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In the N=1 supersymmetric extension of the Standard Model, neutralinos associated in super-

multiplets with the neutral electroweak gauge and Higgs bosons are, as well as gluinos, Majorana

fermions. They can be paired with the Majorana fermions of novel gaugino/scalar supermultiplets,

as suggested by extended N=2 supersymmetry, to Dirac particles. Matter fields are not extended

beyond the standard N=1 supermultiplets in N=1/N=2 hybrid supersymmetry to preserve the chi-

ral character of the theory. Complementing earlier analyses in the color sector, central elements of

such an electroweak scenario are analyzed in the present study. The decay properties of the Dirac

fermions χ̃D and of the scalar bosons σ are worked out, and the single and pair production-channels

of the new particles are described for proton collisions at the LHC, and electron/positron and γγ

collisions at linear colliders. Special attention is paid to modifications of the Higgs sector, identified

with an N=2 hypermultiplet, by the mixing with the novel electroweak scalar sector.

1. INTRODUCTION

Neutral electroweak gauge bosons are described by self-conjugate fields with two degrees of freedom before symmetry

breaking. In N=1 supersymmetry [1–3] the gaugino partners G̃ of the gauge bosons Gµ in the supermultiplets Ĝ =

{Gµ, G̃} are correspondingly self-conjugate Majorana fields with two independent components for the two helicities.

They mix with neutral higgsinos to form the neutralino fields χ̃0. However, in N=2 extended supersymmetric

scenarios, cf. Ref. [4–11], gauginos G̃′ with scalar partners σ are introduced in novel N=1 chiral supermultiplets

Σ̂ = {G̃′, σ}, which together with the original N=1 gauge supermultiplets constitute the N=2 gauge hypermultiplets

G = {Ĝ, Σ̂}. For suitable mass matrices, the new gauginos can be combined with the original ones to form Dirac fields

G̃D = G̃⊕ G̃′. Including the higgsinos, the neutralino fields can thus be identified with Dirac fields χ̃0
D.

The transition from Majorana to Dirac fields renders the theory [partially] R-symmetric [12]. R-symmetry, a

continuous extension of the R-parity concept, is associated with global transformations of the fermionic coordinates,

http://arxiv.org/abs/1005.0818v2
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θ → eiαθ and θ̄ → e−iαθ̄. All Standard Model (SM) fields carry vanishing R-charge. Assigning the R-charge +1 to

θ, the gauge superfields and the matter chiral superfields carry R-charges 0 and +1, respectively. As a result, the

kinetic part of the action is R-symmetric. In gauge superfields the R-charges of the gaugino components G̃ are +1, and

equally for the scalar components of the matter lepton and quark superfields. Higgs superfields are assigned R-charges

0, giving rise to {0,−1} for the R-charges of the Higgs fields themselves and the higgsino fields. Thus the tri-linear

Yukawa terms in the superpotential carry R-charge +2 and the corresponding action is R-invariant, unlike the µ-term

for which the associated action, with R = −2, is not R-invariant. Soft Majorana mass terms of gauginos and the

tri-linear scalar coupling terms, which break supersymmetry, carry R = +2 so that the corresponding Lagrangians

are not R-invariant. However, assigning R = 0 to the chiral superfields Σ̂, the new gaugino Ĝ′ fields carry R-charge

−1. Thus, Dirac mass terms, combining the old and the new gaugino fields, are R-invariant.

The conservation of R-charges, initially motivated by the transition fromMajorana to Dirac gauginos, has important

physical implications. The theory naturally suppresses the baryon and lepton number violating operators and the µ

term in the superpotential. Since it also forbids soft SUSY breaking gaugino Majorana masses in the Lagrangian and

Higgs couplings to sfermion pairs, SUSY flavor-changing and CP-violating contributions, for instance, are reduced

significantly, widening the potential parameter space for supersymmetric theories [13]. The more restrictive Dirac

gaugino masses, on the other hand, are allowed. Moreover, since the scalar components σ of the chiral superfields

Σ̂ have R-charge 0, they can couple to SM particles so that σ particles can be produced singly in standard particle

collisions. In addition, they can decay to pairs of SM particles [and, similarly, to pairs of supersymmetric particles].

The N=1 chiral supermultiplets within the N=2 gauge hypermultiplets contain scalar sigma fields σ in the adjoint

representations of the gauge groups SU(1)C , SU(2)I and U(1)Y . In the electroweak SU(2)I and U(1)Y sectors the

scalar fields can acquire non-zero vacuum expectation values and they can mix with the original Higgs fields. As a

result, the properties of the Higgs particles are modified in this scenario.

In N=2 supersymmetric theories the standard N=1 L/R matter supermultiplets are complemented with new L/R

matter multiplets [14]. To keep the theory chiral, in agreement with experimental observations, the masses of the

new multiplets must be chosen very large so that N=2 supersymmetry is effectively reduced to N=1 supersymmetry

in this sector. Exceptions are the two Higgs doublets which can be associated with the two supermultiplets within a

Higgs hypermultiplet. Since the gauge and Higgs sectors are framed in the N=2 formalism, but the matter sector in

N=1 is not, the theory is conventionally termed N=1/N=2 hybrid theory.

The transition from the Majorana-type Minimal Supersymmetric Standard Model (MSSM) to a Dirac theory by

expanding the gauge sector can be formulated in a smooth way by suitable transitions of the parameters in the {G̃, G̃′}
mass matrix. We start with an infinitely large G̃′ Majorana mass at the beginning of the path, which is congruent

with the original MSSM. Lowering the Majorana masses to zero and generating non-diagonal entries in the mass

matrix at the end of the path, the two Majorana fields can be combined to a Dirac field if the two mass eigenvalues

have equal moduli but opposite signs. In this way, the characteristics of the Majorana theory can systematically be

tagged in the evolution to the Dirac theory, and implications of the Dirac theory can be connected with experimental

analyses.

The Dirac theory, including the scalar sigma fields, has been analyzed in two earlier studies [7, 8] primarily in the

colored sector, and experimental consequences have been discussed for the proton collider LHC. Basic elements of

the electroweak sector, including the interaction of the Higgs field with the novel scalar fields, have been presented

in Ref. [15], and implications for the relic density in the Universe have been discussed for such a Dirac theory [see

also [16–18]]. In the present study we will focus on collider signatures of the electroweak chargino/neutralino and the

novel sigma sectors at LHC and e+e− colliders. In addition, modifications of the properties of the Higgs particles

by interactions with the novel scalars will be discussed. While the theoretical basis of the N=1/N=2 hybrid theory

is summarized in the next section, phenomenological consequences are worked out for the chargino/neutralino and

scalar/Higgs sectors thereafter.
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superfields SU(3)C , SU(2)I , U(1)Y Spin 1 Spin 1/2 Spin 0

ĜC / color 8,1,0 ga g̃a

ĜI / isospin 1,3,0 W i W̃ i

ĜY / hypercharge 1,1,0 B B̃

Σ̂C / color 8,1,0 g̃′a σa
C

Σ̂I / isospin 1,3,0 W̃ ′i σi
I

Σ̂Y / hypercharge 1,1,0 B̃′ σ0
Y

Table I: The N=2 gauge hypermultiplets for the color SU(3)C , isospin SU(2)I and hypercharge U(1)Y groups. The superscripts

a = 1-8 and i = 1-3 denote the SU(3)C color and SU(2)I isospin indices, respectively.

2. THEORETICAL BASIS: N=1/N=2 HYBRID THEORY

2.1. Hyper/Superfields and Interactions

The N=1/N=2 hybrid model, which can be evolved from the MSSM continuously to a Dirac gaugino theory, includes

a large spectrum of fields. The N=2 gauge hypermultiplets G = {Ĝ, Σ̂} can be decomposed into the usual N=1

vector supermultiplets of gauge and gaugino fields Ĝ = {Gµ, G̃}, complemented by chiral supermultiplets of novel

gaugino and scalar fields Σ̂ = {G̃′, σ}. The new gauge/gaugino/scalar fields, together with the MSSM fields, are

shown explicitly for the color SU(3)C and the electroweak isospin SU(2)I and hypercharge U(1)Y gauge groups in

Tab. I.

In parallel to the gauge fields, the neutral gaugino fields G̃ are self-conjugate Majorana fields with two helicity

components, analogously the novel gaugino fields G̃′. [The notation Gµ, G̃, G̃
′, σ is used generically for gauge, gaugino

and σ fields; when specific gauge groups are referred to, the notation follows Table I.] To match the two gaugino

degrees of freedom in the new chiral supermultiplet, the components of the scalar fields σ are complex. Suitable mass

matrices provided, the two gaugino Majorana fields G̃ and G̃′ can be combined to a Dirac field G̃D.

In a similar way, the two Higgs-doublet superfields Ĥd and Ĥ†
u of the MSSM can be united to an N=2 hyperfield

H = {Ĥd, Ĥ
†
u} [19, 20]. It may be noted that, after diagonalizing the off-diagonal 2×2 mass matrix, the two neutral

higgsinos can be interpreted as a Dirac field.

In contrast, the observed chiral character of the Standard Model precludes the extension of the usual (s)lepton and

(s)quark supermultiplets Q̂ to hypermultiplets of L/R symmetric particles and mirror-particles. Moreover, including

such a large number of new matter fields would make the entire theory asymptotically non-free. Equivalent to

introducing very heavy masses, the mirror fields can just be eliminated from the system of matter fields ad hoc. This

supposition generates the N=1/N=2 hybrid character of the theory.

Corresponding to the complex spectrum of fields, the sum of a set of actions with different bases and characteristics

describes the N=1/N=2 hybrid theory. The N=2 action of the gauge hypermultiplet G = {Ĝ, Σ̂} consists of the

usual N=1 action of the gauge supermultiplet Ĝ plus the action of the chiral supermultiplet Σ̂ which couples the new

gaugino and scalar fields to the gauge superfield:

AG =
∑ 1

16g2k

∫
d4x d2θ tr ĜαĜα , (2.1)

AΣ =
∑∫

d4x d2θd2 θ̄ Σ̂† exp[Ĝ] Σ̂ , (2.2)

with the sums running over the gauge groups SU(3)C , SU(2)I and U(1)Y . g are the gauge couplings (denoted by
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gs, g and g′ for color, isospin and hypercharge) and k are the corresponding quadratic Casimir invariants C2(G).

Ĝα = 2gĜa
αT

a are the gauge superfield-strengths, T a the generators in the adjoint representation; the traces run over

the gauge-algebra indices. To this class of actions belongs also the standard (s)lepton/(s)quark gauge action

AQ =
∑∫

d4x d2θd2θ̄ Q̂† exp[Ĝ] Q̂ , (2.3)

summed over the standard matter chiral superfields, denoted generically as Q̂.

These actions are complemented by gauge-invariant N=1 supersymmetric Majorana mass terms M for the new

gauge superfields and Dirac mass terms MD coupling the original and new gauge superfields:

AM =

∫
d4x d2θM tr Σ̂ Σ̂ , (2.4)

AD =

∫
d4x d2θMD θα tr ĜαΣ̂ . (2.5)

AM , which is bi-linear in the Σ fields, is part of the superpotential of the theory and contributes to the masses of

the chiral supermultiplets. The Dirac mass term can be generated, e. g., by the interaction
√
2X̂αĜαΣ̂/MX when a

hidden-sector U(1)′ spurion superfield acquires a D-component vacuum expectation value X̂α = θαDX , giving rise to

the Dirac mass MD = DX/MX [21].

According to the general rules, this set of actions generates D-terms bi-linear in the usual slepton and squark fields

and linear in the new scalar sigma field with a coefficient given by the Dirac mass MD. When the auxiliary fields D

are eliminated through their equations of motion, the sigma fields get coupled to bi-linears of the slepton and squark

fields with strength MD.

The Higgs sector is rendered more complicated by the interactions with the non-colored scalar sigma fields. The

Higgs supermultiplets Ĥd and Ĥ†
u are coupled to the SU(2)I×U(1)Y supergauge fields in the usual way,

AH =
∑

i=u,d

∫
d4x d2θd2 θ̄ Ĥ†

i exp[ĜI + ĜY ] Ĥi . (2.6)

The part of the superpotential which includes Higgs fields, consists of the standard N=1 bi-linear µ-term,

Aµ =

∫
d4x d2θ µĤu · Ĥd , (2.7)

and the tri-linear Higgs Yukawa terms involving the matter fields, which can be adopted from the N=1 theory:

A′
Q =

∫
d4x d2θ

∑
gQ q̂

cQ̂ · Ĥq , (2.8)

the dots denoting the asymmetric contraction of the SU(2)I doublet components. New tri-linear interactions are

predicted in N=2 supersymmetry [5] which couple the two supercomponents of the Higgs hypermultiplet with the

new chiral superfields in the superpotential:

A′
H =

∫
d4x d2θ

1√
2
Ĥu · (λIΣ̂I + λY Σ̂Y )Ĥd . (2.9)

In N=2 supersymmetry the couplings λI , λY are identified with the SU(2)I and U(1)Y gauge couplings,

λI = g/
√
2 and λY = −g′/

√
2 . (2.10)

In our phenomenological analyses we will treat them generally as independent couplings.

It may be noticed that the Majorana action AM , the µ-term Aµ and the tri-linear Higgs-sigma term A′
H are

manifestly not R-invariant.
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Finally, the bi-linear and tri-linear soft supersymmetry breaking terms must be added to the gauge, Higgs and

matter Lagrangians:

Lgauge,soft = − 1
2MB̃ B̃ B̃ − 1

2MW̃

(
W̃+ W̃− + W̃− W̃+ + W̃ 0 W̃ 0

)
− 1

2Mg̃ g̃
a g̃a + h.c.

− 1
2M

′
B̃
B̃′ B̃′ − 1

2M
′
W̃

(
W̃ ′+ W̃ ′− + W̃ ′− W̃ ′+ + W̃ ′0 W̃ ′0

)
− 1

2M
′
g̃ g̃

′a g̃′a + h.c.

−m2
Y |σ0

Y |2 − 1
2

(
m′2

Y (σ
0
Y )

2 + h.c.
)
−m2

I

∣∣σi
I

∣∣2 − 1
2

(
m′2

I (σ
i
I)

2 + h.c.
)

−m2
C |σa

C |2 − 1
2

(
m′2

C(σ
a
C)

2 + h.c.
)
, (2.11)

LHiggs,soft = −m2
Hu

(∣∣H+
u

∣∣2 +
∣∣H0

u

∣∣2
)
−m2

Hd

(∣∣H−
d

∣∣2 +
∣∣H0

d

∣∣2
)

−
[
Bµ

(
H+

u H−
d −H0

uH
0
d

)
+ h.c.

]

−
[
AY λY σ

0
Y

(
H+

u H−
d −H0

uH
0
d

)
+AI λI σ

i
I

(
Hu · τ iHd

)
+ h.c.

]
, (2.12)

with i and a being the SU(2)I and SU(3)C indices, τ i the Pauli matrices, and moreover,

Lmatter,soft = −
(
m2

Q̃

)

ij

(
ũ∗iLũjL + d̃∗iLd̃jL

)
−
(
m2

ũ

)
ij
ũ∗iRũjR −

(
m2

d̃

)
ij
d̃∗iRd̃jR

−
(
m2

L̃

)
ij

(ν̃∗iLν̃jL + ẽ∗iLẽjL)−
(
m2

ẽ

)
ij
ẽ∗iRẽjR

− (Aufu)ij ũ
∗
iR(d̃jLH

+
u − ũjLH0

u)− (Adfd)ij d̃
∗
iR(ũjLH

−
d − d̃jLH0

d) + h.c.

