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Decay rates of unpolarized top quarks into longitudinally and transversally polarized W bosons
are calculated to second order in the strong coupling constant αs. Including the finite bottom quark
mass and electroweak effects, the Standard Model predictions for the W boson helicity fractions are
FL = 0.687(5), F+ = 0.0017(1), and F− = 0.311(5).
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There has been a continuing interest in the measure-
ment of the helicity fractions of the W boson from top
quark decays from the CDF collaboration [1–7] and from
the D0 collaboration [8–11] at the Tevatron at Fermilab.
In the Standard Model (SM) the top quark decays pre-

dominantly into a W+ boson and a bottom quark. In-
teresting observables, independent of the production rate
that is difficult to predict precisely for a hadron collider,
are the fractions of the three possible W helicities: FL

(longitudinal), F+ (transverse-plus) and F− (transverse-
minus). In the leading order (LO) in the strong coupling
constant αs (that is, without any gluon corrections), and
in the limit of a massless bottom quark one has [12]

FL : F+ : F− =
1

1 + 2x2
: 0 :

2x2

1 + 2x2
, (1)

with FL +F+ +F− = 1 and x ≡ mW /mt. Using mW =
80.401(43) GeV [13] and mt = 172.8(1.3) GeV [14] we
get x2 = m2

W /m2
t = 0.216(3) and FL : F+ : F− ≃ 0.7 :

0 : 0.3.
The leading order decay t → bW is a two-body pro-

cess. With the V − A interaction, a massless b quark is
left-handed, thus the W can only be left-handed or lon-
gitudinal due to angular momentum conservation. One
therefore has F+ = 0 provided no gluons are emitted.
The above LO predictions are only marginally changed

by the bottom mass. For a pole mass of mb = 4.8 GeV
one finds that the total rate Γ decreases by about a quar-
ter per cent compared to the massless b limit. The helic-
ity fraction FL slightly decreases while F− increases, by
about one per mil. The leakage into the transverse-plus
fraction F+ is less than half per mil. Radiative correc-
tions are a more important source of the transverse-plus
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rate. However, as we shall see, when NLO and NNLO
gluon radiation is included, F+ still does not exceed two
per mil. Since only hard gluon emission can influence the
helicity fractions, this smallness is a reliable prediction of
the Standard Model.
For this reason, the transverse-plus fraction F+ is a

sensitive probe of New Physics effects such as a right
chiral admixture to the SM current. The left and right
chiral contributions do not interfere for mb = 0 leading
to a quadratic dependence on the admixture parameter.
The contribution of the right chiral contribution can be
obtained from Eq. (1) by exchanging F+ ↔ F− whereas
FL remains unchanged. We mention that there are some
indirect model dependent constraints on a possible right
chiral admixture to the SM current from measurements
of b → s+ γ decays [15–18].
Let us summarize the theoretical prediction for the he-

licity fractions. In addition to the O
(

α2
s

)

effects com-
puted in this paper, we include the lower-order contri-
bution (Born + O (αs)) [19–21], the leading electroweak
corrections [22] and, for F+, the mb effect. The errors
resulting from uncertainties in mt,b,W and αs and an esti-
mate of the higher-order effects are added in quadrature.
We find

FL = 0.687(5) ,

F+ = 0.0017(1) ,

F− = 0.311(5) . (2)

The relative errors for FL and F− are small (of O (1%))
and, for the largest part, result from the experimental
error on the top mass. The error for F+ arises from
uncertainty in αs and, to a lesser degree, in mb. Its
absolute value is small but the relative error is large due
to the fact that F+ vanishes at LO for mb = 0.
Various methods have been used by the CDF and D0

collaborations to experimentally extract the helicity frac-
tions from the top quark decay data (see the recent re-
view [23]). While previous analyses have performed two
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fits keeping one of the helicity fractions at its SM value
more recent analyses measure the fractions FL and F+

simultaneously in a two-dimensional fit [7, 11]. Using
such a model independent analysis the CDF collabora-
tion quotes values of FL = 0.88± 0.11(stat)± 0.06(syst)
and F+ = −0.15 ± 0.07(stat) ± 0.06(syst) [7]. In a sim-
ilar analysis the D0 collaboration obtains FL = 0.425±
0.166(stat)± 0.102(syst) and F+ = 0.119± 0.090(stat)±
0.053(syst) [11]. Both measurements are consistent with
the SM predictions.

