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Abstract: In the N=1 supersymmetric extension of the Standard Model, neutralinos

associated in supermultiplets with the neutral electroweak gauge and Higgs bosons are,

as well as gluinos, Majorana fermions. They can be paired with the Majorana fermions

of novel gaugino/scalar supermultiplets, as suggested by extended N=2 supersymmetry,

to Dirac particles. Matter fields are not extended beyond the standard N=1 supermulti-

plets in N=1/N=2 hybrid supersymmetry to preserve the chiral character of the theory.

Complementing earlier analyses in the color sector, central elements of such an electroweak

scenario are analyzed in the present study. The decay properties of the Dirac fermions χ̃D

and of the scalar bosons σ are worked out, and the single and pair production-channels

of the new particles are described for proton collisions at the LHC, and electron/positron

and γγ collisions at linear colliders. Special attention is paid to modifications of the Higgs

sector, identified with an N=2 hypermultiplet, by the mixing with the novel electroweak

scalar sector.
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1 Introduction

Neutral electroweak gauge bosons are described by self-conjugate fields with two degrees

of freedom before symmetry breaking. In N=1 supersymmetry [1–7] the gaugino partners

G̃ of the gauge bosons Gµ in the supermultiplets Ĝ = {Gµ, G̃} are correspondingly self-

conjugate Majorana fields with two independent components for the two helicities. They

mix with neutral higgsinos to form the neutralino fields χ̃0. However, in N=2 extended

supersymmetric scenarios, cf. ref. [8–20], gauginos G̃′ with scalar partners σ are introduced

in novel N=1 chiral supermultiplets Σ̂ = {G̃′, σ}, which together with the original N=1

gauge supermultiplets constitute the N=2 gauge hypermultiplets G = {Ĝ, Σ̂}. For suitable
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mass matrices, the new gauginos can be combined with the original ones to form Dirac

fields G̃D = G̃ ⊕ G̃′. Including the higgsinos, the neutralino fields can thus be identified

with Dirac fields χ̃0
D.

The transition from Majorana to Dirac fields renders the theory [partially] R-

symmetric [21, 22]. R-symmetry, a continuous extension of the R-parity concept, is asso-

ciated with global transformations of the fermionic coordinates, θ → eiαθ and θ̄ → e−iαθ̄.

All Standard Model (SM) fields carry vanishing R-charge. Assigning the R-charge +1 to θ,

the gauge superfields and the matter chiral superfields carry R-charges 0 and +1, respec-

tively. As a result, the kinetic part of the action is R-symmetric. In gauge superfields the

R-charges of the gaugino components G̃ are +1, and equally for the scalar components of

the matter lepton and quark superfields. Higgs superfields are assigned R-charges 0, giving

rise to {0,−1} for the R-charges of the Higgs fields themselves and the higgsino fields. Thus

the tri-linear Yukawa terms in the superpotential carry R-charge +2 and the corresponding

action is R-invariant, unlike the µ-term for which the associated action, with R = −2, is

not R-invariant. Soft Majorana mass terms of gauginos and the tri-linear scalar coupling

terms, which break supersymmetry, carry R = +2 so that the corresponding Lagrangians

are not R-invariant. However, assigning R = 0 to the chiral superfields Σ̂, the new gaugino

Ĝ′ fields carry R-charge −1. Thus, Dirac mass terms, combining the old and the new

gaugino fields, are R-invariant.

The conservation of R-charges, initially motivated by the transition from Majorana

to Dirac gauginos, has important physical implications. The theory naturally suppresses

the baryon and lepton number violating operators and the µ term in the superpotential.

Since it also forbids soft SUSY breaking gaugino Majorana masses in the Lagrangian and

Higgs couplings to sfermion pairs, SUSY flavor-changing and CP-violating contributions,

for instance, are reduced significantly, widening the potential parameter space for super-

symmetric theories [23–25]. The more restrictive Dirac gaugino masses, on the other hand,

are allowed. Moreover, since the scalar components σ of the chiral superfields Σ̂ have

R-charge 0, they can couple to SM particles so that σ particles can be produced singly

in standard particle collisions. In addition, they can decay to pairs of SM particles [and,

similarly, to pairs of supersymmetric particles].

The N=1 chiral supermultiplets within the N=2 gauge hypermultiplets contain scalar

sigma fields σ in the adjoint representations of the gauge groups SU(1)C , SU(2)I and

U(1)Y . In the electroweak SU(2)I and U(1)Y sectors the scalar fields can acquire non-zero

vacuum expectation values and they can mix with the original Higgs fields. As a result,

the properties of the Higgs particles are modified in this scenario.

In N=2 supersymmetric theories the standard N=1 L/R matter supermultiplets are

complemented with new L/R matter multiplets [26]. To keep the theory chiral, in agree-

ment with experimental observations, the masses of the new multiplets must be chosen very

large so that N=2 supersymmetry is effectively reduced to N=1 supersymmetry in this

sector. Exceptions are the two Higgs doublets which can be associated with the two super-

multiplets within a Higgs hypermultiplet. Since the gauge and Higgs sectors are framed

in the N=2 formalism, but the matter sector in N=1 is not, the theory is conventionally

termed N=1/N=2 hybrid theory.
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The transition from the Majorana-type Minimal Supersymmetric Standard Model

(MSSM) to a Dirac theory by expanding the gauge sector can be formulated in a smooth

way by suitable transitions of the parameters in the {G̃, G̃′} mass matrix. We start with

an infinitely large G̃′ Majorana mass at the beginning of the path, which is congruent with

the original MSSM. Lowering the Majorana masses to zero and generating non-diagonal

entries in the mass matrix at the end of the path, the two Majorana fields can be com-

bined to a Dirac field if the two mass eigenvalues have equal moduli but opposite signs. In

this way, the characteristics of the Majorana theory can systematically be tagged in the

evolution to the Dirac theory, and implications of the Dirac theory can be connected with

experimental analyses.