− (Aefe)ij ẽ
∗
iR(ν̃jLH

−
d − ẽjLH0

d) + h.c. , (2.13)

with i, j now denoting the matter generations. Here, the convention is adopted to use subscripts C, I, Y for parameters

corresponding to color, isospin and hypercharge gauge groups, respectively. Capitalized mass parameters M are the

Majorana gaugino masses [MD for Dirac], while lower-case m denotes soft scalar masses. The Majorana mass

terms, M ′
B̃
, M ′

W̃
and M ′

g̃, for the new gauge adjoint fermions are soft N=1 SUSY breaking parameters and add

to the Majorana mass parameters, MY ,MI and MC , introduced in Eq. (2.4) as part of the N=1 supersymmetric

superpotential.

From this set of actions and Lagrangians, and after eliminating the auxiliary Da fields through their equations of

motion, the masses and mixings of the Higgs and gauge-adjoint scalar particles and their interactions can be read

off, and correspondingly those of their superpartners as will be detailed below. The final form of the Lagrangians are

collected in the following list which, in general, includes only interactions of the new fields:1

(i) SU(3)C×SU(2)I×U(1)Y gauge boson/sigma sector:

The gauge interactions of the adjoint sigma fields are determined from the scalar kinetic term (Dµσ)
†(Dµσ) with

the covariant derivative Dµ = ∂µ + igsT
agaµ + igT iW i

µ. In addition to their kinetic terms, the term generates the

Lagrangian for the derivative three-point and seagull four-point interaction terms:

LσC ,gauge = −gsfabcgaµ (σ
b∗
C

←→
∂µσc

C) + g2sf
acef bdegaµg

µbσ∗c
C σ

d
C , (2.14)

LσI ,gauge = −gǫijkW i
µ (σ

j∗
I

←→
∂µσk

I ) + g2ǫikmǫjlmW
i
µW

µjσ∗k
I σl

I , (2.15)

where fabc and ǫijk are the SU(3)C and SU(2)I structure constants, respectively, and A
←→
∂µB ≡ A∂µB − (∂µA)B.

1 Many of the mass parameters and couplings defining the N=1/N=2 hybrid model can be complex in general. Nevertheless, for the sake
of simplicity all the parameters are assumed to be real throughout this paper.
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(ii) SU(3)C sfermion/gaugino/sigma sector:

The interaction Lagrangian of the sigma field σC with the squarks is given by

LσC(σC)q̃q̃ = −
√
2 gsM

D
C (σa

C + σa∗
C )

(
q̃∗L

λa

2
q̃L − q̃∗R

λa

2
q̃R

)
+ i g2s f

abc σa∗
C σb

C q̃†
λc

2
q̃ , (2.16)

where λa (a = 1–8) are the Gell-Mann matrices. Therefore, the L– and R–chiral squarks contribute with opposite

signs as demanded by the general form of the super-QCD D-terms. On the other hand, the interactions of the two

gluino fields, g̃ and g̃′, with the SU(3)C sigma field σC and with the squark and quark fields are described by the

Lagrangians:

Lg̃g̃′σ
C

= −
√
2 i gs f

abc g̃′aL g̃bR σ
c
C + h.c. , (2.17)

Lg̃qq̃ = −
√
2 gs

(
qL

λa

2
g̃aR q̃L − qR

λa

2
g̃aL q̃R

)
+ h.c. , (2.18)

Only the standard gluino couples to squark fields since, as required by N=2 supersymmetry, the new gluino g̃′ couples

only to mirror matter fields, which in the hybrid model are assumed to be absent.

(iii) SU(2)I×U(1)Y sfermion/gaugino/sigma sector:

In the weak basis, the R-chiral sfermions f̃R are SU(2)I singlets so that only the L-chiral sfermions f̃L interact with

the SU(2)I sigma field σI through the interaction Lagrangians:

LσI (σI)f̃ f̃
= −

√
2 g MD

I (σi
I + σi∗

I ) f̃ †
L

τ i

2
f̃L + ig2 ǫijk σ

j∗
I σ

k
I f̃

†
L

τ i

2
f̃L , (2.19)

where f̃L is any matter SU(2)I -doublet field. On the other hand, the Lagrangians governing the interactions of the

winos, W̃ and W̃ ′, with the SU(2)I sigma field σI and the (s)fermion fields are given by

LσIW̃W̃ ′ = −
√
2 i g ǫijk W̃ ′i

L W̃
j
R σ

k
I + h.c. , (2.20)

LW̃ff̃ = −
√
2 g fL

τ i

2
W̃ a

R f̃L + h.c. . (2.21)

Only the L-chiral sfermions f̃L couple to the standard wino W̃ .

The U(1)Y sigma field σY is essentially a SM singlet state with no tree–level gauge interaction to any of the gauge

bosons, gauginos and higgsinos. The singlet scalar field couples only to the Higgs bosons and the (s)fermion fields,

with the latter being given by the Lagrangian:

LσY f̃ f̃ = −
√
2 g′MD

Y (σ0
Y + σ0∗

Y ) (YfL |f̃L|2 − YfR |f̃R|2) , (2.22)

and the standard bino B̃ (but not the new bino B̃′) couples to the (s)fermion fields through the interaction Lagrangian:

LB̃ff̃ = −
√
2g′ (YfLfLB̃Rf̃L − YfRfRB̃Lf̃R) + h.c. , (2.23)

where YfL and YfR are the hypercharges of the L-chiral and R-chiral fermions, fL and fR, respectively.

(iv) SU(2)I×U(1)Y higgsino/sigma sector:

The superpotential (2.9) coupling the new SU(2)I×U(1)Y chiral superfields with the Higgs hypermultiplets leads to

Yukawa-type interactions of the electroweak sigma fields with the higgsino fields. In the weak basis, the interactions

are described by the Lagrangian

LσH̃H̃ = −λY σ0
Y (H̃

−
uRH̃

−
dL − H̃0

uRH̃
0
dL) + λIσ

0
I (H̃

−
uRH̃

−
dL + H̃0

uRH̃
0
dL) + h.c.

−
√
2λI (σ

−
1 H̃

−
uRH̃

0
dL − σ+

2 H̃
0
uRH̃

−
dL) + h.c. , (2.24)
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where we have introduced two charged scalars and one neutral scalar defined as

σ−
1 =

1√
2

(
σ1
I + iσ2

I

)
, σ+

2 =
1√
2

(
σ1
I − iσ2

I

)
, σ0

I = σ3
I , (2.25)

with each of σi
I being complex.

Combining the above Lagrangian (2.24) with the Lagrangian (2.20) for the interactions of the sigma fields with

gauginos will enable us to derive the vertices for the interactions of the sigma fields with charginos and neutralinos in

the mass eigenstate basis.

(v) SU(2)I×U(1)Y Higgs/sigma sector :

The potential for the neutral and charged electroweak Higgs and scalar fields receives contributions from three different

sources: the gauge kinetic terms, the superpotential, and the soft-breaking terms. Complementing the neutral field

interactions noted in Ref. [15] by the charged fields, the potential VσH for the charged and neutral electroweak Higgs

and adjoint scalars can be written as a sum over four characteristic contributions:

VσH|1 = m2
Hu

(|H+
u |2 + |H0

u|2) +m2
Hd

(|H0
d |2 + |H−

d |2) + [Bµ(H
+
u H

−
d −H0

uH
0
d) + h.c.] , (2.26)

VσH|2 =
1

2
[
√
2MD

Y (σ0
Y + σ0∗

Y ) +
1

2
g′(|H+

u |2 − |H−
d |2 + |H0

u|2 − |H0
d |2)]2

+
1

2
|2MD

I (σ+
1 + σ+

2 ) +
√
2g(σ+

1 σ
0
I − σ+

2 σ
0∗
I ) + g(H+

u H
0∗
u +H0

dH
+
d )|2

+
1

2
[
√
2MD

I (σ0
I + σ0∗

I ) + g(|σ+
2 |2 − |σ−

1 |2) +
1

2
g(|H+

u |2 − |H−
d |2 − |H0

u|2 + |H0
d |2)]2 , (2.27)

VσH|3 = |(µ+ λY σ
0
Y − λIσ0

I )H
−
d +
√
2λIσ

−
1 H

0
d |2 + |(µ+ λY σ

0
Y − λIσ0

I )H
+
u −
√
2λIσ

+
2 H

0
u|2

+|(µ+ λY σ
0
Y + λIσ

0
I )H

0
d +
√
2λIσ

+
2 H

−
d |2 + |(µ+ λY σ

0
Y + λIσ

0
I )H

0
u −
√
2λIσ

−
1 H

+
u |2

+|MY σ
0
Y + λY (H

+
u H

−
d −H0

uH
0
d)|2 + |MIσ

0
I − λI(H+

u H
−
d +H0

uH
0
d)|2

+|MIσ
−
1 −
√
2λIH

0
uH

−
d |2 + |MIσ

+
2 +
√
2λIH

+
u H

0
d |2 , (2.28)

VσH|4 = m2
Y |σ0

Y |2 +m2
I(|σ0

I |2 + |σ−
1 |2 + |σ+

2 |2) +
1

2
(m′2

Y (σ
0
Y )

2 + h.c.) +
1

2
[m′2

I ((σ
0
I )

2 + 2σ+
2 σ

−
1 ) + h.c.]

+AY λY σ
0
Y (H

+
u H

−
d −H0

uH
0
d)−AIλI σ

0
I (H

+
u H

−
d +H0

uH
0
d) + h.c.

+
√
2AIλI(σ

−
1 H

+
u H

0
d − σ+

2 H
−
d H

0
u) + h.c. . (2.29)

After shifting the neutral fields by their vacuum expectation values, the physical scalar masses and the tri- and

quadri-linear interaction vertices can be read off.

2.2. Masses, Mixings and Dirac Fields

Introducing the vacuum expectation values of the scalar/Higgs fields in the Lagrangians of the previous subsection,

their values are determined by the absence of terms linear in the fields, while from the terms bi-linear in the fields the

mass matrices for the scalars/Higgs, the charginos and neutralinos can be read off. The vacuum expectation values

(vevs) of the neutral Higgs and the neutral sigma fields2 are defined as

〈H0
u/d〉 =

1√
2
vu/d , (2.30)

〈σ0
Y/I〉 =

1√
2
vY/I . (2.31)

2 Throughout the paper, we restrict ourselves to the case of a CP preserving and neutral vacuum with real vacuum expectation values.
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As usual, the vevs of the Higgs sector can be rewritten as

v =
√
v2u + v2d and tanβ =

vu
vd
. (2.32)

The masses of the electroweak vector bosons W,Z are generated by the interactions of the fields with the ground

states of the neutral Higgs H0
u, H

0
d and the neutral scalar iso-triplet field σ0

I (while the hyper-singlet field σ0
Y does not

couple)

m2
Z =

1

4
(g′2 + g2)v2 , m2

W =
1

4
g2v2 + g2v2I . (2.33)

The iso-triplet vev shifts the tree-level ρ-parameter away from unity by the amount

∆ρ = ρ− 1 = 4v2I/v
2 . (2.34)

Allowing a maximum value ∆ρ ≤ 10−3 for the shift [22], it turns out that the vacuum expectation value of the

iso-triplet field must be very small, vI ≤ 3GeV, cf. [15]. We will assume that the soft supersymmetry breaking scalar

σI mass parameter mI of order TeV drives vI to the small value. As a result, the Higgs vev v is close to the standard

value v = 246GeV, and tanβ may be identified approximately with the corresponding MSSM parameter. And while

almost any value for vY is phenomenologically quite consistent, a large mY would drive vY to small values.

1. Charginos

Defining the current bases, {W̃ ′+
R , W̃+

R , H̃
+
uR} and {W̃ ′−

L , W̃−
L , H̃

−
dL} for the two charged winos and the charged higgsino,

the chargino mass matrix can be written as

MC =




M ′
2 MD

2 − gvI −λIvu
MD

2 + gvI M2
1√
2
gvd

λIvd
1√
2
gvu µc


 , (2.35)

where

M2 =MW̃ , M ′
2 =M ′

W̃
+MI , MD

2 =MD
I and µc = µ+ (λY vY − λIvI)/

√
2 . (2.36)

Three charginos, i. e. one degree of freedom more than in MSSM and related iso-singlet extensions like NMSSM or

USSM, are predicted in the general N=1/N=2 hybrid model, labeled χ̃±
1 , χ̃

±
2 , χ̃

±
3 (ultimately for ascending mass

values). The MSSM case is reached in the limit M ′
2 → −∞ which corresponds to infinitely heavy W̃ ′. By raising

the magnitude of the W̃ ′ gaugino mass parameter M ′
2 from −∞ to 0 and lowering at the same time M2 to 0 the

Dirac limit is obtained. Though the 3× 3 mass matrix can be diagonalized analytically for arbitrary parameters, we

study instead the evolution of the eigenvalues analytically in the limit of small couplings, and numerically by varying

−∞ ≤M ′
2 ≤ 0 from the MSSM to the Dirac limit.

For small gaugino/higgsino mixings in the area where the supersymmetry mass parameters M ′
2,M2,M

D
I , µ [and

the size of their mutual differences] are much larger than the electroweak parameter v, the eigenvalues and mixing

parameters can be calculated easily. This approximation leaves us with one higgsino mass eigenvalue

m±
3 = µc , (2.37)

and a 2× 2 gaugino mass submatrix with two eigenvalues

m±
1,2 =

1

2
| γ2 ∓ δ2| where γ2 =

√
(M ′

2 +M2)2 + 4g2v2I and δ2 =
√
(M ′

2 −M2)2 + 4(MD
2 )2 , (2.38)
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Figure 1: Evolution of the chargino masses as a function of the control parameter y from the MSSM doublet (y = −1) to the

Dirac (y = 0) triplet along the path PC in Eq. (2.42) for m = 200 GeV, tan β = 5, vI = vY = 3 GeV and the N=2 values for

the couplings λY,I in Eq. (2.10).

and the two mixing angles for the positive and negative states

cos θ± ≡ c± =
1√
2

√
1− (M ′2

2 −M2
2 ∓ 4gvIMD

2 )/γ2δ2 , (2.39)

sin θ± ≡ s± =
1√
2

√
1 + (M ′2

2 −M2
2 ∓ 4gvIMD

2 )/γ2δ2 , (2.40)

With M ′
2 = −∞ in the MSSM limit we get c± = 0 and s± = 1, while c+ = s− = 1 and c− = s+ = 0 in the Dirac

limit with M ′
2 =M2 = 0 and MD

2 , vI > 0.

Switching on the weak couplings among the gaugino and higgsino sectors, the chargino mass eigenvalues and the

mixing parameters derived from

Mdiag
C = UT

+MC U− , (2.41)

can be calculated analytically in simple form.3 The results are presented in Appendix C.

In analogy to the color sector in Ref. [7] we study the evolution of the eigenvalues in Fig. 1 numerically by varying

the mass parameters along the path

PC : M ′
2 = my/(1 + y) ,

M2 = −my ,
MD

2 = m,

µ = 2m, (2.42)

3 In Appendix A we provide an analytic prescription for the singular value decomposition of a general 2 × 2 matrix and in Appendix B
the small-mixing approximation.
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for a fixed value of m = 200 GeV with the control parameter −1 ≤ y ≤ 0 running from the MSSM [y = −1] to the

Dirac limit [y = 0]. This set corresponds to mass parameters giving rise to mχ̃±
1

≈ m (fixed), mχ̃±
2

≈ m[y+1/(1+ y)],

moving from ∞ to m, and mχ̃±
3

≈ µ (fixed) in the decoupled wino and higgsino sectors and for very small vI . The

other parameters in the chargino mass matrix (2.35) are chosen as tanβ = 5, vI = vY = 3 GeV and the N=2 values

for the couplings λY,I are adopted.

For the parameters chosen, the descending order of the physical masses in the figure reflects, in obvious notation,

the pattern w′ ≫ h > w in the MSSM limit. At some medium y, the states w′ and h cross over to h > w′, keeping the

ordering h > w′ > w until the Dirac limit is reached. The physical masses in the cross-over zone of the states w′ and

h cannot be described by the standard analytical expansion applied above. They must either be obtained numerically

or by analytical expansions tailored specifically for cross-over phenomena, see Ref. [23].