The experimental errors on the helicity fraction mea-
surements are still rather large but will be much reduced
when larger data samples become available in the future
from the Tevatron and from the LHC. Optimistically the
measurement errors can eventually be reduced to below
one per cent. For example, an early Monte Carlo (MC)
study quotes measurement uncertainties of ∆FL = 0.007
and ∆F+ = 0.003 for an integrated luminosity of 100
fb−1 at Tevatron II energies [24]. The corresponding
event rates can easily be reached at the LHC within one
year. A more recent MC study based on 10 fb−1 at the
LHC quotes measurement uncertainties of ∆FL = 0.019,
∆F− = 0.018 and ∆F+ = 0.0021 [17].

The improvements in the accuracy of the experimen-
tal measurements have to be matched by corresponding
advances in the theoretical sector. The NLO O (αs) cor-
rections to the helicity fractions were calculated in [19–
21]. They lower FL and increase F− by about one and
two per cent, respectively, relative to their LO values. At
NLO there is now a small contribution to the transverse-
plus fraction F+ of 0.001. The corresponding NLO elec-
troweak and finite width corrections were determined
in [22]. They are smaller than the strong corrections
and tend to cancel each other for both FL and F−.

It is desirable to improve the accuracy of the theo-
retical predictions and to check the convergence of the
perturbative series by computing the helicity fractions at
NNLO. A first step in this direction was taken in [25, 26] 1

where the NNLO corrections to the total rate were found,
exploiting the smallness of x = mW /mt. A series in pow-
ers and logarithms of x was obtained and found to con-
verge rapidly, so that its first few terms suffice. The aim
of this paper is to use similar techniques to calculate the
NNLO strong corrections to the three helicity fractions.

We first determine the rate ΓL of the top decay with
longitudinally polarized W , replacing the full sum over
W polarizations by a projector described below. The
previous knowledge of the total rate is used to calculate
the transverse rate ΓT = Γ+ + Γ− from the difference
ΓT = Γ − ΓL. We use another projector to find the
difference Γ+ − Γ−. Finally, the helicity fractions Fi =
Γi/Γ are determined.

Our calculation follows the approach outlined in
Ref. [26]. Using the optical theorem we compute the

1 An approximate value for the total rate was found in Ref. [27].
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FIG. 1: Sample three-loop diagrams. Thick and thin lines
denote top and bottom quarks, respectively. Wavy lines de-
note W bosons and curly lines denote gluons. In the closed
fermion loop all quark flavors have to be considered.

decay width from the imaginary part of top-quark self-
energy diagrams,

Γ =
1

mt

Im (Σ) , (3)

where Σ denotes the one-particle irreducible self-energy
diagrams. Sample diagrams are shown in Fig. 1. The
unitary gauge is used for the W boson so that diagrams
with Goldstone bosons are not needed. However, the
Rξ gauge is used for the gluons with an arbitrary gauge
parameter. The gauge-parameter dependence cancels in
the final result.
Since we set the mass of the bottom quark to zero, the

integrals contain two scales,mt andmW . To reduce these
integrals to single scale integrals, we use the method of
expansion by regions (see, e.g., Ref. [28]). In the present
case, there are two regions to be considered. In the so-
called hard region, the loop momenta are of the order
of mt, while they are of order mW in the so-called soft
region. The integrals become scaleless and vanish if a
gluon momentum is soft. Thus, we are left with two
contributions to each integral: one where all momenta
are hard and one where only the W -boson momentum
is soft. For each contribution we construct appropriate
expansions in the corresponding small quantities. The
remaining single scale integrals are further reduced to so-
called master integrals using Laporta’s algorithm [29, 30].
Compared to the NNLO calculation of the total width,

to get the partial rates with various W polarizations re-
quires replacing the total rate projector 2

P
µν = −gµν +

qµqν

m2
W

, (4)

by the longitudinal projector P
µν
L or the transverse-

plus/minus projectors P
µν
± . The longitudinal projector

2 In the unitary gauge, the W boson propagator reads iPµν/(q2 −
m2

W
).
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reads [20]

P
µν
L =

(m2
W pµ − p · q qµ)(m2

W pν − p · q qν)
m2

Wm2
t |~q |2

, (5)

where p is the top quark momentum and q = (q0; 0, 0, |~q |)
is the momentum of theW boson which propagates in the
z-direction. The transverse projectors can be obtained
with the help of the forward-backward projector [20]

P
µν
F = − 1

mt|~q |
iεµνσρpσqρ . (6)

One has Pµν
± = (Pµν − P

µν
L ± P

µν
F ) /2.

