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We present results for the corrections of order «*(Za) E r to the hyperfine splitting of muonium. We compute all
the contributing Feynman diagrams in dimensional regularization and a general covariant gauge using a mixture
of analytical and numerical methods. We improve the precision of previous results.
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I. INTRODUCTION

Muonium is the hydrogen-like bound state of a positive
muon and an electron. Unlike hydrogen, or any other bound
state involving hadrons, muonium is free from the complica-
tions introduced by the finite size or the internal structure of any
of its constituents. Therefore, it allows for a very precise test of
bound-state QED and can be used to restrict models of physics
beyond the standard model. Measurements of the ground-state
hyperfine splitting of muonium are used to extract the muon-to-
electron mass ratio m, /m, and the muon-to-proton magnetic
moment ratio u,/u, [1]. The value of u,/u, is required
for obtaining the muon anomalous magnetic moment from
experiment [2]. In addition, hyperfine splitting can also be
used to determine the fine structure constant «. For a review
of the present status and recent developments in the theory of
light hydrogenic atoms, see [3,4].

The leading-order hyperfine splitting is given by the Fermi
energy Ef [defined in Eq. (1)]. Its corrections are organized
as a perturbative expansion in powers of three parameters:
Zuo, describing effects due to the binding of an electron to a
nucleus of atomic number Z; « (frequently accompanied by
1/m) from electron and photon self-interactions; and m /M,
the ratio of electron to nucleus masses. The main theoretical
uncertainty comes from three types of yet unknown correc-
tions: single-logarithmic and nonlogarithmic corrections of
order a(Za)*>(m/M)Er, and nonlogarithmic corrections of
order a*(Za)(m/M)Ep and (Za)*(m/M)E p (some terms are
known for the first case [5]).

In this paper we focus on the second-order radiative-
nonrecoil corrections to the hyperfine splitting [of order
a?(Za)E r]. The total result for these corrections was found by
Eides and Shelyuto [6] and Kinoshita and Nio [7]. Our result
improves their precision by over an order of magnitude. Our
central value is slightly lower than, but compatible with, that
of [6].

In Sec. II we present the details of our approach, and in
Sec. III we present our results. In Appendix we show analytic
results for two sets of diagrams.

II. EVALUATION

We consider an electron of mass m orbiting a nucleus of
mass M and atomic number Z. In this paper we consider the
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nucleus to be a muon, but we keep Z explicit in order to
distinguish between the binding contributions (Z«) and the
radiative ones ().

We are interested in corrections to the hyperfine splitting of
the ground state of muonium of order o>(Za)E ¢ and leading
order in m/M, where

8 Ze) g

Er=—-———"7"=.
P73 M 2

1
Here g is the gyromagnetic factor of the nucleus' [in our
case, a muon, but our final result in Eq. (19) applies to any
hydrogen-like atom]. In order to compute these corrections,
we consider the scattering amplitude

IM = [a(p)Qiu(p)I[v(P)Qv(P)], 2

where u(p) is the spinor for the electrgn, v(P) is the spinor for
the muon, p = (m,0), and P = (M,0). Q, and Q, are given
by the Feynman rules describing the sum of the diagrams
shown in Figs. 1 and 2. In these figures, the sum of the direct
and crossed interactions between the electron and the muon is
represented by a dotted line, as shown in Fig. 3. We define a
bound-state wave function ¢ = uv, so that Eq. (2) becomes

iM=—Tr{y 0¥ 0,). (3)

Depending on the relative alignment of the spins of the
constituent particles, an § state can belong to either the J = 1
triplet or the J = 0 singlet. The triplet and singlet states are
often denoted by the prefixes ortho- and para-, respectively,
and their wave functions are given by [8]

1+

I/Ipara=2—\/g0)/5, €]
I+w. -

Vortho = ——7 - &, (5)

22

Tt includes the corrections from the anomalous magnetic moment,
which factorize with respect to the corrections considered in this
paper. This is no longer true when considering nonrecoil corrections
(see, e.g., [3]).
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FIG. 1. The different sets of vacuum polarization diagrams and
light-by-light diagrams (set IV). Each set represents the drawn
diagram plus all the possible permutations of its pieces.

where g? is the polarization vector. We average over the
directions of £ by considering the four-vector £ = (0,£) and
using the identity

1
(6 -A)E-B)) = 71 (AoBo—A- B). (6)

We use dimensional regularization with d = 4 — 2¢ dimen-
sions. Thus, an important issue is the definition of y5, which is
an intrinsically four-dimensional object. Since we do not have
to evaluate traces with an odd number of y5 matrices, we can
treat them as anticommuting.