2. Neutralinos

Six neutral electroweak Majorana fields are incorporated in the N=1/N=2 hybrid model. The mass matrix can be

extracted from the bi-linear terms of the gaugino, gaugino′ and higgsino fields in the Lagrangian of the preceding

subsection, written in the current basis {B̃′, B̃, W̃ ′0, W̃ 0, H̃0
u, H̃

0
d} as

MN =




M ′
1 MD

1 0 0 − 1√
2
λY vd − 1√

2
λY vu

MD
1 M1 0 0 1

2g
′vu − 1

2g
′vd

0 0 M ′
2 MD

2 − 1√
2
λIvd − 1√

2
λIvu

0 0 MD
2 M2 − 1

2gvu
1
2gvd

− 1√
2
λY vd

1
2g

′vu − 1√
2
λIvd − 1

2gvu 0 −µn

− 1√
2
λY vu − 1

2g
′vd − 1√

2
λIvu

1
2gvd −µn 0




, (2.43)

where

M1 =MB̃, M ′
1 =M ′

B̃
+MY , MD

1 =MD
Y , µn = µ+ (λY vY + λIvI)/

√
2 . (2.44)

and M2,M
′
2 are defined in Eq. (2.36). This 6× 6 mass matrix is diagonalized by the unitary transformation

Mdiag
N = UT

NMN UN . (2.45)

Six neutralinos, i. e. two degrees of freedom more than in MSSM, are predicted in the general N=1/N=2 hybrid

model, labeled χ̃0
1···6 (ordered according to ascending mass values). They evolve from the MSSM by raising the

magnitude of the gaugino mass parameters M ′
1,2 from −∞ to finally 0 in the Dirac limit.

In general, the diagonalization of the 6×6 neutralino mass matrix cannot be carried out in analytic form. However,

as before, in the limit in which the supersymmetry masses are much larger than the electroweak scale, approximate

solutions can be found analytically. First switching off the electroweak mixings among the bino, wino and higgsino

sectors leaves us with two bino mass eigenvalues, two wino mass eigenvalues and two higgsino mass eigenvalues:

m0
1,2 =

1

2
||M1 +M ′

1| ∓ δ1| , (2.46)

m0
3,4 =

1

2
||M2 +M ′

2| ∓ δ2| , (2.47)

m0
5,6 = µ , (2.48)

with δ1,2 =
√
(M ′

1,2 −M1,2)2 + 4(MD
1,2)

2 , and the block-diagonal mixing matrix

UN = diag
(
U1, U2, Uh

)
with U1,2 =

(
c1,2 −is1,2
s1,2 ic1,2

)
and Uh =

(
i/
√
2 −1/

√
2

i/
√
2 1/

√
2

)
, (2.49)
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Figure 2: Evolution of the neutralino masses as a function of the control parameter y from the MSSM (y = −1) quartet to

the Majorana sextet, merging to the Dirac triplet in the (y = 0) limit, for the same path (2.42) as in the chargino sector with

bino/wino relations chosen as M
(D)
1 /M

(D)
2 = 1/2.

with the mixing angles c1,2/s1,2 =
√
[1± (M ′

1,2 −M1,2)/δ1,2]/2.

Switching on the weak couplings among the bino, wino gaugino sectors and the higgsino sector, the mass eigenvalues

and mixing parameters are calculated using the block-diagonalization method described in Appendix B. The results

of this procedure are relegated to Appendix C.

The numerical evolution of the neutralinos in the hybrid model is displayed in Fig. 2 as a function of the control

parameter y for the same path and parameter set as in the chargino sector, Eq. (2.42), and supplemented by the

bino/wino mass relations M
(D)
1 ≈M (D)

2 /2, and setting tanβ = 5 and vI = vY = 3 GeV.

The evolution of the neutralino masses follows the same pattern as the charginos, though being more complex due

to the increased number of states. Starting from the mass pattern w′ > b′ ≫ h1 ∼ h2 > w > b of the neutral states

in the MSSM limit for the parameters chosen above, the first cross-over is observed for b′ ↔ h1, followed by w′ ↔ h2
and b′ ↔ w at roughly the same position. The mass system moves to the final pattern h1 = h2 > w′ = w > b′ = b in

the Dirac limit.

The transition from the Majorana to the Dirac theory in the limits M ′
2,M2 and M ′

1,M1 → 0 can easily be studied

by analyzing the mass matrix MN for vanishing gaugino/higgsino mixing. The eigenvalues of the matrix come in

pairs of opposite signs: ±mj for j = 1, 2, 3. The Majorana fields in each pair, denoted by χ̃± according to the sign of

the eigenvalue, can be combined to one Dirac field,

χ̃D = (χ̃+ + iχ̃−) /
√
2 , (2.50)

the superposition giving rise to vanishing contractions 〈χ̃Dχ̃D〉 = 0, as required for Dirac fields.

The ± pairing of the eigenstates is not restricted to the hybrid neutralino mass matrix with vanishing gaug-

ino/higgsino mixing but it is also realized if the gaugino/higgsino mixing is switched on and the couplings λY,I are
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given by the N=2 relations, λY = −g′/
√
2 and λI = g/

√
2 [15]. The key is the vanishing of the coefficients of odd

powers of the eigenvalues in the characteristic eigenvalue equation:

det(MN −m) = r0 + r2m
2 + r4m

4 + r6m
6 = 0 , (2.51)

with the coefficients given by

r6 = 1 ,

r4 = −1

2
tr(M2

N ) = −[(MD
Y )2 + (MD

I )2 + µ2
n +m2

Z ] ,

r2 =
1

8
[tr(M2

N )]2 − 1

4
tr(M4

N )

= (MD
Y M

D
I )2 + [(MD

Y )2 + (MD
I )2]µ2

n + 2m2
Z [(M

D
Y )2c2W + 2(MD

I )2s2W ]− 2m2
Z(M

D
Y s

2
W +MD

I c
2
W )µnc2β +m4

Z ,

r0 = − 1

48
[tr(M2

N )]3 +
1

12
[tr(M3

N )]2 +
1

8
tr(M4

N ) tr(M2
N )− 1

6
tr(M6

N )

= −(MD
Y M

D
I µn)

2 + 2m2
ZM

D
Y M

D
I µn(M

D
Y c

2
W +MD

I s
2
W )c2β −m4

Z(M
D
Y c

2
W +MD

I s
2
W )2 . (2.52)

The odd coefficients r2j+1 are linear in traces of odd powers ofMN which vanish. While this is obvious for tr(MN )

in the Dirac limit M1,2,M
′
1,2 → 0, it can easily be proven also for odd powers of the mass matrix if the submatrix

that mixes the mass submatrix of the gauginos with the mass submatrix of the higgsinos is orthogonal. This is

satisfied in Eq. (2.43), a sufficient [but not necessary] condition for orthogonality being the N=2 symmetry of the

basic Lagrangian.

If the lightest neutralino is the lightest supersymmetric particle (LSP) and stable, its Dirac or Majorana nature has

important consequences for cold dark matter phenomenology. This is most clearly seen by inspecting, for example,

the neutralino annihilation cross section into an electron-positron pair in the MSSM and Dirac limits. Assuming for

simplicity a pure bino-type MSSM neutralino state χ̃0
1 = B̃0, we obtain

dσ

d cos θ
[χ̃0

1χ̃
0
1 → e−e+] =

π2α

16c2W s
β3

[
η21L + (η21L − 4η1L + 2− β2) cos2 θ + β2 cos4 θ

(η21L − β2 cos2 θ)2

+16
η21R + (η21R − 4η1R + 2− β2) cos2 θ + β2 cos4 θ

(η21R − β2 cos2 θ)2

]
, (2.53)

due to the t- and u-channel L- and R-chiral selectron exchange where cW = cos θW , θ is the c.m. scattering angle,

β = (1 − 4m2
χ̃0
1

/s)1/2 and η1L,R = 1 + 2(m2
ẽL,R
− m2

χ̃0
1

)/s. On the other hand, in the Dirac theory with the pure

bino-type Dirac neutralino state χ̃0
D1 = B̃′0

L + B̃0
R we obtain for the annihilation cross section

dσ

d cos θ
[χ̃0

D1χ̃
0c
D1 → e−e+] =

πα2

32c2Ws
β

[
(1− β cos θ)2
(η1L − β cos θ)2

+ 16
(1 + β cos θ)2

(η1R + β cos θ)2

]
. (2.54)

In other words, in the limit of β → 0, the annihilation cross section (2.53) in the MSSM shows a P -wave suppression

behavior ∼ β3, while in the Dirac case, the cross section (2.54) shows only a S-wave suppression behavior ∼ β. As

a result, the P–wave suppression of the MSSM LSP annihilation cross sections requires a significant fine-tuning of

the spectra to be consistent with the WMAP observations [24]. In contrast, the annihilation of Dirac gauginos into a

fermion and anti-fermion pair has a non-vanishing S-wave contribution even in the limit of vanishing fermion masses.

Thus, the annihilation to fermions does not require the chirality flip in the final state, giving rise to enhanced decay

branching fractions to leptons. This opens the parameter space that fits the WMAP measurements [15, 17]. Moreover,

in contrast to the Majorana case, Dirac gauginos with non-vanishing higgsino fraction can lead to spin-independent

scattering cross sections off nuclei via the Z-boson exchange [18], thus significantly altering the prospects for dark

matter detection experiments.
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3. Scalar/Higgs Particles

The scalar/Higgs sector involves various components in the basic Lagrangian: terms derived from the N=2 Higgs-

Higgs-scalar interactions, the superpotential, the D-terms and the soft breaking terms. Expanding the scalar/Higgs

potential about the vacuum expectation values of the neutral fields, vu/d, vY/I , linear and bi-linear terms of the physical

fields associated with the masses are generated, while tri- and quadri-linear terms describe the self-interactions of the

physical scalar/Higgs fields.

To stabilize the system, the coefficients of the linear terms must vanish; this condition connects the vacuum

expectation values with the basic parameters of the Lagrangian:

vY =
v2

4m̃2
Y m̃

2
I − λ2Y λ2Iv4

{
2m̃2

I

[
g′MD

Y c2β −
√
2λY µ+ (MY +AY )λY s2β/

√
2
]

+λY λIv
2
[
gMD

I c2β +
√
2λIµ− (MI +AI)λIs2β/

√
2
]}

∼ v2

2m̃2
Y

[
g′MD

Y c2β −
√
2λY µ+ (MY +AY )λY s2β/

√
2
]

for m̃Y,I ≫ λY,Iv , (2.55)

vI =
v2

4m̃2
Y m̃

2
I − λ2Y λ2Iv4

{
2m̃2

Y

[
−gMD

I c2β −
√
2λIµ+ (MI +AI)λIs2β/

√
2
]

−λY λIv2
[
g′MD

Y c2β −
√
2λY µ+ (MY +AY )λY s2β/

√
2
]}

∼ − v2

2m̃2
I

[
gMD

I c2β +
√
2λIµ− (MI +AI)λIs2β/

√
2
]

for m̃Y,I ≫ λY,Iv , (2.56)

with the abbreviations c2β = cos 2β and s2β = sin 2β, and

m̃2
Y = m2

Y +m′2
Y +M2

Y + 4(MD
Y )2 + 1

2λ
2
Y v

2 , (2.57)

m̃2
I = m2

I +m′2
I +M2

I + 4(MD
I )2 + 1

2λ
2
Iv

2 . (2.58)

The Higgs vevs vu,d are determined by

0 = (m2
Hu

+ µ2)vu −Bµvd +
1

8
(g′2 + g2)(v2u − v2d)vu +

1

2
(λ2Y + λ2I)vuv

2
d

+(
√
2λY µ+ g′MD

Y )vY vu + (
√
2λIµ− gMD

I )vIvu

− 1√
2
(MY +AY )λY vY vd −

1√
2
(MI +AI)λIvIvd +

1

2
(λY vY + λIvI)

2vu , (2.59)

0 = (m2
Hd

+ µ2)vd −Bµvu −
1

8
(g′2 + g2)(v2u − v2d)vd +

1

2
(λ2Y + λ2I)v

2
uvd

+(
√
2λY µ− g′MD

Y )vY vd + (
√
2λIµ+ gMD

I )vIvd

− 1√
2
(MY +AY )λY vY vu −

1√
2
(MI +AI)λIvIvu +

1

2
(λY vY + λIvI)

2vd , (2.60)

after inserting the vevs vY,I from Eq. (2.56). The values of vu,d and vI can be determined phenomenologically in terms

of the observables tanβ and m2
W ,m2

Z , vide Eqs. (2.32) and (2.33).

The terms in the Lagrangian which are bi-linear in the fields build up the scalar/Higgs mass matrices. Decomposing

the neutral fields into ground-state values, real and imaginary parts,

H0
u =

1√
2
[sβ(v + h) + cβH + i(cβA− sβa)] , H+

u = cβ H
+ − sβ a+ , (2.61)

H0
d =

1√
2
[cβ(v + h)− sβH + i(sβA+ cβa)] , H−

d = sβ H
− + cβ a

− , (2.62)
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with the abbreviations cβ = cosβ and sβ = sinβ, and

σ0
Y =

1√
2
(vY + sY + iaY ) , (2.63)

σ3
I =

1√
2
(vI + sI + iaI) , σ1

I =
1√
2
(σ+

2 + σ−
1 ) , σ2

I =
i√
2
(σ+

2 − σ−
1 ) , (2.64)

it can be ascertained that the matrix of the imaginary fields involves a massless Goldstone field a, and likewise

the charged fields involve a±G = [va± +
√
2vI(σ

±
1 + σ±

2 )]/
√
v2 + 4v2I . These are absorbed to provide masses to the

neutral and charged gauge bosons. The neutral fields h,H, sY , sI are parity-even scalars while A, aY , aI are parity-odd

pseudoscalars; the charged fields H± mix with the associated charged scalar fields s±1,2, defined later in Eq. (2.80).

These elements build up the neutral pseudoscalar 3 × 3 mass matrix, the neutral scalar 4 × 4 mass matrix and the

charged scalar 3× 3 mass matrix:

(i) neutral pseudoscalars:

In the {A, aY , aI} basis, the 3× 3 real and symmetric pseudoscalar mass matrix squared is given by

M2
P =




M2
A − 1√

2
(MY −AY )λY v − 1√

2
(MI −AI)λIv

− 1√
2
(MY −AY )λY v m̃′2

Y
1
2λY λIv

2

− 1√
2
(MI −AI)λIv

1
2λY λIv

2 m̃′2
I


 , (2.65)

where

M2
A = 2

[
Bµ + λY vY (MY +AY )/

√
2 + λIvI(MI +AI)/

√
2
]
/s2β , (2.66)

m̃′2
Y = m2

Y −m′2
Y +M2

Y + 1
2λ

2
Y v

2 , (2.67)

m̃′2
I = m2

I −m′2
I +M2

I + 1
2λ

2
Iv

2 . (2.68)

This matrix can easily be diagonalized in approximate form in the limit of the genuine supersymmetry parameters,

mY,I being much larger than the electroweak scale v, i. e. v/mY,I ≪ 1. This leaves us with three approximately

unmixed states with their masses

M
2

A1
= M2

A , M
2

A2
= m̃′2

Y , M
2

A2
= m̃′2

I . (2.69)

The expressions for the mass eigenvalues and mixing elements, when the weak coupling among the {A, aY , aI} states
is retained, are given in Appendix C.