The Dirac theory, including the scalar sigma fields, has been analyzed in two earlier

studies [14–17] primarily in the colored sector, and experimental consequences have been

discussed for the proton collider LHC. Basic elements of the electroweak sector, including

the interaction of the Higgs field with the novel scalar fields, have been presented in ref. [27],

and implications for the relic density in the Universe have been discussed for such a Dirac

theory [see also [28–30]]. In the present study we will focus on collider signatures of the

electroweak chargino/neutralino and the novel sigma sectors at LHC and e+e− colliders.

In addition, modifications of the properties of the Higgs particles by interactions with the

novel scalars will be discussed. While the theoretical basis of the N=1/N=2 hybrid theory

is summarized in the next section, phenomenological consequences are worked out for the

chargino/neutralino and scalar/Higgs sectors thereafter.

2 Theoretical basis: N=1/N=2 hybrid theory

2.1 Hyper/superfields and interactions

The N=1/N=2 hybrid model, which can be evolved from the MSSM continuously to a

Dirac gaugino theory, includes a large spectrum of fields. The N=2 gauge hypermultiplets

G = {Ĝ, Σ̂} can be decomposed into the usual N=1 vector supermultiplets of gauge and

gaugino fields Ĝ = {Gµ, G̃}, complemented by chiral supermultiplets of novel gaugino and

scalar fields Σ̂ = {G̃′, σ}. The new gauge/gaugino/scalar fields, together with the MSSM

fields, are shown explicitly for the color SU(3)C and the electroweak isospin SU(2)I and

hypercharge U(1)Y gauge groups in table 1.

In parallel to the gauge fields, the neutral gaugino fields G̃ are self-conjugate Majorana

fields with two helicity components, analogously the novel gaugino fields G̃′. [The notation

Gµ, G̃, G̃
′, σ is used generically for gauge, gaugino and σ fields; when specific gauge groups

are referred to, the notation follows table 1.] To match the two gaugino degrees of freedom

in the new chiral supermultiplet, the components of the scalar fields σ are complex. Suitable

mass matrices provided, the two gaugino Majorana fields G̃ and G̃′ can be combined to a

Dirac field G̃D.

In a similar way, the two Higgs-doublet superfields Ĥd and Ĥ†
u of the MSSM can be

united to an N=2 hyperfield H = {Ĥd, Ĥ
†
u} [31, 32]. It may be noted that, after diagonal-

izing the off-diagonal 2×2 mass matrix, the two neutral higgsinos can be interpreted as a

Dirac field.
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superfields SU(3)C , SU(2)I , U(1)Y Spin 1 Spin 1/2 Spin 0

ĜC / color 8,1,0 ga g̃a

ĜI / isospin 1,3,0 W i W̃ i

ĜY / hypercharge 1,1,0 B B̃

Σ̂C / color 8,1,0 g̃′a σa
C

Σ̂I / isospin 1,3,0 W̃ ′i σi
I

Σ̂Y / hypercharge 1,1,0 B̃′ σ0
Y

Table 1. The N=2 gauge hypermultiplets for the color SU(3)C , isospin SU(2)I and hypercharge

U(1)Y groups. The superscripts a = 1-8 and i = 1-3 denote the SU(3)C color and SU(2)I isospin

indices, respectively.

In contrast, the observed chiral character of the Standard Model precludes the ex-

tension of the usual (s)lepton and (s)quark supermultiplets Q̂ to hypermultiplets of L/R

symmetric particles and mirror-particles. Moreover, including such a large number of new

matter fields would make the entire theory asymptotically non-free. Equivalent to introduc-

ing very heavy masses, the mirror fields can just be eliminated from the system of matter

fields ad hoc. This supposition generates the N=1/N=2 hybrid character of the theory.

Corresponding to the complex spectrum of fields, the sum of a set of actions with

different bases and characteristics describes the N=1/N=2 hybrid theory. The N=2 action

of the gauge hypermultiplet G = {Ĝ, Σ̂} consists of the usual N=1 action of the gauge

supermultiplet Ĝ plus the action of the chiral supermultiplet Σ̂ which couples the new

gaugino and scalar fields to the gauge superfield:

AG =
∑ 1

16g2k

∫
d4x d2θ tr ĜαĜα , (2.1)

AΣ =
∑∫

d4x d2θd2 θ̄ Σ̂† exp[Ĝ] Σ̂ , (2.2)

with the sums running over the gauge groups SU(3)C , SU(2)I and U(1)Y . g are the

gauge couplings (denoted by gs, g and g′ for color, isospin and hypercharge) and k are

the corresponding quadratic Casimir invariants C2(G). Ĝα = 2gĜa
αT

a are the gauge

superfield-strengths, T a the generators in the adjoint representation; the traces run over the

gauge-algebra indices. To this class of actions belongs also the standard (s)lepton/(s)quark

gauge action

AQ =
∑∫

d4x d2θd2θ̄ Q̂† exp[Ĝ] Q̂ , (2.3)

summed over the standard matter chiral superfields, denoted generically as Q̂.