The energy shift created by the radiative corrections
depicted in Figs. 1 and 2, for either the singlet or the triplet
configurations, is given by

SE = — |, (0))* M, @)

where [,(0)|> = (Zap)?/(mn?) is the squared modulus of
the wave function of a bound § state with principal quantum
number n and reduced mass p. The hyperfine splitting (hfs) is
then simply

S Ents = 8 Eortho — 8Epara' ®)

In order to evaluate the loop integrals represented by the
Feynman diagrams, we use the method of regions [9] to

p q r S

FIG. 2. The diagrams involving a two-loop electron self-
interaction and vertex corrections.
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Pk —P—k
FIG. 3. The sum of the direct and crossed diagrams is represented
by a dotted line; the double line represents the propagator of the muon.

construct an expansion in the small ratio m/M. There are
several possible contributing regions, where one or more of
the loop momenta scale like m or M. However, we are only
interested in the leading order in m /M, which is given by the
region where all loop momenta scale like m. If k ~ m, we can
expand the contribution from the muon line in the sum of the
direct and crossed diagrams of Fig. 3,

k—P+M kK+P-M
Ve P M2 i VP r PE_MEyie®
- T+ T+ T, 9)
where
1 | 1
T =2Fsve |:<2P~k—ie _2P~k+ie)+0<ﬁ>]
(10)
1 1 1
Tzz_”“k”ﬂKzP.k—ie _2P-k+i6>+0(ﬁ)}’
(11)

1 1
T3 = —(Yukyvp + vekve) [m +0 (E)} . (12)

We used the equation of motion to set some terms in the
numerator to zero, and we arranged the terms in the expansion
in such a way that the three different Dirac structures that
are important for the calculation of the hyperfine splitting
appear explicitly. We now see that only 7, can contribute to
the splitting.

Consider the Dirac structure of ¥ 77 and anticommute the
y matrices, for both para and ortho states:

Xpara: 1+J/0y5y
h 2v2 7
1—)/() 1
= —Yo—= V5 — —=8a05, (13)
Ve 22 V5 ﬁg 0Ys
ortho 1+y0]/'}/
T 2\/5 i/

1 1
~Ya——F=Yi — —=80Vi + —=8ui(1 +y0). (14)
Y 2ﬁ Vi ﬁg 0V ﬁg Yo
Now we can write

iMp, = -Tr{y Q¢ Ti} o Tr{y ' Qi xr, )
= Trlxn v Q). (15)

Using the expressions in Egs. (13) and (14), it is easy to see that
X%mlﬁgara = X%"h"wgnho (after averaging over polarizations).
This means that 7 gives the same contribution for para and
ortho states. Therefore, when we subtract these contributions
in order to compute the hyperfine splitting, they cancel out.
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If we consider T, instead, defining 7, in analogy with
Egs. (13) and (14), we can see that X%arai/fgara #* X%nholw

so this term does not cancel in the subtraction. The differg?llg)e
between the para and ortho states comes solely from terms
in x%“h" that are totally antisymmetric in o and g8. Therefore,
when we consider the Dirac structure of 73, which is but a
symmetrization of that of 75, these terms vanish, and so T3
does not contribute to the hyperfine splitting either.

Thus, we have seen that the only term that contributes to

the hyperfine splitting is
¢ 1 L Vio(4)] a6
VeEYBI\2P k—ie 2P k+ic P2)|
This is valid at all orders of « and all orders in m /M. We can
then substitute the scalar part of the nucleon propagator by

a Dirac ¢ function in all our calculations, since we are only
interested in the leading order in m/M and

1 1
2P -k —ie 2P k+ie

—in8(P k). (17)

We used dimensional regularization and renormalized our
results using the on-shell renormalization scheme. For all
the photon propagators in Figs. 1 and 2, we used a general
covariant R¢ gauge. The overall cancellation of the dependence
on the gauge parameter in the final result provides us with a
good check for our calculations.

We used the program QGRAF [10] to generate all of the
diagrams, and the packages Q2E and EXP [11,12] to express
them as a series of vertices and propagators that can be
read by the FORM [13] package MATAD 3 [14]. Finally,
MATAD 3 was used to represent the diagrams in terms of a
set of scalar integrals using custom-made routines. In this
way, we represented the amplitude M in terms of several
thousand different scalar integrals. These integrals can be
expressed in terms of a few master integrals by means
of integration-by-parts (IBP) identities [15]. We used the
so-called Laporta algorithm [16,17] as implemented in the
MATHEMATICA package FIRE [18], to reduce the problem to
32 master integrals. The master integrals for this calculation
are the same ones we found in [19]; all definitions and results
for the integrals can be found in this reference. However, one
change was made for this calculation. In order to obtain better
numerical precision, we performed a change of basis, so that
instead of working with 7,4, = F(1,0,0,0,1,1,1,1) we worked
with

F(1,0,0,0,1,1,1,2)

= 44.55822275(2) — 427.382296(2)e + O(e?), (18)

which was obtained using the MATHEMATICA package FIESTA
1.2.1 [20] with integrators from the CUBA library [21].

III. RESULTS
Our final result for the hyperfine splitting is

o*(Za)

8 Engs = 0.77099(2)— —
mn

Er. (19)
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TABLE I. Comparison between our results for sets of diagrams
of Fig. 1 and those of [22-24].?