(ii) neutral scalars:

In the {h,H, sY , sI} basis, the real and symmetric 4× 4 scalar mass matrix squaredM2
S is given by

M2
S =




m2
Z + δHs2β δHc2β − vY

v (2m̃2
Y − λ2Y v2) − vI

v (2m̃2
I − λ2Iv2)

δHc2β M2
A − δHs2β ∆Y ∆I

− vY
v (2m̃2

Y − λ2Y v2) ∆Y m̃2
Y

1
2λY λIv

2

− vI
v (2m̃2

I − λ2Iv2) ∆I
1
2λY λIv

2 m̃2
I


 , (2.70)

where

δH =
[
(λ2Y + λ2I)v

2 − 2m2
Z

]
s2β/2 , (2.71)

∆Y = g′MD
Y v s2β − 1√

2
λY (MY +AY )v c2β , (2.72)

∆I = −gMD
I v s2β − 1√

2
λI(MI +AI)v c2β . (2.73)

Note that δH vanishes in the N=2 SUSY limit. Thus, in this limit, the eigenvalues of the Higgs submatrix {h,H} are
just m2

Z and M2
A [20], with no dependence on tanβ, a feature markedly different from the MSSM. This submatrix
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receives several radiative corrections, the most important one accruing from stop/top loops, due to their large Yukawa

couplings. As a result, the Higgs submatrix is modified to
(
m2

Z + δHs2β δHc2β

δHc2β M2
A − δHs2β

)
→

(
m2

Z + δHs2β + ǫH δHc2β + ǫH/tβ

δHc2β + ǫH/t
2
β M2

A − δHs2β + ǫH/tβ

)
, (2.74)

where

ǫH ≃
3GFm

4
t√

2π2
ln
mt̃1mt̃2

m2
t

. (2.75)

The transition from the current basis to the diagonal 2× 2 Higgs matrix with eigenvalues

M
2

S1
≈ m2

Z + δHs2β + ǫH −
(δHc2β + ǫH/tβ)

2

M2
A −m2

Z

, (2.76)

M
2

S2
≈ M2

A − δHs2β + ǫH/t
2
β +

(δHc2β + ǫH/tβ)
2

M2
A −m2

Z

, (2.77)

is carried out by an orthogonal transformation with the mixing element given by

tan θh =
m2

Z + δHs2β + ǫH −M
2

S1

|δHc2β + ǫH/tβ|
, (2.78)

with 0 ≤ θh ≤ π/2.

In the limit of mY,I being much larger than the electroweak scale v, the {sY , sI} submatrix leads to the two

approximate mass eigenvalues

M
2

S3
= m̃2

Y , M
2

S4
= m̃2

I . (2.79)

The {h,H} and {sY , sI} systems are weakly coupled at the order v/MA, v/mY,I , and the block diagonalization

allows to derive the results given in Appendix C.

(iii) charged scalars:

After the charged Goldstone bosons a±G are absorbed into the charged gauge bosons, there remain three physical

charged scalar states {H±, s±1 , s
±
2 } with the second and third states defined by

s±1 = (σ±
1 − σ±

2 )/
√
2 and s±2 =

v(σ±
1 + σ±

2 )/
√
2− 2vIa

±
√
v2 + 4v2I

. (2.80)

The real symmetric 3× 3 charged scalar mass matrix squaredM2
H± is then given in the {H±, s±1 , s

±
2 } basis by

M2
H± =




M̃2
H± ∆± −√ρ∆I

∆± m̃′2
I + g2v2I

1
2

√
ρ
(
λ2I − 1

2g
2
)
v2c2β

−√ρ∆I
1
2

√
ρ
(
λ2I − 1

2g
2
)
v2c2β ρ m̃2

I


 , (2.81)

where

M̃2
H± = M2

A +m2
W +

1

2
(λ2I − λ2Y )v2 − 4

v2I
v2
m̃2

I + 4λ2Iv
2
I − 4

√
2µnλIvI ,

∆± =
(
g2/2− λ2I

)
vIvs2β − (MI −AI)λIv/

√
2 , (2.82)

and ∆I is introduced in Eq. (2.73). We note in passing that in the N = SUSY scenario with λI = g/
√
2 the charged

states s±1,2 do not mix.

Assuming that m̃2
I > m̃′2

I > M̃2
H± and MI , AI ∼ MA, and observing that, again, the charged Higgs/scalar states

are weakly coupled at the order of v/m̃I or v/m̃′
I , the block-diagonalization procedure provides approximate solutions

as given in Appendix C.

The extension of the Higgs sector by the novel SU(2)I×U(1)Y adjoint sigma fields has two important consequences:
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Figure 3: (a) The lightest neutral scalar boson including one-loop top/stop radiative corrections. The red dashed line indicates

the present experimental lower bound on the mass MS1
& 114 GeV; (b) the neutral scalar masses; (c) the neutral pseudoscalar

masses; (d) the charged scalar masses, as a function of the hypercharge soft scalar mass mY ; the isospin soft scalar mass is set

to mI = 6v to accommodate the small ρ-parameter and the N=2 values for the couplings λY,I in Eq. (2.10) are adopted. The

other parameters are fixed to tan β = 5, mt̃1
= mt̃2

= 1 TeV, MA = 2v, m′
Y = MD

Y = v/2, m′
I = MD

I = µ = v, AY = AI = 2v

and MY = MI = 0 for Dirac gauginos.

• Each of the neutral pseudoscalar/scalar and charged sectors are extended by two new states with masses of the

order of the characteristic scalar parameters mY and mI . As a result, one of the new pseudoscalar/scalar states

may acquire mass between a few hundred GeV up to several TeV, while the other will be heavy, i.e., O(TeV);
both the new charged states will be heavy likewise.

• The mass matrix of the Higgs system is modified compared to the MSSM. As pointed out before, the tree-level

Higgs masses are independent of the mixing parameter tanβ. In addition, the lower bound on the [lightest]

charged Higgs mass is not guaranteed to exceed the W mass any more [experimentally of course, any charged

Higgs boson with mass below ∼ 100 GeV is excluded by direct searches [22].]

The tableau in Fig. 3 illustrates the evolution of the three neutral pseudoscalar, four neutral scalar, and three
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charged masses with the hyper-singlet mass parameter mY introduced in the soft SUSY breaking Lagrangian while

all other parameters are kept fixed. These parameters have been chosen as indicated in the figure caption.

3. CHARACTERISTIC PHYSICAL PROCESSES

New colored particles like gluinos and squarks are expected to be generated, and detected, at the LHC for masses up

to 2–3 TeV, and the strikingly different phenomenology of novel Dirac gluinos and colored adjoint scalars have been

discussed in Refs. [7, 8]. In contrast, the mass window for generating non-colored states like charginos/neutralinos

directly in quark-antiquark collisions is much smaller as a result of the small electroweak production cross sections.

Cascade decays of colored states, however, provide a copious source of non-colored particles with large masses i.e.

through the decay q̃ → q+χ̃. Pair production of non-colored states at TeV e+e− and e−e− lepton colliders ILC/CLIC,

on the other hand, gives access to the non-colored sector up to masses close to half the c.m. energy, i. e. about 0.5

TeV and 1.5 TeV at the ILC and CLIC, respectively, while non-colored adjoint scalars can be produced with high

masses in γγ collisions. Without specifying the relative size of the masses of the new particles, a myriad of possible

cascade decays would be predicted, which can, nevertheless, be analyzed phenomenologically by applying quite similar

techniques. To present a transparent overview we, therefore, focus on representative chains in which sigma masses

generally exceed the chargino/neutralino masses, as motivated already earlier.

3.1. Charginos and Neutralinos

Below, explicit formulae will be given for the N=1 MSSM and the N=2 Dirac limit, while scenarios interpolating

between the MSSM and the Dirac limit could be obtained by summing up the two individual chargino/Majorana

neutralino contributions after the proper diagonalization of the hyper-system.

In the hybrid theory, only the original N=1 chargino and neutralino fields couple to the matter fields. The analysis

is simplified considerably by restricting ourselves to interactions with first and second generation (s)fermions. In this

sector, which is most relevant experimentally, only the gauge components of charginos and neutralinos couple to the

matter fields.

In the limit of large supersymmetry scales (in relation to the electroweak scale), the Dirac chargino fields and their

charge conjugates are given by

χ̃−
D1 = W̃ ′−

L + W̃−
R , χ̃+

D1 = −W̃+
L − W̃ ′+

R , (3.1)

χ̃−
D2 = W̃−

L + W̃ ′−
R , χ̃+

D2 = −W̃ ′+
L − W̃+

R , (3.2)

χ̃−
D3 = H̃−

dL + H̃−
uR , χ̃+

D3 = H̃+
uL + H̃+

dR , (3.3)

whereas the Dirac neutralino fields and their charge conjugates are

χ̃0
D1 = B̃′

L + B̃R , χ̃0c
D1 = −B̃L − B̃′

R , (3.4)

χ̃0
D2 = W̃ ′0

L + W̃ 0
R , χ̃0c

D2 = −W̃ 0
L − W̃ ′0

R , (3.5)

χ̃0
D3 = i(H̃0

dL − H̃0
uR) , χ̃0c

D3 = i(H̃0
uL − H̃0

dR) , (3.6)

up to terms of order v/MSUSY. Expressed in terms of these fields, the Lagrangians for matter-chargino/neutralino

interactions in the MSSM Majorana limit and in the Dirac theory can be written as

LCMajo = g uL χ̃
+
1 d̃L + g χ̃+

1 uL d̃
∗
L − g dL χ̃−

1 ũL − g χ̃−
1 dL ũ

∗
L , (3.7)

LCDirac = g uL χ̃
+
D2d̃L + g χ̃+

D2 uL d̃
∗
L − g dL χ̃−

D1ũL − g χ̃−
D1 dL ũ

∗
L , (3.8)
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and

LNMajo = −gLi fL χ̃
0
i f̃L − g∗Li χ̃

0
i fL f̃

∗
L + gRi fR χ̃

0
i f̃R + g∗Ri χ̃

0
i fR f̃

∗
R , (3.9)

LNDirac = −gLi fL χ̃
0
Di f̃L − g∗Li χ̃

0
Di fL f̃

∗
L + gRi fR χ̃

0c
Di f̃R + g∗Ri χ̃

0c
Di fR f̃

∗
R , (3.10)

where

gLi =
√
2
[
g′YfLδi1 + gI3f δi2

]
and gRi =

√
2 g′YfRδi1 . (3.11)

Here u/ũ correspond to up-type (s)quarks or (s)neutrinos, whereas d/d̃ denote down-type (s)quarks or charged

(s)leptons. As mentioned above, mixings from electroweak symmetry breaking as well as from the CKM matrix

have been neglected.

In the approximation described by the Dirac Lagrangians a Dirac charge D [7] can be defined which is conserved

in all processes:

D[q̃1,2L ] = D[ℓ̃1,2L ] = D[ν̃1,2] = D[χ̃0c
D ] = D[χ̃+

D1] = D[χ̃−
D2] = −1 , (3.12)

D[q̃1,2R ] = D[ℓ̃1,2R ] = D[χ̃0
D] = D[χ̃−

D1] = D[χ̃+
D2] = +1 . (3.13)

Antiparticles carry the corresponding opposite Dirac charges −D. The Dirac charges of all SM particles vanish. The

squarks q̃1,2, sleptons ℓ̃1,2, and sneutrinos ν̃1,2 belong to the first and second generation. L,R mixing and large

couplings to higgsinos preclude the extension of this approximate scheme to the third generation. Nevertheless, the

scheme proves useful for a quick overview of allowed and forbidden processes in the first two generations. For example,

in the Dirac limit, the production processes e−Le
−
L → ẽ−L ẽ

−
L and e−Re

−
R → ẽ−R ẽ

−
R with equal helicities are forbidden while

the opposite-helicity process e−Le
−
R → ẽ−L ẽ

−
R is allowed.

1. Squark Cascade Decays at LHC

Cascade decays, see e.g. Ref. [25], are crucial for the analysis of the non-colored supersymmetry sector at LHC.

Following the rules discussed earlier, we will study invariant masses of quark-jets with charged leptons in squark

cascade decays:

Charginos: MSSM: ũL → d χ̃+
1 → d νl l̃

+
L , d l

+ ν̃l → d l+ νl χ̃
0
1 ,

d̃L → u χ̃−
1 → u ν̄l l̃

−
L , u l

− ν̃∗l → u l− ν̄l χ̃
0
1 , (3.14)

Dirac: ũL → d χ̃+
D1 → d l+ ν̃l → d l+ νl χ̃

0c
D1 ,

d̃L → u χ̃−
D2 → u ν̄l l̃

−
L → u l− ν̄l χ̃

0c
D1 , (3.15)

Neutralinos: MSSM: q̃L → q χ̃0
2 → q l± l̃∓L → q l± l∓ χ̃0

1 , (3.16)

Dirac: q̃L → q χ̃c0
D2 → q l+ l̃−L → q l+ l− χ̃0

1 . (3.17)

Due to CP invariance, the charge conjugated versions of these processes are obtained simply by flipping the

gauge/Dirac charges and chiralities at each step.

As evident from the list above, the decay chains differ in their chirality structure between the MSSM and the Dirac

theory, which will leave a characteristic imprint on the angular distributions of visible decay jets and leptons. For the

squark-chargino cascades this is illustrated by the quark-lepton invariant mass distributions shown in Fig. 4.

Also shown in the figure is an example of the general 2-Majorana hyper-system away from the Dirac limit. In this

case one obtains two wino-like charginos χ±
1,2 with distinct masses. The dotted lines in the plots corresponds to a
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Figure 4: Quark-lepton invariant mass distributions for squark decay chains with intermediate charginos, comparing the

N=1 MSSM (solid lines) with the N=2 Dirac gaugino theory (dashed lines) and the intermediate hybrid theory (dotted lines).

Numerical inputs for the plots are mq̃ = 565 GeV, m
χ̃
±
1

= m
χ̃
±
D1

= m
χ̃
±
D2

= 184 GeV, ml̃ = mν̃ = 125.3 GeV, and mχ̃0
1
=

mχ̃0
D1

= 97.7 GeV. For the case of the hybrid model, the second chargino mass is m
χ̃
±
2

= 199 GeV, corresponding to a mixing

angle cos θ2 = 0.6. Electroweak symmetry breaking effects on the chargino and neutralino mixing matrices have been neglected.

scenario with relatively small departure from the Dirac limit, so that the two chargino masses are of the same order

and the W̃/W̃ ′ mixing angle is close to maximal mixing.

Nevertheless, the distributions of the 2-Majorana hyper-system are closer to the MSSM in the plots, while the

Dirac limit leads to drastically different distributions. This can be understood from the fact that the two independent

charginos χ̃±
1 and χ̃±

2 in the hybrid model become degenerate in the exact Dirac limit. Interference effects lead to

large mixing between the two states in this limit. However, a slight deviation from the Dirac limit is already sufficient

to effectively turn off these interference contributions, since the width of both charginos is relatively small.

The squark-neutralino cascades have been worked out in Ref. [7], and are reproduced in Fig. 5. Again, the plots

show distinct differences between the MSSM and Dirac limits, which can be exploited to experimentally distinguish

the two cases at the LHC.

2. Selectron Pair-Production in e−e− and e+e− Collisions

Conservation of the Dirac charge D in the first generation forbids the production of selectrons in equal-helicity

e−e− collisions but allows the production in opposite-helicity collisions in the Dirac theory, while all three helicity

combinations are non-trivially realized in Majorana theories:

e−Le
−
L → ẽ−L ẽ

−
L , e

−
Re

−
R → ẽ−R ẽ

−
R , (3.18)

e−Le
−
R → ẽ−L ẽ

−
R . (3.19)
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Figure 5: ql invariant mass distributions for squark decay chains involving Majorana or Dirac neutralinos. In the N=1 MSSM

(solid lines) the squark and anti-squark decay chains lead to identical distributions, in contrast to the N=2 Dirac gaugino theory

(dashed and dotted lines). Numerical inputs for the plots are mq̃ = 565 GeV, mχ̃0
2
= mχ̃0

D2
= 184 GeV, ml̃ = 125.3 GeV, and

mχ̃0
1
= mχ̃0

D1
= 97.7 GeV. Electroweak symmetry breaking effects on the chargino and neutralino mixing matrices have been

neglected.