These actions are complemented by gauge-invariant N=1 supersymmetric Majorana

mass termsM for the new gauge superfields and Dirac mass termsMD coupling the original
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and new gauge superfields:

AM =

∫
d4x d2θM tr Σ̂ Σ̂ , (2.4)

AD =

∫
d4x d2θMD θα tr ĜαΣ̂ . (2.5)

AM , which is bi-linear in the Σ fields, is part of the superpotential of the theory and

contributes to the masses of the chiral supermultiplets. The Dirac mass term can be

generated, e. g., by the interaction
√

2X̂αĜαΣ̂/MX when a hidden-sector U(1)′ spurion

superfield acquires a D-component vacuum expectation value X̂α = θαDX , giving rise to

the Dirac mass MD = DX/MX [33].

According to the general rules, this set of actions generates D-terms bi-linear in the

usual slepton and squark fields and linear in the new scalar sigma field with a coefficient

given by the Dirac mass MD. When the auxiliary fields D are eliminated through their

equations of motion, the sigma fields get coupled to bi-linears of the slepton and squark

fields with strength MD.

The Higgs sector is rendered more complicated by the interactions with the non-colored

scalar sigma fields. The Higgs supermultiplets Ĥd and Ĥ†
u are coupled to the SU(2)I×U(1)Y

supergauge fields in the usual way,

AH =
∑

i=u,d

∫
d4x d2θd2 θ̄ Ĥ†

i exp[ĜI + ĜY ] Ĥi . (2.6)

The part of the superpotential which includes Higgs fields, consists of the standard N=1

bi-linear µ-term,

Aµ =

∫
d4x d2θ µĤu · Ĥd , (2.7)

and the tri-linear Higgs Yukawa terms involving the matter fields, which can be adopted

from the N=1 theory:

A′
Q =

∫
d4x d2θ

∑
gQ q̂

cQ̂ · Ĥq , (2.8)

the dots denoting the asymmetric contraction of the SU(2)I doublet components. New

tri-linear interactions are predicted in N=2 supersymmetry [12] which couple the

two supercomponents of the Higgs hypermultiplet with the new chiral superfields in

the superpotential:

A′
H =

∫
d4x d2θ

1√
2
Ĥu · (λIΣ̂I + λY Σ̂Y )Ĥd . (2.9)

In N=2 supersymmetry the couplings λI , λY are identified with the SU(2)I and U(1)Y
gauge couplings,

λI = g/
√

2 and λY = −g′/
√

2 . (2.10)

In our phenomenological analyses we will treat them generally as independent couplings.
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It may be noticed that the Majorana action AM , the µ-term Aµ and the tri-linear

Higgs-sigma term A′
H are manifestly not R-invariant.

Finally, the bi-linear and tri-linear soft supersymmetry breaking terms must be added

to the gauge, Higgs and matter Lagrangians:

Lgauge,soft = −1

2
MB̃B̃B̃ −

1

2
MW̃

(
W̃+W̃− + W̃−W̃+ + W̃ 0W̃ 0

)
− 1

2
Mg̃g̃

ag̃a + h.c.

−1

2
M ′

B̃
B̃′B̃′ − 1

2
M ′

W̃

(
W̃ ′+W̃ ′− + W̃ ′−W̃ ′+ + W̃ ′0W̃ ′0

)
− 1

2
M ′

g̃g̃
′ag̃′a + h.c.

−m2
Y |σ0

Y |2 −
1

2

(
m′2

Y (σ0
Y )2 + h.c.

)
−m2

I

∣∣σi
I

∣∣2 − 1

2

(
m′2

I (σi
I)

2 + h.c.
)

−m2
C |σa

C |2 −
1

2

(
m′2

C(σa
C)2 + h.c.

)
, (2.11)

LHiggs,soft = −m2
Hu

(∣∣H+
u

∣∣2 +
∣∣H0

u

∣∣2
)
−m2

Hd

(∣∣H−
d

∣∣2 +
∣∣H0

d

∣∣2
)

−
[
Bµ

(
H+

u H
−
d −H0

uH
0
d

)
+ h.c.

]

−
[
AY λY σ

0
Y

(
H+

u H
−
d −H0

uH
0
d

)
+AIλIσ

i
I

(
Hu · τ iHd

)
+ h.c.

]
, (2.12)

with i and a being the SU(2)I and SU(3)C indices, τ i the Pauli matrices, and moreover,

Lmatter,soft = −
(
m2

Q̃

)
ij

(
ũ∗iLũjL + d̃∗iLd̃jL

)
−
(
m2

ũ

)
ij
ũ∗iRũjR −

(
m2

d̃

)
ij
d̃∗iRd̃jR

−
(
m2

L̃

)
ij

(ν̃∗iLν̃jL + ẽ∗iLẽjL)−
(
m2

ẽ

)
ij
ẽ∗iRẽjR

− (Aufu)ij ũ
∗
iR(d̃jLH

+
u − ũjLH

0
u)− (Adfd)ij d̃

∗
iR(ũjLH

−
d − d̃jLH

0
d) + h.c.

− (Aefe)ij ẽ
∗
iR(ν̃jLH

−
d − ẽjLH0

d) + h.c. , (2.13)

with i, j now denoting the matter generations. Here, the convention is adopted to use

subscripts C, I, Y for parameters corresponding to color, isospin and hypercharge gauge

groups, respectively. Capitalized mass parameters M are the Majorana gaugino masses

[MD for Dirac], while lower-case m denotes soft scalar masses. The Majorana mass terms,

M ′
B̃

, M ′
W̃

and M ′
g̃, for the new gauge adjoint fermions are soft N=1 SUSY breaking param-

eters and add to the Majorana mass parameters, MY ,MI and MC , introduced in eq. (2.4)

as part of the N=1 supersymmetric superpotential.