Partial helicity rates involve two technical challenges
absent in the total rate calculation. First, there is an
additional propagator-like structure 1/|~q |n, n ∈ {1, 2} in
Eqs. (5) and (6), and second, we have to deal with the
presence of γ5-odd traces in dimensional regularization.
Our approach to both issues is outlined below.
In the hard region, we express |~q |2 through the prop-

agator factor N = (p+ q)2 −m2
t = 2pq+ q2 as follows 3:

|~q |2 = q20 −m2
W =

(2p · q)2
4m2

t

−m2
W

=
1

4m2
t

[

N2 − 2m2
WN +m4

W − 4m2
tm

2
W

]

. (7)

In Eq. (7) we use the fact that we are only interested in
the imaginary part and that q2 = m2

W on the cut. Now
we can construct the desired expansions in mW /mt as

1

|~q | =
2mt

N

∞
∑

i=0

(

2i

i

)(

2m2
WN −m4

W + 4m2
tm

2
W

4N2

)i

,

1

|~q |2 =
4m2

t

N2

∞
∑

i=0

(

2m2
WN −m4

W + 4m2
tm

2
W

N2

)i

, (8)

which we truncate at some order. Thus, the additional
propagator-like structure from the projector is trans-
formed into a scalar on-shell propagator with momentum
p + q and mass mt, raised to arbitrary, integer powers.
For the calculation of the polarized decays we need, next
to the master integrals of Refs. [26, 31], twelve additional
three-loop master integrals.
In the soft region, we cannot perform an expansion of

|~q |, since |~q |2 = q20 −m2
W and q0 is of order mW in the

soft region. However, in this region the W -boson loop
factorizes. Therefore, we only have to replace the usual
one-loop tadpole integrals with integrals of the type

∫

ddq

(q2 −m2
W ) (q20 −m2

W )n
, (9)

3 p = (mt; 0, 0, 0) in the rest frame of the top quark such that
p · q = mtq0.

with n ∈ {1/2, 1}. d = 4 − 2ǫ is the number of dimen-
sions. Integrals of this type can be easily evaluated by
performing the integrations over the time-like and space-
like momentum components separately.
For traces with an odd power of γ5, we use the pre-

scription of Ref. [32] and replace

γµγ5 → i

3!
εµαβδγ

αγβγδ . (10)

The ε tensor is stripped off and absorbed into the pro-
jector. As a consequence the renormalization constant of
the axial-vector current at the requisite order becomes

ZA = 1 +
(αs

π

)2
(

11

24
CFCA − 1

6
CFTFnf

)

1

ǫ
, (11)

where CF = (N2
c − 1)/(2Nc) and CA = Nc are the

Casimir operators of the fundamental and adjoint rep-
resentation of SU(Nc), respectively. For QCD we have
Nc = 3 and TF = 1/2. nf denotes the number of quark
flavors. Additionally, we have to include the finite renor-
malization constant

Z5 = 1− αs

π
CF +

(αs

π

)2
(

11

8
C2

F − 107

144
CFCA

+
1

36
CFTFnf

)

(12)

to restore the anti-commutativity of γ5. Both renormal-
ization constants were determined at the three-loop level
in Ref. [33].
A NLO check of the new methods used in this paper

is afforded by comparing with the expanded form of the
known NLO closed form results given in [19–21]. We
found agreement up to O

(

x16
)

.
We present our results in terms of the reduced helicity

rates Γ̂i where

Γi =
GFm

3
t |Vtb|2

8
√
2π

Γ̂i (13)

with i ∈ {L,+,−}. GF is Fermi’s constant and Vtb

is the element of the Cabibbo-Kobayashi-Maskawa ma-
trix which governs transitions between bottom and top
quarks.
The analytical results of our calculation are too long

to be presented here. Instead we present their numeri-
cal values. In Table I we show successive terms in the
power series expansion (in terms of [xn] := (xn, xn lnx))
of the NNLO correction to the reduced helicity rates up
to terms of order O

(

[x10]
)

. Noteworthy is the fact that
there are also odd powers in the expansion in [x]. These
terms appear in the expansion of the parity-odd helicity
structure function ΓF

4 and thereby in Γ± (see Table I).

