deviation from prediction: 10% ω μ = 10, when threshold is 50 *p.e.*

A MC based fit can be performed to provide the relation between μ_{meas} and μ_{true}

MC tuning: hit distributions

- Significant differences among models (especially in *η*).
	- η dependence also affected by 2 dead tubes.
- Possibility to constraint the MC at large pseudo-rapidity
	- Interesting because not many data available from past experiments.
- Before that, careful evaluation of systematic uncertainties
	- Effect of tube by tube variation.
	- Production of secondary particles in the beam pipe.

Conclusions

- Performance of measurement of luminosity with LUCID
	- High stability
	- Small background (< 3 %)
	- Total uncertainty smaller than 10% (with a calibration based on VdM scan)
- Plan for next 2 years: reach an integrated luminosity of 1 fb⁻¹.
- Going towards high luminosity:
	- Background goes down with luminosity. Anyway, possible accelerator related background" can be suppressed requiring hit coincidences.
	- "Coincidence effects" and "Detector related" effects (migration and saturation) are taken into account with a global fit to the Monte Carlo simulated events.
	- Other methods are currently under study fully based on data.
- Possibility to tune MC models by looking at hit distributions
	- Interesting for lack of data at high pseudo-rapidity from past experiments.

Backup slides

Efficiency table

Pythia cross sections are larger than Phojet ones and acceptance is smaller

Generator	$_{\epsilon}$ OR	$_{\varepsilon}AND$	N_{hits}^{OR}	N_{hits}^{AND}
PYTHIA MC09	0.6442 ± 0.0012 0.2171 ± 0.0011		1.7460 ± 0.0052	0.9200 ± 0.0051
PYTHIA DW	0.6398 ± 0.0012 0.2347 ± 0.0011		1.9070 ± 0.0059	1.1010 ± 0.0059
PYTHIA Perugia0	0.5785 ± 0.0013 0.1564 ± 0.0009		1.3940 ± 0.0046	0.6142 ± 0.0042
PYTHIA8	0.6665 ± 0.0012 0.2155 ± 0.0011		1.8260 ± 0.0053	0.9324 ± 0.0052
PHOJET		0.6938 ± 0.0012 0.2157 ± 0.0011	1.8640 ± 0.0052	0.9028 ± 0.0051

Table 1: LUCID efficiency and average number of hits per interaction for different MC generators of pp inelastic collisions at $\sqrt{s} = 7$ TeV and a full ATLAS detector simulation.

Table 1: Variation of LUCID efficiency and average number of hits per interaction for pp inelastic collisions generated with PYTHIA MC09 and passed through a full ATLAS detector simulation.

LUCID read-out scheme

2×16 tubes are directly coupled to Photo-Multiplier Tubes (PMT). PMT must be radiation hard.

2×4 tubes are coupled to multi-anode PMT via Winston Cones and optical fibers. Better for high luminosity runs (MAPMT not exposed to high radiation doses).

Radiation hardness test

γ*: 60Co, E = 1.22 MeV Dose =* **20±1 Mrad** *30 years of LHC in phase I*

n: ENEA-Casaccia reactor E = 100 KeV Dose = 10 years of LHC in phase I

Radiation hardness

Radiation hardness

09/06/2010 IPRD10 - A. Sbrizzi 22