From this set of actions and Lagrangians, and after eliminating the auxiliary Da fields

through their equations of motion, the masses and mixings of the Higgs and gauge-adjoint

scalar particles and their interactions can be read off, and correspondingly those of their

superpartners as will be detailed below. The final form of the Lagrangians are collected in

the following list which, in general, includes only interactions of the new fields:1

(i) SU(3)C × SU(2)I × U(1)Y gauge boson/sigma sector.

1Many of the mass parameters and couplings defining the N=1/N=2 hybrid model can be complex in

general. Nevertheless, for the sake of simplicity all the parameters are assumed to be real throughout this

paper.
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The gauge interactions of the adjoint sigma fields are determined from the scalar

kinetic term (Dµσ)†(Dµσ) with the covariant derivative Dµ = ∂µ+igsT
aga

µ+igT iW i
µ.

In addition to their kinetic terms, the term generates the Lagrangian for the derivative

three-point and seagull four-point interaction terms:

LσC ,gauge = −gsf
abcga

µ (σb∗
C

←→
∂µσc

C) + g2
sf

acef bdega
µg

µbσ∗cC σ
d
C , (2.14)

LσI ,gauge = −gǫijkW i
µ (σj∗

I

←→
∂µσk

I ) + g2ǫikmǫjlmW
i
µW

µjσ∗kI σl
I , (2.15)

where fabc and ǫijk are the SU(3)C and SU(2)I structure constants, respectively, and

A
←→
∂µB ≡ A∂µB − (∂µA)B.

(ii) SU(3)C sfermion/gaugino/sigma sector.

The interaction Lagrangian of the sigma field σC with the squarks is given by

LσC(σC )q̃q̃ = −
√

2 gs M
D
C (σa

C + σa∗
C )

(
q̃∗L
λa

2
q̃L − q̃∗R

λa

2
q̃R

)
+ i g2

sf
abcσa∗

C σb
C q̃

†λ
c

2
q̃ ,

(2.16)

where λa (a = 1–8) are the Gell-Mann matrices. Therefore, the L– and R-chiral

squarks contribute with opposite signs as demanded by the general form of the super-

QCD D-terms. On the other hand, the interactions of the two gluino fields, g̃ and g̃′,
with the SU(3)C sigma field σC and with the squark and quark fields are described

by the Lagrangians:

Lg̃g̃′σ
C

= −
√

2 i gs f
abc g̃′aL g̃b

R σ
c
C + h.c. , (2.17)

Lg̃qq̃ = −
√

2 gs

(
qL
λa

2
g̃a
R q̃L − qR

λa

2
g̃a
L q̃R

)
+ h.c. , (2.18)

Only the standard gluino couples to squark fields since, as required by N=2 super-

symmetry, the new gluino g̃′ couples only to mirror matter fields, which in the hybrid

model are assumed to be absent.

(iii) SU(2)I × U(1)Y sfermion/gaugino/sigma sector.

In the weak basis, the R-chiral sfermions f̃R are SU(2)I singlets so that only the

L-chiral sfermions f̃L interact with the SU(2)I sigma field σI through the interaction

Lagrangians:

LσI (σI )f̃ f̃ = −
√

2 gMD
I (σi

I + σi∗
I )f̃ †L

τ i

2
f̃L + ig2 ǫijkσ

j∗
I σ

k
I f̃

†
L

τ i

2
f̃L, (2.19)

where f̃L is any matter SU(2)I -doublet field. On the other hand, the Lagrangians

governing the interactions of the winos, W̃ and W̃ ′, with the SU(2)I sigma field σI

and the (s)fermion fields are given by

LσIW̃W̃ ′ = −
√

2 i g ǫijk W̃ ′i
L W̃

j
R σ

k
I + h.c. , (2.20)

LW̃ ff̃ = −
√

2 g fL
τ i

2
W̃ a

R f̃L + h.c. . (2.21)
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Only the L-chiral sfermions f̃L couple to the standard wino W̃ .

The U(1)Y sigma field σY is essentially a SM singlet state with no tree-level gauge

interaction to any of the gauge bosons, gauginos and higgsinos. The singlet scalar

field couples only to the Higgs bosons and the (s)fermion fields, with the latter being

given by the Lagrangian:

LσY f̃ f̃ = −
√

2 g′MD
Y (σ0

Y + σ0∗
Y ) (YfL

|f̃L|2 − YfR
|f̃R|2) , (2.22)

and the standard bino B̃ (but not the new bino B̃′) couples to the (s)fermion fields

through the interaction Lagrangian:

LB̃f f̃ = −
√

2g′ (YfL
fLB̃Rf̃L − YfR

fRB̃Lf̃R) + h.c. , (2.23)

where YfL
and YfR

are the hypercharges of the L-chiral and R-chiral fermions, fL

and fR, respectively.

(iv) SU(2)I ×U(1)Y higgsino/sigma sector.

The superpotential (2.9) coupling the new SU(2)I×U(1)Y chiral superfields with the

Higgs hypermultiplets leads to Yukawa-type interactions of the electroweak sigma

fields with the higgsino fields. In the weak basis, the interactions are described by

the Lagrangian

LσH̃H̃ = −λY σ
0
Y

(
H̃−

uRH̃
−
dL − H̃0

uRH̃
0
dL

)
+ λIσ

0
I

(
H̃−

uRH̃
−
dL + H̃0

uRH̃
0
dL

)
+ h.c.