Three other independent processes are possible in e−e+ collisions:

e−Le
+
L → ẽ−L ẽ

+
R , (3.20)

e−Le
+
R → ẽ−L ẽ

+
L , e

−
Re

+
L → ẽ−R ẽ

+
R . (3.21)

Noting that (ψL/R)
c = (ψ

c
)R/L, the additional process e−Re

+
R → ẽ−R ẽ

+
L in the second group is the CP-conjugate of the

first process and needs not be analyzed separately. Since non-zero s-channel γ, Z exchange requires opposite lepton

helicities, the first electron/positron process is driven only by neutralino exchanges while the other two processes are

mediated by both t-channel neutralino and s-channel vector-boson exchanges. Moreover, the first process violates

conservation of the D charge and thus is forbidden in the Dirac theory. Simulations of some processes have been

presented in Refs. [26, 27].

(i) e−e− collisions :

Recalling the definitions introduced in Ref. [7], the e−e− scattering amplitudes for selectron pair production in the

general hybrid hyper-system on which we have based the detailed analyses, can be written as

A[e−Le−L → ẽ−L ẽ
−
L ] = −2e2 [MLL(s, t) +MLL(s, u)] , (3.22)

A[e−Re−R → ẽ−R ẽ
−
R] = 2e2 [M∗

RR(s, t) +M∗
RR(s, u)] , (3.23)

for same helicity-pairs and

A[e−Le−R → ẽ−L ẽ
−
R] = e2λ

1/2
LR sin θDLR(s, t) , (3.24)

A[e−Re−L → ẽ−L ẽ
−
R] = −e2λ

1/2
LR sin θDRL(s, u) , (3.25)

for opposite helicity-pairs, with the two-body final state kinematic factor λab = λ(1,m2
ẽa
/s,m2

ẽb
/s) [a, b = L,R] and

λ(1, x, y) = 1 + x2 + y2 − 2(x+ y + xy) . (3.26)

Here θ is the scattering angle, and the dimensionless neutralino functionsMab and Dab (a, b = L,R) [28] are defined
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by

Mab(s, t/u) =
6∑

k=1

mχ̃0
k√
s
VakVbkDkt/u , (3.27)

Dab(s, t/u) =

6∑

k=1

VakV∗
bkDkt/u , (3.28)

They are determined by the normalized neutralino propagators Dkt = s/(t −m2
χ̃0
k

), and similarly for Dku, and the

effective mixing coefficients

VLk = UN2k/(2cW ) + UN4k/(2sW ) , VRk = UN2k/cW . (3.29)

The neutralino mixing matrix elements UNαk, introduced in (2.45), have a very simple structure if effects from

electroweak symmetry breaking are neglected, see Eq. (2.49).

After calculating the polarization averaged squared matrix elements and including the phase space factor the

differential cross sections are

dσLL

d cos θ
=
πα2

4s
λ
1/2
LL |MLL(s, t) +MLL(s, u) |2 , (3.30)

dσRR

d cos θ
=
πα2

4s
λ
1/2
RR |MRR(s, t) +MRR(s, u) |2 , (3.31)

dσLR

d cos θ
=
πα2

4s
λ
3/2
LR sin2 θ

[
|DLR(s, t)|2 + |DRL(s, u)|2

]
. (3.32)

Finally, the unpolarized total cross sections can be obtained by performing the remaining integration over the scatter-

ing angle θ. Note that σLR and σRL are not physically distinguishable in the e−e− case, unlike for e+e− annihilation.

The cross sections reduce, on the one side, to the familiar MSSM form, see Ref. [26], while in the Dirac theory, on the

other side, they simplify considerably to

σ[e−e− → ẽ−L ẽ
−
L ] = σ[e−e− → ẽ−R ẽ

−
R] = 0 , (3.33)

σ[e−e− → ẽ−L ẽ
−
R] =

πα2

2c4W s

[
(1 + 2m2

χ̃0
D1

/s−m2
ẽL/s−m

2
ẽR/s)L

′
D1 − 2β′

]
, (3.34)

with β′ = λ
1/2
LR and the logarithmic function defined by

L′
i = log

1 + β′ + (2m2
χ̃0
i

−m2
ẽL
−m2

ẽR
)/s

1− β′ + (2m2
χ̃0
i

−m2
ẽL
−m2

ẽR
)/s

. (3.35)

The vanishing of the LL and RR cross sections is obvious from D-charge conservation. In the absence of higgsino

exchanges only the bino-exchange can drive the LR process.

The evolution of the total cross section from the MSSM to the Dirac limit is illustrated for the two characteristic

processes e−e− → ẽ−L ẽ
−
L and e−e− → ẽ−L ẽ

−
R in the left panel of Fig. 6, which demonstrates how the first process is

switched off when the Dirac limit is approached.

(ii) e+e− collisions :

The analysis of the e−e+ processes follows the same path. By introducing a normalized s-channel Z boson propagator

DZ = s/(s−m2
Z + imZΓZ) and four bi-linear charges

Z+
LL = 1 +

s2W − 1/2

c2W
DZ , Z−

LL = 1 +
(s2W − 1/2)2

c2W s2W
DZ , (3.36)

Z+
RR = 1 +

s2W
c2W

DZ , Z−
RR = 1 +

s2W − 1/2

c2W
DZ , (3.37)
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Figure 6: Dependence of the cross sections for same-sign (left) and opposite-sign (right) selectron production on the

Dirac/Majorana control parameter y, for
√
s = 500 GeV and SPS1a′ parameters [29]. Not shown are the cross sections for

e−e± → ẽ−Rẽ
±

R, which, apart from the different normalization, shows a similar behavior as the cross section for e−e− → ẽ−L ẽ
±

L .

we obtain six non-vanishing helicity amplitudes

A[e−Le+R → ẽ−L ẽ
+
L ] = −e2λ

1/2
LL sin θ

[
DLL(s, t) + Z−

LL

]
, (3.38)

A[e−Re+L → ẽ−L ẽ
+
L ] = −e2λ

1/2
LL sin θZ+

LL , (3.39)

A[e−Le+R → ẽ−Rẽ
+
R] = −e2λ

1/2
RR sin θZ−

RR , (3.40)

A[e−Re+L → ẽ−Rẽ
+
R] = −e2λ

1/2
RR sin θ

[
DRR(s, t) + Z+

RR

]
, (3.41)

A[e−Le+L → ẽ−L ẽ
+
R] = 2e2MLR(s, t) , (3.42)

A[e−Re+R → ẽ−Rẽ
+
L ] = −2e2M∗

RL(s, t) . (3.43)

By squaring the helicity amplitudes, the differential cross sections can easily be derived. The squares are summed

incoherently if the initial lepton helicities are not specified experimentally.

As before, the cross sections reduce to the familiar MSSM limit on one side, while in the Dirac limit, on the other

side, the processes with LR/RL initial state helicities remain allowed, but the LL and RR processes are excluded by

D-charge conservation. The D-charge of the pair ẽ−L ẽ
−
R vanishes, thus allowing production in e−e− collisions, but the

pair ẽ−L ẽ
+
R carries the charge D = 2 so that production of this pair in e−e+ collisions is forbidden.

The continuous transition from the MSSM to the Dirac limit is illustrated in the right panel of Fig. 6, for the two

representative total cross sections of e−e+ → ẽ−L ẽ
+
R and e−e+ → ẽ−L ẽ

+
L .

3. Chargino and Neutralino Production in e+e− Collisions

Direct production of chargino and neutralino pairs in e+e− annihilation are ideal laboratories to study the properties

of these particles, see e.g. Ref. [30]. As will be shown here, the characteristic differences between the Dirac theory

and the MSSM also become evident in these processes.
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The chargino reactions proceed in general through s-channel γ, Z and t-channel ν̃e exchanges. Focusing on the

gaugino sector, doubled in the general hybrid theory compared to the MSSM, the production cross sections for

diagonal and non-diagonal charged gaugino pairs are given by

dσ

d cos θ
[e+e− → χ̃+

1 χ̃
−
1 ] =

πα2λ
1/2
11

16s4Ws

[
[s2 − 4s2Wm2

Zs+ 8s4Wm4
Z ][2− λ11 sin2 θ]

(s−m2
Z)

2

+2 s22
[s− 2s2Wm2

Z ][1− λ11 + (1 − λ1/211 cos θ)2]

(s−m2
Z)(η11 − λ

1/2
11 cos θ)

+ 2s42
(1− λ1/211 cos θ)2

(η11 − λ1/211 cos θ)2

]
,

(3.44)

dσ

d cos θ
[e+e− → χ̃+

2 χ̃
−
2 ] =

πα2λ
1/2
22

16s4Ws

[
[s2 − 4s2Wm2

Zs+ 8s4Wm4
Z ][2− λ22 sin2 θ]

(s−m2
Z)

2

+2 c22
[s− 2s2Wm2

Z ][1− λ22 + (1 − λ1/222 cos θ)2]

(s−m2
Z)(η22 − λ

1/2
22 cos θ)

+ 2c42
(1− λ1/222 cos θ)2

(η22 − λ1/222 cos θ)2

]
,

(3.45)

dσ

d cos θ
[e+e− → χ̃±

1 χ̃
∓
2 ] =

πα2λ
1/2
12

4s4W s
c22s

2
2

(1− λ12 cos θ)2 − (m2
χ̃±
1

−m2
χ̃±
2

)2/s2

(η12 − λ1/212 cos θ)2
, (3.46)

and the production cross section of a charged higgsino pair by

dσ

d cos θ
[e+e− → χ̃+

3 χ̃
−
3 ] =

πα2λ
1/2
33

16s

(8s4W − 4s2W + 1)(s2W − 1/2)2

c4W s4W

s2(2− λ33 sin2 θ)
(s−m2

Z)
2

, (3.47)

with ηij = 1 + (2m2
ν̃ −m2

χ̃±
i

−m2
χ̃±
j

)/s, where we ignore the Z boson width and introduce the usual Kállen functions

λij = λ1/2(1,m2
χ̃±
i

/s,m2
χ̃±
j

/s). As before electroweak symmetry breaking effects in the chargino mixing matrix have

been neglected. The mixing angles c2 and s2, derived from Eq. (2.40) by neglecting vI and explicitly given by

c2/s2 =
√
[1± (M ′

2 −M2)/δ2] /2 with δ2 =
√
(M ′

2 −M2)2 + 4(MD
2 )2 , (3.48)

under the assumption M ′
2 +M2 ≤ 0 and M

(D)
2 ≥ 0, only modify the t-channel sneutrino amplitude, so that they

can be determined from the angular distribution of χ̃+
1 χ̃

−
1 production in a straightforward manner. The MSSM limit

corresponds to (3.44) with c2 = 0 and s2 = 1. In the Dirac limit, using the basis (3.1),(3.2) for the two degenerate

gauginos, one finds

dσ

d cos θ
[e+e− → χ̃+

D1χ̃
−
D1] =

πα2λ
1/2
11

16s4W s

[
[s2 − 4s2Wm2

Zs+ 8s4Wm4
Z ][2− λ11 sin2 θ]

(s−m2
Z)

2

+2
[s− 2s2Wm2

Z ][2− 2λ
1/2
11 cos θ − λ11 sin2 θ]

(s−m2
Z)(η11 − λ

1/2
11 cos θ)

+ 2
(1 − λ1/211 cos θ)2

(η11 − λ1/211 cos θ)2

]
, (3.49)

dσ

d cos θ
[e+e− → χ̃+

D2χ̃
−
D2] =

πα2λ
1/2
22

16s4W s

[s2 − 4s2Wm2
Zs+ 8s4Wm4

Z ][2− λ22 sin2 θ]
(s−m2

Z)
2

, (3.50)

dσ

d cos θ
[e+e− → χ̃±

D1χ̃
∓
D2] = 0 , (3.51)

while the higgsino production is identical to the MSSM case. It is noteworthy that unlike the MSSM, three distinct

pairs of charginos can be produced in the Dirac limit, but the cross sections for χ̃+
1 χ̃

−
1 (χ̃+

3 χ̃
−
3 ) production, in the

MSSM limit, are identical to those for χ̃+
D1χ̃

−
D1 (χ̃+

D3χ̃
−
D3) production in the Dirac limit. The latter characteristic is in

obvious contrast to neutralino and gluino production, which are Majorana particles in one limit and Dirac particles

in the other.

As a characteristic example in the neutralino sector we will focus on the production of wino pairs, e+e− → χ̃2χ̃
(c)
2

in the MSSM and Dirac limits for the comparison of Majorana and Dirac theories. Neglecting neutralino mixing from
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Figure 7: Left: the total cross sections for pair production of wino-like neutralinos near threshold in the MSSM and the Dirac

theory. Right: dependence of the cross sections on the production angle θ for
√
s = Ecm = 500 GeV. The sparticle masses in

both plots are mχ̃0
2
= mχ̃0

D2
= 200 GeV and mẽL = 400 GeV.

electroweak symmetry breaking, the production mechanisms proceed via exchange of selectrons in the t-channel for

Dirac neutralinos, and both the t, u-channels for Majorana neutralinos. The differential cross sections as a function

of the production angle θ read

MSSM:
dσ

d cos θ
[e+e− → χ̃0

2χ̃
0
2] =

πα2

32s4W s
λ
3/2
22

η22L + (η22L − 4η2L + 2− λ22) cos2 θ + λ22 cos
4 θ

(η22L − λ22 cos2 θ)2
, (3.52)

Dirac:
dσ

d cos θ
[e+e− → χ̃0c

D2χ̃
0
D2] =

πα2

32s4W s
λ
1/2
22

(1− λ1/222 cos θ)2

(η2L − λ1/222 cos θ)2
. (3.53)

As before, λ22 denotes the usual 2-body phase space function and η2L = 1 + 2(m2
ẽL
−m2

χ̃0
2

)/s.

Two characteristics distinguish the Dirac from the Majorana cross section, see Fig. 7. Dirac particles are generated

in S-waves near threshold, identical Majorana particles in P -waves, giving rise to threshold onsets proportional to

the χ̃ velocity and its third power, respectively. In contrast to identical Majorana particle production, Dirac particle

production is not forward-backward symmetric in the production angle θ. The integrated asymmetry is substantial,

for example AFB ≈ −0.30 for mχ̃0
D2

= 200 GeV, mẽL = 400 GeV and
√
s = 500 GeV. In practice, the measurable

asymmetry is somewhat reduced by experimental acceptances and cuts, and the fact that the neutralino cannot be

reconstructed fully from its decay products, but it is nevertheless an important tool to discriminate the Dirac theory

from the MSSM. It should be noted finally that the cross section for Dirac pair production is equal to the sum of the

cross sections for the corresponding {kl} diagonal and off-diagonal Majorana pairs as shown explicitly by meticulous

accounting of interference effects for gluino production in Ref. [7].
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3.2. Scalar Particles

At the Born level the iso-triplet and hyper-singlet sigma fields, σi
I and σ0

Y , couple to sfermions, charginos/neutralinos

and Higgs bosons. The relevant couplings can be derived from the Lagrangian terms and the scalar potential listed

in subsection 2.1. The set of new Born and effective loop couplings relevant for the phenomenological analyses of the

dominant σ production and decays is displayed in Fig. 8. Only the generic form of the couplings are noted explicitly

at the vertices.

1. Sigma Decays

Expressed by the effective couplings, gB and gF , in the Lagrangians L = gBsB
∗B and L = gFφ F̄ [iγ5]F , φ = s, a,

the partial decay widths can be derived generically for bosons B and fermions F as

Γ[s→ BB̄] =
g2B

16πms
β , (3.54)

Γ[s→ FF̄ ] =
g2Fms

8π
β3 , (3.55)

Γ[a→ FF̄ ] =
g2Fma

8π
β , (3.56)

with β denoting the velocity of the final state particles. The two standard coefficients β and β3 correspond to S- and

P -wave decays.

In the following analyses we will focus on the gross features of production channels and decay modes of the novel

scalar states so that small block mixing can be neglected. The mass eigenstates are therefore approximately identified

with the unmixed states sY,I , aY,I and s±1,2, and the MSSM states h,H,A,H± correspondingly.