Set This paper Refs. [22-24]
I —0.31074204276602(3) —0.310742

I —0.668915. .. —0.668915. ..
111 1.867852. .. 1.867852. ..
v —0.4725146(2) —0.472514(1)
\Y% 36/35 36/35

“Numbers ending in an ellipsis indicate an analytic result, which we
show in Appendix. No error was given for the numerical result of
set Iin [23].

This correction was also found by Eides and Shelyuto [6], and
by Kinoshita and Nio [7]. Their respective results are

o*(Za)
8 Eny = 0.7716(4) == Ep., (20)
n
2
z
$ vy = 0.7679(79) 28 . 1)
mn

Our result is a little over one order of magnitude more precise
than that of [6], and almost three orders of magnitude more
precise than the result in [7]. Our central value is slightly lower
than that in [6], by about 1.50 (taking o as the larger error).
It agrees with the result of [7] within its much larger error
estimate. For the ground state of muonium, our result reads

8 Ens = 0.42524(1) kHz. (22)

We compared our results for the individual diagrams with
those found in the literature [6,7,22-24]. Our results for the
gauge-invariant sets of diagrams of Fig. 1 are presented in
Table 1. For the diagrams of Fig. 2 we chose the Fried- Yennie
gauge [25,26], in which all diagrams are infrared finite. Our
results are presented in Table II.

TABLE II. Comparison between our results for diagrams a
through s (in Fried-Yennie gauge) and those of [6].

Diagram This paper Ref. [6]

a 9/4 9/4

b —6.6602948853575169751(3) —6.65997(1)

c 3.9324055550472089860(4) 3.93208(1)

d —3.9032816968990(2) —3.903368(79)
e 4.5667195410288(2) 4.566710(24)
f —37%/8 4 19/64 —3.404163(22)
g 72/2—9/4 2.684706(26)
h 33/16 33/16

i 0.05454(1) 0.054645(46)
j —7.14963(2) —7.14937(16)
k 1.4658690989997(5) 1.465834(20)
1 —1.98334(3) —1.983298(95)
m 3.16949(2) 3.16956(16)
n —3.59661163(2) —3.59566(14)
0 1.80476(5) 1.804775(46)
p 3.507035(6) 3.50608(16)
q —0.80380(3) —0.80380(15)
r 1.05247(3) 1.05298(18)
s 0.277336777308(2) 0.277203(27)
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The sum of all central values in the second column of
Tables I and II gives the coefficient 0.77099 in Eq. (19).
The error of that result, however, is not obtained from the
sum of the errors of the diagrams in the tables. Once we
decompose the problem into the calculation of master integrals,
the diagrams are no longer independent, as the same master
integral contributes to several different diagrams. Thus, to find
the error of our total result, we first sum all diagrams and then
sum all the errors of the integrals in quadrature.

We found new analytic results for diagrams g and f, shown
in Table II. For completeness, the known analytic results for
sets II and III of the vacuum polarization diagrams are given
in Appendix as well.

We found no discrepancies between our results for the
diagrams of Fig. 1 and the ones of [22-24], but we found
significant differences in the rest of the diagrams between the
results of [6] and our results. They affect all diagrams except
diagrams a, e, h, 1, o, and q. The biggest discrepancies are in
diagrams b and c, and they are of the order of 300. However,
most of the differences cancel when the diagrams are summed.
In particular, there are almost exact cancellations between the
differences in diagrams b and c, k and 1, and n and p.

The reason for the discrepancies (and their cancella-
tions) is most likely the different treatment of infrared
divergences between [6] and this paper. In [6], the Fried-
Yennie gauge was set from the beginning, and all spurious
infrared divergences were cancelled before the integration
over the diagram’s loop momenta, which was performed
in four dimensions. In our calculation, we used a general
gauge parameter, and dimensional regularization to deal with
infrared divergences, which would only vanish after setting
the gauge in the final expression. As noted in [27], there is a
difference between setting the Fried- Yennie gauge and sending
the infrared regulator to zero before or after integration. Itis not
surprising then that we obtained different results than in [6] for
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gauge-dependent diagrams, but most of the differences cancel
in the final, gauge-invariant result, making it compatible with
the previous calculation.

Using the setup of the calculation of the hyperfine splitting,
one can also find the Lamb shift, as given by

BEortho(d - 1) + 6Epara
4 .

We obtained in this way the same results as in [19].2

SELamp = (23)
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APPENDIX: ANALYTIC RESULTS

Here we show the analytic results for sets II and III of the
vacuum polarization diagrams, found in [22]:

4 1 2 1
SetII=—§1n2< +ﬁ> —50\/5111< J”/g)

2 2
64100t 72 10369 AD
45 9 ' 5400 °

224 38 118
Setlll = =— In2 — 2p — —. (A2)
15 157 225

There is a mistake in the values in the last row of Table I in the published
version of [19] (it was corrected in version 3 of the arXiv preprint). They read
—23/278, when they should be —23/378. This does not affect any of the other
results presented in that paper.
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