−
√

2λI

(
σ−1 H̃

−
uRH̃

0
dL − σ+

2 H̃
0
uRH̃

−
dL

)
+ h.c. , (2.24)

where we have introduced two charged scalars and one neutral scalar defined as

σ−1 =
1√
2

(
σ1

I + iσ2
I

)
, σ+

2 =
1√
2

(
σ1

I − iσ2
I

)
, σ0

I = σ3
I , (2.25)

with each of σi
I being complex.

Combining the above Lagrangian (2.24) with the Lagrangian (2.20) for the interac-

tions of the sigma fields with gauginos will enable us to derive the vertices for the

interactions of the sigma fields with charginos and neutralinos in the mass eigen-

state basis.

(v) SU(2)I ×U(1)Y Higgs/sigma sector.

The potential for the neutral and charged electroweak Higgs and scalar fields receives

contributions from three different sources: the gauge kinetic terms, the superpoten-

tial, and the soft-breaking terms. Complementing the neutral field interactions noted

in ref. [27] by the charged fields, the potential VσH for the charged and neutral elec-

troweak Higgs and adjoint scalars can be written as a sum over four characteristic

contributions:

VσH|1 =m2
Hu

(|H+
u |2 + |H0

u|2)+m2
Hd

(|H0
d |2 + |H−

d |2)+[Bµ(H+
u H

−
d −H0

uH
0
d) + h.c.],

(2.26)
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VσH|2 =
1

2

[√
2MD

Y (σ0
Y + σ0∗

Y ) +
1

2
g′(|H+

u |2 − |H−
d |2 + |H0

u|2 − |H0
d |2)

]2

+
1

2
|2MD

I (σ+
1 + σ+

2 ) +
√

2g(σ+
1 σ

0
I − σ+

2 σ
0∗
I ) + g(H+

u H
0∗
u +H0

dH
+
d )|2

+
1

2

[√
2MD

I (σ0
I + σ0∗

I ) + g(|σ+
2 |2 − |σ−1 |2)

+
1

2
g(|H+

u |2 − |H−
d |2 − |H0

u|2 + |H0
d |2)

]2

, (2.27)

VσH|3 = |(µ+ λY σ
0
Y − λIσ

0
I )H

−
d +
√

2λIσ
−
1 H

0
d |2

+|(µ+ λY σ
0
Y − λIσ

0
I )H

+
u −
√

2λIσ
+
2 H

0
u|2

+|(µ+ λY σ
0
Y + λIσ

0
I )H

0
d +
√

2λIσ
+
2 H

−
d |2

+|(µ+ λY σ
0
Y + λIσ

0
I )H

0
u −
√

2λIσ
−
1 H

+
u |2

+|MY σ
0
Y + λY (H+

u H
−
d −H0

uH
0
d )|2 + |MIσ

0
I − λI(H

+
u H

−
d +H0

uH
0
d)|2

+|MIσ
−
1 −
√

2λIH
0
uH

−
d |2 + |MIσ

+
2 +
√

2λIH
+
u H

0
d |2 , (2.28)

VσH|4 = m2
Y |σ0

Y |2 +m2
I(|σ0

I |2 + |σ−1 |2 + |σ+
2 |2) +

1

2
(m′2

Y (σ0
Y )2 + h.c.)

+
1

2
[m′2

I ((σ0
I )

2 + 2σ+
2 σ

−
1 ) + h.c.]

+AY λY σ
0
Y (H+

u H
−
d −H0

uH
0
d)−AIλI σ

0
I (H

+
u H

−
d +H0

uH
0
d ) + h.c.

+
√

2AIλI(σ
−
1 H

+
u H

0
d − σ+

2 H
−
d H

0
u) + h.c. . (2.29)

After shifting the neutral fields by their vacuum expectation values, the physical scalar

masses and the tri- and quadri-linear interaction vertices can be read off.

2.2 Masses, mixings and Dirac fields

Introducing the vacuum expectation values of the scalar/Higgs fields in the Lagrangians of

the previous subsection, their values are determined by the absence of terms linear in the

fields, while from the terms bi-linear in the fields the mass matrices for the scalars/Higgs,

the charginos and neutralinos can be read off. The vacuum expectation values (vevs) of

the neutral Higgs and the neutral sigma fields2 are defined as

〈H0
u/d〉 =

1√
2
vu/d , (2.30)

〈σ0
Y/I〉 =

1√
2
vY/I . (2.31)

As usual, the vevs of the Higgs sector can be rewritten as

v =
√
v2
u + v2

d and tan β =
vu

vd
. (2.32)

The masses of the electroweak vector bosons W,Z are generated by the interactions of the

fields with the ground states of the neutral Higgs H0
u,H

0
d and the neutral scalar iso-triplet

2Throughout the paper, we restrict ourselves to the case of a CP preserving and neutral vacuum with

real vacuum expectation values.
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field σ0
I (while the hyper-singlet field σ0

Y does not couple)

m2
Z =

1

4
(g′2 + g2)v2 , m2

W =
1

4
g2v2 + g2v2

I . (2.33)

The iso-triplet vev shifts the tree-level ρ-parameter away from unity by the amount

∆ρ = ρ− 1 = 4v2
I/v

2 . (2.34)

Allowing a maximum value ∆ρ ≤ 10−3 for the shift [34], it turns out that the vacuum

expectation value of the iso-triplet field must be very small, vI ≤ 3GeV, cf. [27]. We will

assume that the soft supersymmetry breaking scalar σI mass parameter mI of order TeV

drives vI to the small value. As a result, the Higgs vev v is close to the standard value

v = 246GeV, and tanβ may be identified approximately with the corresponding MSSM

parameter. And while almost any value for vY is phenomenologically quite consistent, a

large mY would drive vY to small values.