For unspecified masses and couplings the following decays are the leading modes of the particles sY and aY :

sY → hh, hH, HH, AA, H+H−; f̃ f̃∗; χ̃+χ̃−, χ̃0χ̃0(c) , (3.57)

aY → χ̃+χ̃−, χ̃0χ̃0(c) . (3.58)

(a)

σ

f̃

χ

h, H, A

f̃ ∗

χ

h, H, A

gMD

g

gMD (b)

gMD

g

g

q̃

e−

e+

σ

γ/Z

σ∗

g

σ

(γ)

(γ)

Figure 8: Diagrams relevant for (a) electroweak σ decays and (b) electroweak σ production. The γγ couplings to σ include

also loops of charginos, W and charged Higgs bosons. [Values of the couplings denoted at the vertices, are generic.]
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The pseudoscalar particle aY decays only to (higgsino-type) neutralino or chargino pairs, with equal probability

sufficiently above the threshold region. If 2-body decays are kinematically forbidden, 3-body decays to a (higgsino-

type) neutralino, (bino-type) neutralino and Higgs boson, as well as loop-decays to tt̄ pairs and photons are predicted.

It should also be noted that the mass eigenstate proper, A2, may decay through channels opened by the mixing with

the pseudoscalar A Higgs boson. As the couplings are of size O(g′MD
Y ) and/or O(λY µ, λYMY , λY AY ), the ensuing

partial widths are typically of electroweak size above the 2-body threshold regions.

A detailed set of leading decay branching ratios is shown for the hyper-singlet scalar particle sY in Fig. 9. The

relevant couplings gB and gF for the scalar sY to Higgs bosons are:

gB[sY hh] = −
√
2λY µn + g′MD

Y c2β + (MY +AY )λY s2β/
√
2 ,

gB[sY hH ] = −g′MD
Y s2β + (MY +AY )λY c2β/

√
2 ,

gB[sYHH ] = gB[sYAA] = −
√
2λY µn − g′MD

Y c2β − (MY +AY )λY s2β/
√
2 ,

gB[sYH
+H−] = −

√
2λY µc + g′MD

Y c2β − (MY +AY )λY s2β/
√
2 , (3.59)

those to supersymmetric particles are:

gB[sY f̃Lf̃
∗
L] = −2g′MD

Y YfL ,

gB[sY f̃Rf̃
∗
R] = 2g′MD

Y YfR ,

gF [sY H̃
+
u H̃

−
d ] = gF [sY χ̃

+
D3χ̃

−
D3] = −λY /

√
2 ,

gF [sY H̃
0
uH̃

0
d ] = −gF [sY χ̃0

D3χ̃
0c
D3] = λY /

√
2 , (3.60)

and the relevant couplings for the pseudoscalar aY are:

gF [aY H̃
+
u H̃

−
d ] = gF [aY χ̃

+
D3χ̃

−
D3] = λY /

√
2 ,

gF [aY H̃
0
u H̃

0
d ] = −gF [aY χ̃0

D3χ̃
0c
D3] = −λY /

√
2 . (3.61)

The Dirac chargino and neutralino, χ̃±
D3 and χ̃

0
D3, are defined in terms of higgsinos in Eqs. (3.3) and (3.6), respectively.

For the specific set of parameters the hyper-singlet scalar sY decays dominantly to Higgs bosons and sleptons. The

decays to gaugino-like neutralinos are forbidden due to gauge symmetry and the decays to higgsino-like neutralinos

and charginos are kinematically allowed only when the particle is very heavy.

The iso-triplet scalar states, sI , aI and s±1,2, have been assumed very heavy. Several features of the iso-triplet scalar

interactions determine their potential decay modes. In parallel to the hypercharge states, they do not couple to quarks

and leptons, but they couple to gauginos, higgsinos and scalar pairs, sfermions, as well as Higgs bosons and/or gauge

bosons. Thus, if kinematically allowed, the gauge/Higgs bosons, sfermions, charginos and neutralinos constitute the

dominant decay channels for the sI , aI and s±1,2 states:

sI → hh, hH, HH, AA, H+H−; f̃ f̃∗; χ̃+χ̃−, χ̃0χ̃0(c) , (3.62)

aI → χ̃+χ̃−, χ̃0χ̃0(c) , (3.63)

s±1,2 → H±h, H±H, H±A; f̃ f̃ ′∗; χ̃+χ̃0/χ̃−χ̃0c , (3.64)

with partial widths of the electroweak scale. In addition, the small couplings to electroweak gauge bosons, developed

by the small iso-triplet vev vI , lead to the two-boson decay sI → W+W−, albeit at reduced rate. Furthermore, the

iso-triplet scalar states may decay to gluons, photons, electroweak bosons, quarks and leptons through sfermion and

chargino/neutralino loops.

2. Stop and Stau Decays to Sigma Particles

Sigma fields carry positive R-parity, but they couple preferentially to gaugino and squark/slepton pairs. Assuming, as

before, that they are heavier than charginos and neutralinos, this leaves us with heavy sfermion decays as a possible
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Figure 9: Dependence of the branching ratios for sY decays on the mass MsY . The values of the relevant SUSY parameters are

taken to be tanβ=5, µ = 400 GeV, m′
Y = MD

Y = v/2, m′
I = MD

I = v, AY = AI = 2v, together with ml̃L
= v, mẽR = 0.95ml̃L

,

mq̃L = 2v, mq̃R = 0.95mq̃L , mt̃R
= 0.8mq̃L , mt̃L

= Xt = 0.9mq̃L , mH = mA = m±

H = 2v, mh = 114 GeV. For the charginos

and neutralinos the Dirac limit with M
(′)
1,2 = 0 is assumed. Only the leading 2-body decays are shown.

source for neutral sigma particles:

f̃2 → f̃1 + sY . (3.65)

While the sI channel is likely too heavy to be open, the pseudoscalars aY,I do not couple.

Since the mass splitting between the two stops is typically large, let us examine the process t̃2 → t̃1 + sY first. The

partial width for this decay mode is given by

Γt̃2 =
g2
t̃

16πmt̃2

λ1/2(1,m2
t̃1
/m2

t̃2
,M2

sY /m
2
t̃2
) , (3.66)

with λ denoting the usual phase space function defined in (3.26) and the coupling

gt̃ =
5

6
√
2
g′MD

Y sin 2θt̃ . (3.67)

Even for large values of the stop mixing angle θt̃, Γt̃ is typically less than 1 GeV for sparticle masses of a few 100 GeV,

compared to a typical t̃2 total width of a few tens of GeV. Thus the branching ratio for t̃2 → t̃1 + sY can amount to

a few per-cent at most, so that experimental discovery of this decay channel will be very challenging.

In the stau system, the decay mode τ̃2 → τ̃1+sY only becomes viable for large values of the mass splitting mτ̃2−mτ̃1

and of tanβ. In such a scenario, however, one typically obtains sizable branching ratios of order 10%. This can be

explained by the larger hypercharges of the staus compared to the stops, leading to a similar expression for the partial

width as above but with gt̃ replaced by

gτ̃ =
3

2
√
2
g′MD

Y sin 2θτ̃ . (3.68)
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While heavy staus will be swamped by background at hadron colliders, the process τ̃2 → τ̃1 + sY could be a possible

discovery mode for the sY scalar at high-energy lepton colliders.

3. Production of Sigma Particles at LHC

The neutral hyper-singlet and iso-triplet scalar particles sY and sI can, in principle, be generated singly in gluon

fusion processes at the LHC, analogous to Higgs bosons:

pp → gg → sY,I . (3.69)

Since the pseudoscalar states aY,I do not couple to gluons through squark loops, their single formation channel is

shut. The adjoint sY,I scalar coupling to the gluons are mediated by squark triangles, the D-terms providing the

interactions of the squarks with the sigma fields.

The partonic fusion cross section for sY production, with the Breit-Wigner function in units of 1/M2
sY factored off,

σ̂[gg → sY ] =
π2

8MsY

Γ(sY → gg) , (3.70)

can be expressed in terms of the partial width for sY → gg,

Γ[sY → gg] =
αY α

2
s

8π2

(MD
a )2

MsY

∣∣∣
∑

[YLτLf(τL)− YRτRf(τR)]
∣∣∣
2

. (3.71)

with αY = g′2/4π. The standard triangular function f(τ) is defined by

f(τ) =
[
sin−1(1/

√
τ)
]2

if τ ≥ 1, and − 1

4

[
ln

(
1 +
√
1− τ

1−
√
1− τ

)
− iπ

]2
if 0 ≤ τ < 1 , (3.72)

with τL,R = 4M2
q̃L,R

/M2
sY and YL,R being the hypercharges of the L and R-squarks. It should be noted that the

hypercharges add up to zero for complete generations, but not individually for up- and down-type states for which

the L/R hypercharge difference amounts to ∓1. While for mass-degenerate complete generations the sum of the form

factors in the partial width vanishes, the cancelation is lifted for stop states, in particular, with the non-zero difference

enhanced by the different L/R hypercharges.

The pp cross section is finally found by convoluting the parton cross section with the gg luminosity [31],

σ[pp→ sY ] =
π2

8s

Γ(sY → gg)

MsY

∫ 1

M2
sY

/s

dx

x
g(x;M2

sY ) g(τ/x;M
2
sY ) , (3.73)

in the usual notation. The cross section for sY production is shown in Fig. 10 as a function of the sY mass.

An analogous expression holds for sI production in pp collisions. However, since the mass of sI needs to be very

large due to the ρ-parameter constraint, the actual size of the fusion cross section will be significantly below 1 fb.

Other production channels are offered by Higgs-strahlung and electroweak boson fusion. Pairs of electroweak gauge

bosons couple to the lightest Higgs boson h and the iso-vector sI . All these couplings involve either the electroweak

vev v or the iso-scalar vev vI . Rotating the mass eigenstates si to the current eigenstates h etc, the cross sections for

Higgs-strahlung and vector-boson fusion can easily be expressed by the corresponding cross section for the production

of the SM Higgs boson with equivalent mass:

σ[pp→W →Wsi] =
(
OS1i + 4

vI
v
OS4i

)2
σ[pp→W →WHSM ] , (3.74)

σ[pp → Z → Zsi] = (OS1i)
2 σ[pp→ Z → ZHSM ] , (3.75)
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Figure 10: Cross sections for single sY production through gg fusion in pp collisions at LHC (
√
s = 14 TeV). The MSSM

benchmark point SPS1a′, Ref. [29], is adopted for the numerical analysis.

with OS denoting the 4 × 4 rotation matrix diagonalizing the scalar mass matrix squared M2
S in Eq. (2.70) as

OT
SM2

SOS = diag(M2
S1
, . . . ,M2

S4
). Cross sections for vector boson fusion are related in the same way.

Numerical analyses taking into account the experimental constraint on the ρ parameter and the mass bound on

the lightest neutral scalar lead to mixing coefficients of 10−2 and less so that these channels are presumably of little

value in practice.

4. Charged Adjoint Scalar Pair-Production in e+e− and γγ Collisions

(i) e+e− collisions :

Resonance production of sigma particles in e+e− collisions is strongly suppressed as the production amplitude scales

with the electron mass. Since the quantum numbers Q, I3, Y of the neutral sigma states σ0
I,Y all vanish, these particles

cannot be pair-produced in e+e− collisions. However, production channels open up for diagonal charged scalar pairs

s±1,2 defined in Eq. (2.80),

e+e− → s+n s
−
n [n = 1, 2] , (3.76)

through s-channel γ, Z exchanges. With effective charges

gL∗[s±n ] = 1− s2W − 1/2

s2W

s

s−m2
Z

≈ 2 , gR∗[s±n ] = 1− s

s−m2
Z

≈ 0 ,

gL∗[H±] = 1 +
(s2W − 1/2)2

c2W s2W

s

s−m2
Z

≈ 4

3
, gR∗[H±] = 1 +

s2W − 1/2

c2W

s

s−m2
Z

≈ 2

3
, (3.77)
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are assumed to be M
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±
1

= 0.5 TeV and M
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±
2

= 1.0 TeV. For comparison, the cross section for charged Higgs pair production is

shown with its mass MH± = 0.5 TeV.

with n=1, 2 for L and R-chiral electron pairs coupled to the s±1,2 pairs and equivalently to the H± pair, the cross

section reads:

σ =
πα2

3s

g2L∗ + g2R∗
2

β3 , (3.78)

where s is the total c.m. energy squared and β the velocity of the particles s±1,2 and H±; s2W = sin2 θW denotes

the electroweak mixing parameter. The size of the three production cross sections, identical in form, is illustrated in

Fig. 11 for two different mass values Ms±
1
,H± = 0.5 TeV and Ms±

2

= 1.0 TeV.

(ii) γγ collisions :

Excellent instruments for searching for heavy scalar/pseudoscalar particles and studying their properties are γγ

colliders, see Ref. [32]. About 80% of the incoming electron energy can be converted to a high-energy photon by

Compton back-scattering of laser light, with the spectrum peaking at the maximal energy by choosing proper helicities.

Depending on the nature of the neutral scalars/pseudoscalars, their couplings to the two photons is mediated by

charged W -bosons, charginos, and charged scalars and Higgs bosons. As before, the formation cross sections for the

states φ = sY , sI and aY , aI can be expressed by the γγ widths of the particles and the γγ luminosity:

〈σ(γγ → φ)〉 = 8π2 Γ(φ→ γγ)

M3
φ

τφ
dLγγ
τφ

= σ0(γγ → φ) τφ
dLγγ
τφ

, (3.79)

with τφ = M2
φ/s. For qualitative estimates the luminosity function τφdLγγ/dτφ can be approximated by unity after

splitting off the overall e+e− luminosity [33].
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The partial γγ widths are parameterized by couplings and loop functions,

Γ(s/a→ γγ) =
α2

64π3
Ms/a

∣∣∣∣∣
∑

i

Ncie
2
i g

s/a
i A

s/a
i

∣∣∣∣∣

2

. (3.80)

The factor Nci denotes the color factor of the loop line, while the couplings g
s/a
i are expressed by

gsY
H̃±

D

= λY /
√
2 , gsY

f̃L,R
= ±YfL,R

MD
Y /MsY ,

gsYH± =
(√

2λY µc − g′MD
Y c2β + λY (MY +AY )s2β/

√
2
)
/MsY , (3.81)

gsIW± = 2g2vI/MsI , gsI
H̃±

D

= λI/
√
2 , gsI

W̃±
1,2

= ∓g , gsI
f̃L,R

= ±gIf3MD
I /MsI ,

gsIH± = −
(√

2λIµc − gMD
I c2β + λI(MI − AI)s2β/

√
2
)
/MsI , (3.82)

for the hyper-singlet scalar sY and the iso-triplet scalar sI , and

gaY

H̃±
D

= −λY /
√
2 ,

gaI

H̃±
D

= λI/
√
2 , gaI

W̃±
1,2

= ±g , (3.83)

for the hyper-singlet pseudoscalar aY . The loop functions A
s/a
i , identical in form for the particles of a given spin,

include the standard triangular function f(τ) in Eq. (3.72) as

As
0 = 1− τf(τ) , As

1/2 = −2
√
τ [1 + (1 − τ)f(τ)] , As

1 = 2/τ + 3 + 3(2− τ)f(τ) , (3.84)

for the scalar s, and

Aa
1/2 = −2

√
τf(τ) , (3.85)

for the pseudoscalar a, where the subscripts 0, 1/2 and 1 stand for spin-0, spin-1/2 and spin-1 intermediate particles.

Adopting the SPS1a′ parameters in the SUSY sector [29], the reduced γγ cross section σ0(γγ → φ) for φ = sY,I
and aY,I , defined in Eq. (3.79), amounts to order 1 fb as shown in Fig. 12 so that for an overall luminosity of several

hundred fb−1 a sizable sample of neutral scalars sY,I and pseudoscalars aY,I can be generated in γγ collisions.