4 This follows the pattern in unpolarized and polarized top quark
decays where the expansion of the five parity-even structure func-
tions have n=even whereas the expansion of the five parity-odd
structure functions have n=even/odd [20].
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The odd powers of x stem solely from the soft region
of ΓF . The leading x0 contributions of Γ̂L and Γ̂ are
equal to each other. This is a consequence of the Gold-
stone boson equivalence theorem. Between the [x4] and
[x6] terms the power series expansion is somewhat erratic

for Γ̂+, Γ̂− and Γ̂. However, expanding up to O
(

[x10]
)

Table I shows that one has sufficient numerical stability
and precision for all three helicity rates and their sum.
The contribution of the O

(

[x10]
)

term amounts to about

0.01%, 1%, 0.06% and 0.03% of the total for Γ̂L, Γ̂+, Γ̂−

and Γ̂, respectively. The convergence is slowest for Γ̂+.

But then Γ̂+ is numerically very small.

TABLE I: Numerical values for O ([xn] := (xn, xn ln x)) terms
in the x–expansion of the NNLO corrections to the reduced
partial and total helicity rates Γ̂i

.

Γ̂L Γ̂+ Γ̂− Γ̂

[x0] −1.958·10−2 0 0 −1.958·10−2

[x2] 4.737·10−3 3.860·10−4
−3.861·10−3 1.262·10−3

[x4] 6.710·10−4 1.351·10−4
−9.917·10−4

−1.856·10−4

[x5] 0 −5.339·10−4 5.339·10−4 0

[x6] −1.467·10−4 1.186·10−4 4.878·10−4 4.597·10−4

[x7] 0 7.696·10−5
−7.696·10−5 0

[x8] −1.702·10−5
−2.333·10−5

−1.723·10−5
−5.758·10−5

[x9] 0 3.408·10−6
−3.408·10−6 0

[x10] −1.274·10−6
−1.844·10−6

−2.176·10−6
−5.294·10−6

Σ −1.434·10−2 1.610·10−4
−3.931·10−3

−1.811·10−2

In order to present our numerical results on the helic-
ity fractions we define helicity fractions up to O (n) by
writing (n = 0, 1, 2 denote the contributions up to LO,
NLO and NNLO, respectively)

F (n)
i =

∑n
j=0 Γ

(j)
i

∑n
j=0 Γ

(j)
, (14)

where i = L,+,−. We further define the increments

∆F (n)
i = F (n)

i − F (n−1)
i and the relative increments

δF (n)
i = ∆F (n)

i /F (0)
i . We present our numerical results

in the form Fi = F (0)
i + ∆F (1)

i + ∆F (2)
i , and also, if

F (0)
i 6= 0, as Fi = F (0)

i (1 + δF (1)
i + δF (2)

i ). For our nu-
merical results we use αs(mt) = 0.1073(24), which we
obtained with the program RunDec [34] from the values
αs(mZ) = 0.1176(20) and mZ = 91.1876(21) GeV [35].
We find

FL = 0.6978− 0.0075− 0.0023

= 0.6978(1− 0.0108− 0.0033) ,

F+ = 0 + 0.00103 + 0.00023 ,

F− = 0.3022 + 0.0065 + 0.0021

= 0.3022(1 + 0.0215 + 0.0070) . (15)
The results in Eq. (15) contain higher orders in αs from
the expansion of the denominators in Eq.(14). In order
to maintain the constraint FL +F+ +F− = 1, we prefer
the unexpanded definition of helicity fractions (14).

The numbers in Eq. (15) show the good convergence

of the perturbative expansion, even though ∆F (1)
i /F (0)

i

(for i = L,−) is much smaller than ∆F (2)
i /∆F (1)

i . The
NLO corrections to the helicity fractions are already close
to the expected future experimental sensitivities and the
NNLO corrections increase these by approximately a
third. In particular, the NNLO calculation of the helic-
ity fraction F+ remains at the order of 0.001. Should a
measurement reveal a significantly larger value, it would
be a clear signal of New Physics.
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