2.2.1 Charginos

Defining the current bases, {W̃ ′+
R , W̃+

R , H̃
+
uR} and {W̃ ′−

L , W̃−
L , H̃

−
dL} for the two charged

winos and the charged higgsino, the chargino mass matrix can be written as

MC =




M ′
2 MD

2 − gvI −λIvu

MD
2 + gvI M2

1√
2
gvd

λIvd
1√
2
gvu µc


 , (2.35)

where

M2 = MW̃ , M ′
2 = M ′

W̃
+MI , MD

2 = MD
I and µc = µ+ (λY vY − λIvI)/

√
2. (2.36)

Three charginos, i. e. one degree of freedom more than in MSSM and related iso-singlet

extensions like NMSSM or USSM, are predicted in the general N=1/N=2 hybrid model,

labeled χ̃±
1 , χ̃

±
2 , χ̃

±
3 (ultimately for ascending mass values). The MSSM case is reached in

the limit M ′
2 → −∞ which corresponds to infinitely heavy W̃ ′. By raising the magnitude of

the W̃ ′ gaugino mass parameter M ′
2 from −∞ to 0 and lowering at the same time M2 to 0

the Dirac limit is obtained. Though the 3×3 mass matrix can be diagonalized analytically

for arbitrary parameters, we study instead the evolution of the eigenvalues analytically in

the limit of small couplings, and numerically by varying −∞ ≤ M ′
2 ≤ 0 from the MSSM

to the Dirac limit.

For small gaugino/higgsino mixings in the area where the supersymmetry mass pa-

rameters M ′
2,M2,M

D
I , µ [and the size of their mutual differences] are much larger than the

electroweak parameter v, the eigenvalues and mixing parameters can be calculated easily.

This approximation leaves us with one higgsino mass eigenvalue

m±
3 = µc , (2.37)

and a 2× 2 gaugino mass submatrix with two eigenvalues

m±
1,2 =

1

2
| γ2 ∓ δ2| where γ2 =

√
(M ′

2 +M2)2 + 4g2v2
I and

δ2 =
√

(M ′
2 −M2)2 + 4(MD

2 )2 , (2.38)
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Figure 1. Evolution of the chargino masses as a function of the control parameter y from the MSSM

doublet (y = −1) to the Dirac (y = 0) triplet along the path PC in eq. (2.42) for m = 200GeV,

tanβ = 5, vI = vY = 3GeV and the N=2 values for the couplings λY,I in eq. (2.10).

and the two mixing angles for the positive and negative states

cos θ± ≡ c± =
1√
2

√
1− (M ′2

2 −M2
2 ∓ 4gvIMD

2 )/γ2δ2 , (2.39)

sin θ± ≡ s± =
1√
2

√
1 + (M ′2

2 −M2
2 ∓ 4gvIMD

2 )/γ2δ2 , (2.40)

With M ′
2 = −∞ in the MSSM limit we get c± = 0 and s± = 1, while c+ = s− = 1 and

c− = s+ = 0 in the Dirac limit with M ′
2 = M2 = 0 and MD

2 , vI > 0.

Switching on the weak couplings among the gaugino and higgsino sectors, the chargino

mass eigenvalues and the mixing parameters derived from

Mdiag
C = UT

+MC U− , (2.41)

can be calculated analytically in simple form.3 The results are presented in appendix C.

In analogy to the color sector in ref. [14, 15] we study the evolution of the eigenvalues in

figure 1 numerically by varying the mass parameters along the path

PC : M ′
2 = my/(1 + y) ,

M2 = −my ,
MD

2 = m,

µ = 2m, (2.42)

3In appendix A we provide an analytic prescription for the singular value decomposition of a general

2 × 2 matrix and in appendix B the small-mixing approximation.
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for a fixed value of m = 200 GeV with the control parameter −1 ≤ y ≤ 0 running from the

MSSM [y = −1] to the Dirac limit [y = 0]. This set corresponds to mass parameters giving

rise to mχ̃±
1

≈ m (fixed), mχ̃±
2

≈ m[y+1/(1+y)], moving from∞ tom, andmχ̃±
3

≈ µ (fixed)

in the decoupled wino and higgsino sectors and for very small vI . The other parameters in

the chargino mass matrix (2.35) are chosen as tan β = 5, vI = vY = 3GeV and the N=2

values for the couplings λY,I are adopted.

For the parameters chosen, the descending order of the physical masses in the figure

reflects, in obvious notation, the pattern w′ ≫ h > w in the MSSM limit. At some

medium y, the states w′ and h cross over to h > w′, keeping the ordering h > w′ > w

until the Dirac limit is reached. The physical masses in the cross-over zone of the states

w′ and h cannot be described by the standard analytical expansion applied above. They

must either be obtained numerically or by analytical expansions tailored specifically for

cross-over phenomena, see ref. [35].

2.2.2 Neutralinos

Six neutral electroweak Majorana fields are incorporated in the N=1/N=2 hybrid model.