4. SUMMARY

In minimal supersymmetric extensions of the Standard Model the fermionic partners of color and electroweak gauge

bosons are self-conjugate Majorana fields. Their properties are characteristically distinct from Dirac fields. To

investigate this point quantitatively, we have adopted an N=1/N=2 hybrid supersymmetry model in which the gauge

and Higgs sectors are extended to N=2 while the matter sector remains restricted to N=1. This extension is wide

enough to allow the joining of Majorana to Dirac fields while keeping the matter sector chiral. By properly varying

gaugino mass matrices, the original MSSM Majorana theory can be transformed smoothly to the Dirac theory.

The transition from N=1 to N=2 expands the gauge sector by a matter supermultiplet composed of a new gaugino

and adjoint scalar multiplet.

(i) The doubling of the gauginos in N=2 gives rise to new particles along the path from the MSSM to the Dirac

theory:

– 8 Majorana gluinos → 16 Majorana gluinos → 8 Dirac gluinos



32

250 500 750 1000 1250 1500 1750 2000

Mφ  [GeV]

0

1

2

3

4

5

 σ
0(

γγ
 −

> 
φ

)  [
fb

]

γγ  ---> s,a [SPS1a’] s
Y

s
I

a
Y

a
I

Figure 12: The reduced production cross sections σ0(γγ → φ) for φ = sY,I and aY,I . The SPS1a′ parameter set [29] for the

(s)particle masses, couplings and mixing parameters are adopted for the numerical analysis.

– 2 charginos → 3 charginos

– 4 Majorana neutralinos → 6 Majorana neutralinos → 3 Dirac neutralinos

(ii) The adjoint scalars expand also the number of states originally present in the MSSM scalar sector; the new

SU(2)I×U(1)Y scalars mix with the Higgs fields in the electroweak sector:

– 8 octet complex scalar gluons, generally termed sgluons

– 1 pseudoscalar state → 3 pseudoscalar states

– 2 scalar states → 4 scalar states

– 1 charged scalar [±] pair → 3 charged scalar [±] pairs

The scale of the new degrees of freedom is strongly restricted by the experimentally allowed deviation of the ρ

parameter from unity. Since the new electroweak SU(2)I and U(1)Y scalars acquire vacuum expectation values, the

SU(2)I iso-triplet vev must be small, and the iso-triplet scalar mass parameter is driven into the TeV region. The

U(1)Y hyper-singlet vev, on the other hand, is not restricted by the ρ parameter and the hyper-singlet scalar mass

may still be characterized by a fraction of TeV.

The new degrees of freedom are coupled to the original MSSM fields rather weakly at the order gv/M̃ . This allows

us to solve the complicated chargino, neutralino and scalar systems analytically in a systematic expansion, i.e. mass

eigenvalues and mixings. This leads in a straightforward way to the prediction of production channels and decay

modes.

The Majorana or Dirac character of gluinos and neutralinos can nicely be discriminated in sfermion-sfermion

production. While allowed by Majorana exchanges, equal L- or R-sfermion pair production is forbidden in Dirac

theories, i.e. q̃Lq̃L and ẽ−L ẽ
−
L production in pp and e−e− collisions. In addition, cascade decays involving Majorana
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neutralinos give rise to charge-symmetric lepton final states, while Dirac neutralinos predict charge sequences as

governed by the conservation of Dirac charges. Total cross sections and angular distributions in pair production

of charginos and neutralinos in e+e− collisions depend on the Majorana or Dirac nature of the underlying gaugino

theory.

A variety of production channels are predicted for the scalar states, depending on the nature of the particles:

− Scalar and pseudoscalar sgluons can be produced in pairs in pp collisions, and scalars singly via gluon-gluon

fusion.

− The U(1)Y scalar state can be generated in pp collisions via gluon fusion or in stop or stau decays, but not the

corresponding pseudoscalar partner.

− γγ collisions offer production channels for all neutral scalar and pseudoscalar, iso-scalar and iso-vector states.

− The charged iso-vector states can be generated pairwise in e+e− collisions.

Thus in contrast to the color sector it is quite difficult to cover experimentally the electroweak hyper-singlet and

iso-triplet states, the main reason being the expected heavy masses of the new scalar and pseudoscalar particles.

Nevertheless, given the joint potential of hadron and lepton colliders, all the new scalar and pseudoscalar particles

introduced by the N=1/N=2 supersymmetric hybrid theory can in principle be accessed. Only the basics of the

processes have been investigated in this report, while detailed analyses of final states under realistic detector conditions

are far beyond the scope of this study.

On the other hand, the suppression of reaction channels and cascade decays in gaugino Dirac theories as opposed

to Majorana theories for color and electroweak gauginos should provide unique signatures for the Majorana or Dirac

nature of gluinos and electroweak gauginos.
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Appendix A: Analytic analysis of the singular value decomposition of a 2× 2 matrix

For any n× n complex matrix, there exist two unitary matrices UL and UR such that

UT
LMUR =MD = diag(m1,m2, . . . ,mn) , (A.1)
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where the diagonal elements mk are real and non–negative. This procedure is the singular value decomposition (SVD)

of the matrix M. If the matrix M is symmetric, there exists a single unitary matrix U such that UTMU = MD

with UL = UR = U , called the Takagi diagonalization of the symmetric matrixM.

The singular value decomposition of a 2× 2 real matrix can be performed analytically. The result is more involved

than the standard diagonalization of a 2 × 2 symmetric matrix by a single orthogonal matrix. The 2 × 2 matrix be

defined as:

M =

(
a c

c̃ b

)
, (A.2)

where at least c or c̃ be non-zero. Generally we can parameterize two 2× 2 unitary matrices UL and UR in Eq. (A.1)

by

UL = OLP =

(
cos θL ǫ

L
sin θL

−ǫ
L
sin θL cos θL

) (
α 0

0 β

)
, (A.3)

UR = ORP =

(
cos θR ǫ

R
sin θR

−ǫ
R
sin θR cos θR

) (
α 0

0 β

)
, (A.4)

where 0 ≤ θL,R ≤ π/2, ǫL,R = ±1 and α, β = 1, i. The two phase matrices, which map the singular values onto

non-negative values, can be identified without loss of generality, as only their product is fixed.

If two singular values m1,2 of the matrix M are non-degenerate, they can be determined by taking the positive

square root of the non-negative eigenvalues m2
1,2 of the orthogonal matrixMTM:

m1,2 =
1

2
|σ+ ∓ σ−| with σ± =

√
(a± b)2 + (c∓ c̃)2 . (A.5)

Two eigenvalues become identical only if a = ±b and c = ∓c̃. The smaller eigenvalue, m1, vanishes if the invariant

determinant vanishes, detM = ab− cc̃ = 0.

Explicitly performing the diagonalization ofMTM by UR andMMT by UL, the rotation angles and signs can be

computed:

cos θL,R =

√
σ+σ− + b2 − a2 ± c̃2 ∓ c2

2 σ+σ−
, sin θL,R =

√
σ+σ− − b2 + a2 ∓ c̃2 ± c2

2 σ+σ−
, (A.6)

ǫ
L
= sign(ac̃+ bc) , ǫ

R
= sign(ac+ bc̃) . (A.7)

In the final step of the computation the phase parameters α and β can be determined by inserting Eqs. (A.6) and

(A.7) into Eq. (A.1):

α =
√
sign [a(σ+σ− + b2 − a2)− a(c2 + c̃2)− 2bcc̃ ] , (A.8)

β =
√
sign [ b(σ+σ− + b2 − a2) + b(c2 + c̃2) + 2acc̃ ] , (A.9)

up to an arbitrary overall sign of both parameters. If the smaller singular value m1 vanishes for det(M) = 0, the

parameter α is undefined while all the other angles are uniquely determined.

In the case a = b = 0 and c̃ = c, two singular values are degenerate with m1,2 = |c|, and the unitary matrices UL

and UR reduce to a single unitary matrix U :

U =




1/
√
2 −1/

√
2

1/
√
2 1/

√
2



 ·




1 0

0 i



 =




1/
√
2 −i/

√
2

1/
√
2 i/

√
2



 , (A.10)

corresponding to a π/4 rotation matrix and a phase matrix, which turns the second eigenvalue positive.
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Appendix B: The small-mixing approximation in the singular value decomposition

In this second appendix, we provide details of the singular value decomposition of the mass matrix4 in the small

mixing approximation, in which the coupling by two off-diagonal matrix blocks is weak and can be treated pertur-

batively. For mathematical clarity, we present the solution for a general (N +M) × (N +M) matrix in which the

N ×N and M ×M submatrices are coupled weakly so that their mixing is small:

MN+M =




MN XNM

X̃T
NM MM



 . (B.1)

To obtain the corresponding physical masses, we must perform a singular value decomposition ofMN+M :5

LT
N+MMN+M RN+M = diag(m1′ , m2′ , . . . , mN ′+M ′) , mk′ ≥ 0 , (B.2)

where LN+M and RN+M are unitary.6 The non-negative diagonal elements mk′ are called the singular values of

MN+M , which are defined as the non-negative square roots of the eigenvalues of M†
N+MMN+M or, equivalently,

MN+MM†
N+M .

In Eq. (B.1), MN and MM are N × N and M ×M symmetric submatrices with singular values assumed to be

generally larger than the matrix elements of the N ×M rectangular matrices, XNM and X̃NM . In this case, one can

treat the off-diagonal parts XNM and X̃NM as a perturbation as long as there are no accidental near-degeneracies

between the singular values ofMN andMM , respectively.

(1) In the first step, we separately perform a singular value decomposition ofMN andMM :

MD

N = LT
NMNRN = diag(m1′ , . . . mN ′) , (B.3)

MD

M = LT
MMMRM = diag(mN ′+1′ , . . . ,mN ′+M ′) , (B.4)

where the diagonal elements mk′ are real and non-negative. The ordering of the diagonal elements may conveniently

be chosen according to footnote 5.

Step (1) results in a partial singular value decomposition ofMN+M :

MN+M ≡
(
LT
N O

OT LT
M

)(
MN XNM

X̃T
NM MM

)(
RN O

OT RM

)
=

(
MD

N LT
NXNMRM

LT
MX̃

T
NMRN MD

M

)
≡
(
MD

N YNM

Ỹ T
NM MD

M

)
, (B.5)

where O is an N × M matrix of zeros. The upper left and lower right blocks of MN+M are diagonal with real

non-negative entries, but the upper right and lower left off-diagonal blocks are non-zero.

(2) The ensuing (N +M) × (N +M) matrix, MN+M , can be subsequently block-diagonalized by performing an

(N +M)× (N +M) singular value decomposition ofMN+M in an approximate expansion. Since the elements of the

off-diagonal blocks in MN+M are small compared to the diagonal elements mk′ , we may treat YNM and ỸNM as a

perturbation. More precisely, YNM and ỸNM can be treated as a perturbation if

∣∣∣∣
(YNM )i′j′

mi′ −mj′

∣∣∣∣≪ 1 and

∣∣∣∣∣
(ỸNM )i′j′

mi′ −mj′

∣∣∣∣∣≪ 1 , (B.6)

4 The formalism applies also to general complex matrices [34].
5 In Eq. (B.2), we use primed subscripts to indicate that the corresponding states are continuously connected to the states of the

unperturbed block matrix, diag(M
D
N , M

D
M ), where the diagonal matrices M

D
N and M

D
M are defined in Eqs. (B.3) and (B.4).

6 When N and M are used in subscripts of matrices, they refer to the dimension of the corresponding square matrices. For rectangular
matrices, two subscripts will be used.
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for all choices of i′ = 1′, . . . , N ′ and j′ = N ′ +1′ . . . , N ′ +M ′. These conditions, as can generally be anticipated, will

naturally emerge from the formalism below.

The perturbative block-diagonalization is accomplished by introducing two (N +M)× (N +M) unitary matrices:

LN+M ≃
(

1N×N − 1
2ΩLΩ

†
L ΩL

−Ω†
L 1M×M − 1

2Ω
†
LΩL

)
, (B.7)

RN+M ≃
(

1N×N − 1
2ΩRΩ

†
R ΩR

−Ω†
R 1M×M − 1

2Ω
†
RΩR

)
, (B.8)

where ΩL and ΩR are N ×M complex matrices that vanish when XNM and X̃NM vanish and hence, like XNM and

X̃NM , are perturbatively small. Straightforward matrix multiplication then yields:

LTN+M

(
MD

N YNM

Ỹ T
NM MD

M

)
RN+M ≈

(
M′D

N YNM − Ω∗
LM

D

M +MD

NΩR

Ỹ T
NM −M

D

MΩ†
R + ΩT

LM
D

N M′D
M

)
, (B.9)

where

M′D
N ≡ MD

N +Ω∗
LM

D

MΩ†
R − Ω∗

LỸ
T
NM − YNMΩ†

R −
1

2
Ω∗

LΩ
T
LM

D

N −
1

2
MD

NΩRΩ
†
R , (B.10)

M′D
M ≡ MD

M +ΩT
LM

D

NΩR +ΩT
LYNM + Ỹ T

NMΩR −
1

2
ΩT

LΩ
∗
LM

D

M −
1

2
MD

MΩ†
RΩR , (B.11)

The block-diagonalization is achieved by demanding that

YNM = Ω∗
LM

D

M −M
D

NΩR , , (B.12)

ỸNM = Ω∗
RM

D

M −M
D

NΩL . (B.13)

Inserting these relations in Eqs. (B.10) and (B.11) and eliminating YNM and ỸNM , we obtain:

M′D
N = MD

N +
1

2
MD

NΩRΩ
†
R +

1

2
Ω∗

LΩ
T
LM

D

N − Ω∗
LM

D

MΩ†
R , (B.14)

M′D
M = MD

M +
1

2
MD

MΩ†
RΩR +

1

2
ΩT

LΩ
∗
LM

D

M − ΩT
LM

D

NΩR . (B.15)

The results above simplify somewhat when we recall thatMD

N and MD

M are diagonal matrices [see Eq. (B.3) and

(B.4)]. Combining the matrix elements of Eqs. (B.12) and (B.13) yields two equations for the elements of ΩL and ΩR:

ΩLi′j′ ≡
1

m2
j′ −m2

i′

[
mi′ ỸNMi′j′ + Y ∗

NMi′j′mj′

]
, (B.16)

ΩRi′j′ ≡
1

m2
j′ −m2

i′

[
mi′YNMi′j′ + Ỹ ∗

NMi′j′mj′

]
, (B.17)

with i′ = 1′, . . . , N ′ and j′ = N ′ + 1′ . . . , N ′ +M ′. Since the elements ΩLi′j′ and ΩRi′j′ are the small parameters of

the perturbation expansion, the perturbativity conditions previously given in Eq. (B.6) arise naturally.

At this stage, the result of the perturbative block diagonalization is:

LTN+M

(
MD

N YNM

Ỹ T
NM MD

M

)
RN+M =

(
M′D

N O

O M′D
M

)
, (B.18)

up to third order in Ω in the off-diagonal blocks. The O(Ω3) terms can be neglected consistently. Also the re-

diagonalization of the two diagonal blocks can be omitted. Though the off-diagonal elements ofM′D
N andM′D

M are

of O(Ω2), they only effect, in the singular value decomposition, the corresponding diagonal elements at O(Ω4), which
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we neglect in this analysis. However, the diagonal elements of M′D
N and M′D

M also contain terms of O(Ω2), which

generate second-order shifts of the diagonal elements relative to the mk′ obtained at step (1). These corrections are

easily obtained from the diagonal matrix elements of Eqs. (B.14) and (B.15) after making use of Eq. (B.16):

mi′ ≃ mi′ +
1

2

N ′+M ′∑

j′=N ′+1′

{
mi′(|YNMi′j′ |2 + |ỸNMi′j′ |2)

m2
i′ −m2

j′
+ 2

mj′YNMi′j′ ỸNMi′j′

m2
i′ −m2

j′

}
, (B.19)

mj′ ≃ mj′ −
1

2

N ′∑

i′=1′

{
mj′(|YNMi′j′ |2 + |ỸNMi′j′ |2)

m2
i′ −m2

j′
+ 2

mi′YNMi′j′ ỸNMi′j′

m2
i′ −m2

j′

}
, (B.20)

with i′ = 1′, .., N ′ and j′ = N ′ + 1′, .., N ′ +M ′. The shifted mass parameters correspond to the physical mass values

if the original mass matrix is real.