The mass matrix can be extracted from the bi-linear terms of the gaugino, gaugino′ and

higgsino fields in the Lagrangian of the preceding subsection, written in the current basis

{B̃′, B̃, W̃ ′0, W̃ 0, H̃0
u, H̃

0
d} as

MN =




M ′
1 MD

1 0 0 − 1√
2
λY vd − 1√

2
λY vu

MD
1 M1 0 0 1

2g
′vu −1

2g
′vd

0 0 M ′
2 MD

2 − 1√
2
λIvd − 1√

2
λIvu

0 0 MD
2 M2 −1

2gvu
1
2gvd

− 1√
2
λY vd

1
2g

′vu − 1√
2
λIvd −1

2gvu 0 −µn

− 1√
2
λY vu −1

2g
′vd − 1√

2
λIvu

1
2gvd −µn 0




, (2.43)

where

M1 = MB̃ , M ′
1 = M ′

B̃
+MY , MD

1 = MD
Y , µn = µ+ (λY vY + λIvI)/

√
2 . (2.44)

and M2,M
′
2 are defined in eq. (2.36). This 6 × 6 mass matrix is diagonalized by the

unitary transformation

Mdiag
N = UT

NMN UN . (2.45)

Six neutralinos, i. e. two degrees of freedom more than in MSSM, are predicted in the gen-

eral N=1/N=2 hybrid model, labeled χ̃0
1···6 (ordered according to ascending mass values).

They evolve from the MSSM by raising the magnitude of the gaugino mass parameters

M ′
1,2 from −∞ to finally 0 in the Dirac limit.

In general, the diagonalization of the 6×6 neutralino mass matrix cannot be carried out

in analytic form. However, as before, in the limit in which the supersymmetry masses are

much larger than the electroweak scale, approximate solutions can be found analytically.

First switching off the electroweak mixings among the bino, wino and higgsino sectors
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leaves us with two bino mass eigenvalues, two wino mass eigenvalues and two higgsino

mass eigenvalues:

m0
1,2 =

1

2

∣∣|M1 +M ′
1| ∓ δ1

∣∣ , (2.46)

m0
3,4 =

1

2

∣∣|M2 +M ′
2| ∓ δ2

∣∣ , (2.47)

m0
5,6 = µ , (2.48)

with δ1,2 =
√

(M ′
1,2 −M1,2)2 + 4(MD

1,2)
2 , and the block-diagonal mixing matrix

UN = diag
(
U1, U 2, Uh

)
with U1,2 =

(
c1,2 −is1,2

s1,2 ic1,2

)
and

Uh =

(
i/
√

2 −1/
√

2

i/
√

2 1/
√

2

)
, (2.49)

with the mixing angles c1,2/s1,2 =
√

[1± (M ′
1,2 −M1,2)/δ1,2]/2.

Switching on the weak couplings among the bino, wino gaugino sectors and the hig-

gsino sector, the mass eigenvalues and mixing parameters are calculated using the block-

diagonalization method described in appendix B. The results of this procedure are relegated

to appendix C.

The numerical evolution of the neutralinos in the hybrid model is displayed in figure 2 as

a function of the control parameter y for the same path and parameter set as in the chargino

sector, eq. (2.42), and supplemented by the bino/wino mass relations M
(D)
1 ≈M (D)

2 /2, and

setting tan β = 5 and vI = vY = 3GeV.

The evolution of the neutralino masses follows the same pattern as the charginos,

though being more complex due to the increased number of states. Starting from the mass

pattern w′ > b′ ≫ h1 ∼ h2 > w > b of the neutral states in the MSSM limit for the

parameters chosen above, the first cross-over is observed for b′ ↔ h1, followed by w′ ↔ h2

and b′ ↔ w at roughly the same position. The mass system moves to the final pattern

h1 = h2 > w′ = w > b′ = b in the Dirac limit.

The transition from the Majorana to the Dirac theory in the limits M ′
2,M2 and

M ′
1,M1 → 0 can easily be studied by analyzing the mass matrix MN for vanishing gaug-

ino/higgsino mixing. The eigenvalues of the matrix come in pairs of opposite signs: ±mj

for j = 1, 2, 3. The Majorana fields in each pair, denoted by χ̃± according to the sign of

the eigenvalue, can be combined to one Dirac field,

χ̃D = (χ̃+ + iχ̃−) /
√

2 , (2.50)

the superposition giving rise to vanishing contractions 〈χ̃Dχ̃D〉 = 0, as required for

Dirac fields.

The ± pairing of the eigenstates is not restricted to the hybrid neutralino mass matrix

with vanishing gaugino/higgsino mixing but it is also realized if the gaugino/higgsino mix-

ing is switched on and the couplings λY,I are given by the N=2 relations, λY = −g′/
√

2
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Figure 2. Evolution of the neutralino masses as a function of the control parameter y from the

MSSM (y = −1) quartet to the Majorana sextet, merging to the Dirac triplet in the (y = 0) limit, for

the same path (2.42) as in the chargino sector with bino/wino relations chosen asM
(D)
1 /M

(D)
2 = 1/2.

and λI = g/
√

2 [27]. The key is the vanishing of the coefficients of odd powers of the

eigenvalues in the characteristic eigenvalue equation:

det(MN −m) = r0 + r2m
2 + r4m

4 + r6m
6 = 0 , (2.51)

with the coefficients given by

r6 = 1 , (2.52)

r4 = −1

2
tr(M2

N ) = −[(MD
Y )2 + (MD

I )2 + µ2
n +m2

Z ] ,

r2 =
1

8
[tr(M2

N )]2 − 1

4
tr(M4

N )

= (MD
Y M

D
I )2 + [(MD

Y )2 + (MD
I )2]µ2

n + 2m2
Z [(MD

Y )2c2W + 2(MD
I )2s2W ]

−2m2
Z(MD

Y s
2
W +MD

I c
2
W )µnc2β +m4

Z ,

r0 = − 1

48
[tr(M2

N )]3 +
1

12
[tr(M3

N )]2 +
1

8
tr(M4

N ) tr(M2
N )− 1

6
tr(M6

N )

= −(MD
Y M

D
I µn)2 + 2m2

ZM
D
Y M

D
I µn(MD

Y c
2
W +MD

I s
2
W )c2β −m4

Z(MD
Y c

2
W +MD

I s
2
W )2 .