(3) However, for complex mass matrices the shifted mass parameters would in general be complex. These phases can

be removed by substituting L → LP and R → RP with properly chosen phases

P = diag(e−iα1′ , . . . , e−iαN′+M′ ) . (B.21)

Starting from Eqs. (B.19) and (B.20), one can evaluate P to second order in the perturbation ΩL,R. In particular, for

ǫ1,2 ≪ a, we have a+ ǫ1 + iǫ2 ≃ (a+ ǫ1)e
iǫ2/a. From this result, we easily derive the second-order expressions for the

physical masses by just substituting

Y Ỹ → ℜe(Y Ỹ ) , (B.22)

while the phases are given by the imaginary part of Y Ỹ ,

αi′ ≃
1

2

N ′+M ′∑

j′=N ′+1′

mj′

mi′(m
2
i′ −m2

j′)
ℑm

(
YNMi′j′ ỸNMi′j′

)
, (B.23)

αj′ ≃ −
1

2

N ′∑

i′=1′

mi′

mj′ (m
2
i′ −m2

j′ )
ℑm

(
YNMi′j′ ỸNMi′j′

)
, (B.24)

with i′ = 1′, .., N ′ and j′ = N ′ + 1′, .., N ′ +M ′.

This completes the perturbative singular value decomposition of the mass matrix for N -dimensional and M -

dimensional subsystems of fermions weakly coupled by an off-diagonal perturbation. Thus the physical masses and

the elements of the mixing matrices can be derived from the parameters of the N ×N and M ×M subsystems and

the weak couplings XNM , X̃NM of the subsystems [rotated to YNM , ỸNM finally].

As noted in Eq. (B.6), the perturbation theory breaks down if any mass mi′ from the N -dimensional subsystem is

nearly degenerate with a corresponding mass mj′ from the M -dimensional subsystem (if the corresponding residues

do not vanish). In this case the formalism developed in Ref. [23] can be adopted to calculate the physical masses also

in the cross-over zones analytically.

Appendix C: Chargino, neutralino and scalar masses and mixing elements by block-diagonalization

When the weak couplings among the gaugino and higgsino sectors are switched on the mass eigenvalues and mixing

parameters are calculated using the block-diagonalization method adopting the formulae in the preceding appendices.
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Charginos

Using the short-hand notation mχ̃±
i
= m±

i , the chargino mass eigenvalues are given approximately by

m±
1 = m±

1 +
v2

2((m±
1 )

2 − µ2
c)

{
m±

1

[
(λIvuc+ + gvdǫ+s+/

√
2)2 + (λIvdc− − gvuǫ−s−/

√
2)2
]

−2µcα
2
c(λIvuc+ + gvdǫ+s+/

√
2)(λIvdc− − gvuǫ−s−/

√
2)
}
, (C.1)

m±
2 = m±

2 +
v2

2((m±
2 )

2 − µ2
c)

{
m±

2

[
(λIvuǫ+s+ − gvdc+/

√
2)2 + (λIvdǫ−s− + gvuc−/

√
2)2
]

−2µcβ
2
c (λIvuǫ+s+ − gvdc+/

√
2)(λIvdǫ−s− + gvuc−/

√
2)
}
, (C.2)

m±
3 = µc −

v2

2((m±
1 )

2 − µ2
c)

{
µc

[
(λIvuc+ + gvdǫ+s+/

√
2)2 + (λIvdc− − gvuǫ−s−/

√
2)2
]

−2m±
1 α

2
c(λIvuc+ + gvdǫ+s+/

√
2)(λIvdc− − gvuǫ−s−/

√
2)
}

− v2

2((m±
2 )

2 − µ2)

{
µc

[
(λIvuǫ+s+ − gvdc+/

√
2)2 + (λIvdǫ−s− + gvuc−/

√
2)2
]

−2m±
2 β

2
c (λIvuǫ+s+ − gvdc+/

√
2)(λIvdǫ−s− − gvuc−/

√
2)
}
, (C.3)

where the signs ǫ± and the phases α± and β± are defined by

ǫ± = sign[(M ′
2 +M2)M

D
2 ± g(M ′

2 −M2)vI ] , (C.4)

αc =
√
sign[M ′

2(σ+σ− −M ′2
2 +M2

2 )− 2(M ′
2 +M2)(MD

2 )2 − 2g2(M ′
2 −M2)vI ] , (C.5)

βc =
√
sign[M2(σ+σ− −M ′2

2 +M2
2 ) + 2(M ′

2 +M2)(MD
2 )2 − 2g2(M ′

2 −M2)vI ] , (C.6)

and the abbreviations c± = cos θ± and s± = sin θ±, and c2β = cos 2β, s2β = sin 2β have been adopted.

The gaugino/higgsino mixing elements read in this approximation

U±11 = αcc± , U±12 = βcǫ±s± , U±13 = αcc±Ω±13 + βcǫ±s±Ω±23 ,

U±21 = −αcǫ±s± , U±22 = βcc± , U±23 = −αcǫ±s±Ω±13 + βcc±Ω±23 ,

U±31 = −Ω∗
±13 , U±32 = −Ω∗

±23 , U±33 = 1 ,

(C.7)

The matrix elements of the rectangular Ω± matrices, which block-diagonalize the mass matrix are as follows

Ω+13 =
[
m±

1 αc(λIvdc− − gvuǫ−s−/
√
2)− µcα

∗
c(λIvuc+ + gvdǫ+s+/

√
2)
]
/(µ2

c − (m±
1 )

2) ,

Ω+23 =
[
m±

2 βc(λIvdǫ−s− + gvuc−/
√
2)− µcβ

∗
c (λIvuǫ+s+ − gvdc+/

√
2)
]
/(µ2

c − (m±
2 )

2) , (C.8)

and

Ω−13 = −
[
m±

1 αc(λIvuc+ + gvdǫ+s+/
√
2)− µcα

∗
c(λIvdc− − gvuǫ−s−/

√
2)
]
/(µ2

c − (m±
1 )

2) ,

Ω−23 = −
[
m±

2 βc(λIvuǫ+s+ − gvdc+/
√
2)− µcβ

∗
c (λIvdǫ−s− + gvuc−/

√
2)
]
/(µ2

c − (m±
2 )

2) , (C.9)

where the signs ǫ± and the phase factors αc and βc are defined in Eqs. (C.4) to (C.6).

As a numerical check for the analytic expansion we show in Fig. 13 the evolution of the approximate versus exact

chargino masses as a function of the control parameter y from the MSSM doublet (y = −1) to the Dirac (y = 0)
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Figure 13: Evolution of the approximate versus exact chargino masses as a function of the control parameter y from the MSSM

doublet (y = −1) to the Dirac (y = 0) triplet along the path PC in Eq. (2.42) for m = 200 GeV and tan β = 5. The singularity

in the cross-over zone can be removed by using the specific formalism for degenerate states as developed in Ref. [23].

triplet along the path PC in Eq. (2.42) for the same parameter set used in Fig. 1. The descending order of the physical

masses in the figure reflects, in obvious notation, the pattern w′ ≫ h > w in the MSSM limit. When the states w′ and

h become degenerate near y = −0.6, the standard analytical expansion cannot be applied any more. In this situation

the mass spectrum must either be obtained numerically or analytical expansions tailored specifically for cross-over

phenomena, see Ref. [23]. On the other hand, the ordering h > w′ > w is kept until the Dirac limit is reached. The

level-crossing phenomenon near y = −0.2 is due to the mixing between the gaugino and higgsino sectors but not due

to the w′-w cross-over, as m±
2 > m±

1 along the entire path.

Neutralinos

With mχ̃0
i
= m0

i the neutralino mass eigenvalues are given by

bino sector :

m0
1 = m0

1 −
1

4(m0
1 + µ)

[
g′v−s1/

√
2− λY v+c1

]2
− 1

4(m0
1 − µ)

[
g′v+s1/

√
2 + λY v−c1

]2
, (C.10)

m0
2 = m0

2 −
1

4(m0
2 − µ)

[
g′v−c1/

√
2 + λY v+s1

]2
− 1

4(m0
2 + µ)

[
g′v+c1/

√
2− λY v−s1

]2
, (C.11)
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wino sector :

m0
3 = m0

3 −
1

4(m0
3 + µ)

[
g v−s2/

√
2 + λI v+c2

]2
− 1

4(m0
3 − µ)

[
g v+s2/

√
2− λI v−c2

]2
, (C.12)

m0
4 = m0

4 −
1

4(m0
4 − µ)

[
g v+c2/

√
2− λI v+s2

]2
− 1

4(m0
4 + µ)

[
g v+c2/

√
2 + λI v−s2

]2
, (C.13)

higgsino sector :

m0
5 = µn +

1

4(m0
1 + µ)

[
g′v−s1/

√
2− λY v+c1

]2
− 1

4(m0
2 − µ)

[
g′v−c1/

√
2 + λY v+s1

]2

+
1

4(m3 + µ)

[
gv+s2/

√
2 + λIv+c2

]2
− 1

4(m4 − µ)
[
gv−c2/

√
2 − λIv+s2

]2
, (C.14)

m0
6 = µn −

1

4(m0
1 − µ)

[
g′v+s1/

√
2 + λY v−c1

]2
+

1

4(m0
2 + µ)

[
g′v+c1/

√
2− λY v−s1

]2

− 1

4(m0
3 − µ)

[
gv+uds2/

√
2− λIv−udc2

]2
+

1

4(m0
4 + µ)

[
gv+c2/

√
2 + λI v−s2

]2
, (C.15)

where v± = vu ± vd.

The final 6× 6 diagonalization matrix reads approximately:

UN = UN

(
14×4 Ω4×2

−Ω†
4×2 12×2

)
, (C.16)

where the elements of the rectangular matrix Ω4×2 are as follows:

bino sector : Ω15 =
−i

2(m0
1 + µ)

[
g′v−s1/

√
2− λY v+c1

]
, Ω16 =

1

2(m0
1 − µ)

[
g′v+s1/

√
2 + λY v−c1

]
,

Ω25 =
1

2(m0
2 − µ)

[
g′v−c1/

√
2− λY v−s1

]
, Ω26 =

i

2(m0
2 + µ)

[
g′v+c1/

√
2− λY v−s1

]
, (C.17)

and

wino sector : Ω35 =
i

2(m0
3 + µ)

[
gv−s2/

√
2 + λIv+c2

]
, Ω36 =

1

2(m0
3 − µ)

[
gv+s2/

√
2− λIv−c2

]
,

Ω45 =
−1

2(m0
4 − µ)

[
gv−c2/

√
2− λIv+s2

]
, Ω46 =

i

2(m0
4 + µ)

[
gv+c2/

√
2 + λIv−s2

]
, (C.18)

with abbreviations as before.

Scalar/Higgs Particles

The block-diagonalization of the Higgs/scalar mass matrix when the weak coupling between the Higgs and the

sigma fields is included gives the following results.

(i) neutral pseudoscalars:

The physical pseudoscalar masses are given approximately by

M2
A1

= M2
A −

(MY −AY )
2

2(m̃′2
Y −M2

A)
λ2Y v

2 − (MI −AI)
2

2(m̃′2
I −M2

A)
λ2Iv

2 , (C.19)

M2
A2

= m̃′2
Y +

(MY −AY )
2

2(m̃′2
Y −M2

A)
λ2Y v

2 , (C.20)

M2
A3

= m̃′2
I +

(MI −AI)
2

2(m̃′2
I −M2

A)
λ2Iv

2 , (C.21)
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up to the order of v2/m2
I,Y , while the physical pseudoscalar states are mixed according to the relation OT

PM2
P OP =

diag(M2
A1
,M2

A2
,M2

A3
) with the mixing elements given approximately by

OP11 = OP22 = OP33 = 1 , OP12 = −OP21 = − (MY −AY )λY v√
2(m̃′2

Y −M2
A)

,

OP13 = −OP31 = − (MI −AI)λIv√
2(m̃′2

I −M2
A)

, OP23 = −OP32 =
λY λIv

2

2(m̃′2
I − m̃′2

Y )
, (C.22)

up to the order of v/mI,Y .

(ii) neutral scalars:

The block diagonalization is described by the 2× 2 matrix ΩS with its elements

ΩS13 = − (2m̃2
Y − λ2Y v2)vY

(m̃2
Y −m2

Z)v
, ΩS23 =

∆Y

m̃2
Y −M2

A

,

ΩS14 = − (2m̃2
I − λ2I v2)vI

(m̃2
I −m2

Z)v
, ΩS24 =

∆I

m̃2
I −M2

A

, (C.23)

up to the order of v/MA, v/mY,I . Performing these subsequent transformations gives rise to the four physical masses

M2
S1

= m2
Z + δHs2β + ǫH −

(δHc2β + ǫH/tβ)
2

M2
A −m2

Z

− (2m̃2
Y − λ2Y v2)2v2Y

(m̃2
Y −m2

Z)v
2
− (2m̃2

I − λ2Iv2)2v2I
(m̃2

I −m2
Z)v

2
, (C.24)

M2
S2

= M2
A − δHs2β + ǫH/t

2
β +

(δHc2β + ǫH/tβ)
2

M2
A −m2

Z

− ∆2
Y

m̃2
Y −M2

A

− ∆2
I

m̃2
I −M2

A

, (C.25)

M2
S3

= m̃2
Y +

(2m̃2
Y − λ2Y v2)2v2Y

(m̃2
Y −m2

Z)v
2

+
∆2

Y

m̃2
Y −M2

A

, (C.26)

M2
S4

= m̃2
I +

(2m̃2
I − λ2Iv2)2v2I

(m̃2
I −m2

Z)v
2

+
∆2

I

m̃2
I −M2

A

, (C.27)

up to the order of v2/M2
A, v

2/m2
Y,I , and the 4 × 4 mixing matrix OS , connecting current with mass eigenstates as

OT
SM2

SOS = diag(M2
S1
, · · · ,M2

S4
), with its elements:

OS11 = OS22 = OS33 = OS44 = 1 , OS12 = −OS21 = sh , OS34 = −OS43 = 0 ,

OS13 = −OS31 = − (2m̃2
Y − λ2Y v2)vY

(m̃2
Y −m2

Z)v
, OS23 = −O32 =

∆Y

m̃2
Y −M2

A

,

OS14 = −OS41 = − (2m̃2
I − λ2Iv

2) vI
(m̃2

I −m2
Z)v

, OS24 = −O42 =
∆I

m̃2
I −M2

A

, (C.28)

up to the order of v/MA, v/mY,I with the abbreviation sh = sin θh.

(iii) charged scalars:

In the weak coupling limit the charged H± and s±1,2 states are mixed by the 3× 3 matrix O±
S with components

O±
S11 = O±

S22 = O±
S33 = 1 , O±

S12 = −O±
S21 = ∆1±/(m̃

′2
I −M2

A) ,

O±
S13 = −O±

S31 = ∆2±/(m̃
2
I −M2

A) , O±
S23 = −O±

S32 = 0 , (C.29)

up to the order of v/MA, v/mY,I to generate the physical charged scalar masses

M2
S±
1

= M̃2
H± −∆2

1±/(m̃
′2
I −M2

A)−∆2
2±/(m̃

2
I −M2

A) , (C.30)

M2
S±
2

= m̃′2
I + g2v2I c

2
2β/4(m̃

2
I − m̃′2

I ) + ∆2
1±/(m̃

′2
I −M2

A) , (C.31)

M2
S±
3

= ρm̃2
Ic

2
2β/4(m̃

2
I − m̃′2

I ) + ∆2
2±/(m̃

2
I −M2

A) , (C.32)

up to the order of v2/M2
A, v

2/m2
Y,I .
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