The odd coefficients r2j+1 are linear in traces of odd powers of MN which vanish. While

this is obvious for tr(MN ) in the Dirac limit M1,2,M
′
1,2 → 0, it can easily be proven

also for odd powers of the mass matrix if the submatrix that mixes the mass submatrix

of the gauginos with the mass submatrix of the higgsinos is orthogonal. This is satisfied
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in eq. (2.43), a sufficient [but not necessary] condition for orthogonality being the N=2

symmetry of the basic Lagrangian.

If the lightest neutralino is the lightest supersymmetric particle (LSP) and stable, its

Dirac or Majorana nature has important consequences for cold dark matter phenomenol-

ogy. This is most clearly seen by inspecting, for example, the neutralino annihilation

cross section into an electron-positron pair in the MSSM and Dirac limits. Assuming for

simplicity a pure bino-type MSSM neutralino state χ̃0
1 = B̃0, we obtain

dσ

d cos θ
[χ̃0

1χ̃
0
1 → e−e+] =

π2α

16c2W s
β3

[
η2
1L + (η2

1L − 4η1L + 2− β2) cos2 θ + β2 cos4 θ

(η2
1L − β2 cos2 θ)2

+16
η2
1R + (η2

1R − 4η1R + 2− β2) cos2 θ + β2 cos4 θ

(η2
1R − β2 cos2 θ)2

]
, (2.53)

due to the t- and u-channel L- and R-chiral selectron exchange where cW = cos θW , θ is the

c.m. scattering angle, β = (1−4m2
χ̃0

1

/s)1/2 and η1L,R = 1+2(m2
ẽL,R
−m2

χ̃0
1

)/s. On the other

hand, in the Dirac theory with the pure bino-type Dirac neutralino state χ̃0
D1 = B̃′0

L + B̃0
R

we obtain for the annihilation cross section

dσ

d cos θ
[χ̃0

D1χ̃
0c
D1 → e−e+] =

πα2

32c2W s
β

[
(1− β cos θ)2

(η1L − β cos θ)2
+ 16

(1 + β cos θ)2

(η1R + β cos θ)2

]
. (2.54)

In other words, in the limit of β → 0, the annihilation cross section (2.53) in the MSSM

shows a P -wave suppression behavior ∼ β3, while in the Dirac case, the cross section (2.54)

shows only a S-wave suppression behavior ∼ β. As a result, the P -wave suppression of the

MSSM LSP annihilation cross sections requires a significant fine-tuning of the spectra to

be consistent with the WMAP observations [36, 37]. In contrast, the annihilation of Dirac

gauginos into a fermion and anti-fermion pair has a non-vanishing S-wave contribution

even in the limit of vanishing fermion masses. Thus, the annihilation to fermions does not

require the chirality flip in the final state, giving rise to enhanced decay branching fractions

to leptons. This opens the parameter space that fits the WMAP measurements [27, 29].

Moreover, in contrast to the Majorana case, Dirac gauginos with non-vanishing higgsino

fraction can lead to spin-independent scattering cross sections off nuclei via the Z-boson ex-

change [30], thus significantly altering the prospects for dark matter detection experiments.

2.2.3 Scalar/Higgs particles

The scalar/Higgs sector involves various components in the basic Lagrangian: terms derived

from the N=2 Higgs-Higgs-scalar interactions, the superpotential, the D-terms and the

soft breaking terms. Expanding the scalar/Higgs potential about the vacuum expectation

values of the neutral fields, vu/d, vY/I , linear and bi-linear terms of the physical fields

associated with the masses are generated, while tri- and quadri-linear terms describe the

self-interactions of the physical scalar/Higgs fields.

To stabilize the system, the coefficients of the linear terms must vanish; this condition
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connects the vacuum expectation values with the basic parameters of the Lagrangian:

vY =
v2

4m̃2
Y m̃

2
I − λ2

Y λ
2
Iv

4

{
2m̃2

I

[
g′MD

Y c2β −
√

2λY µ+ (MY +AY )λY s2β/
√

2
]

+λY λIv
2
[
gMD

I c2β +
√

2λIµ− (MI +AI)λIs2β/
√

2
]}

∼ v2

2m̃2
Y

[
g′MD

Y c2β −
√

2λY µ+ (MY +AY )λY s2β/
√

2
]

for m̃Y,I ≫ λY,Iv, (2.55)

vI =
v2

4m̃2
Y m̃

2
I − λ2

Y λ
2
Iv

4

{
2m̃2

Y

[
−gMD

I c2β −
√

2λIµ+ (MI +AI)λIs2β/
√

2
]

−λY λIv
2
[
g′MD

Y c2β −
√

2λY µ+ (MY +AY )λY s2β/
√

2
]}

∼ − v2

2m̃2
I

[
gMD

I c2β +
√

2λIµ− (MI +AI)λIs2β/
√

2
]

for m̃Y,I ≫ λY,Iv, (2.56)

with the abbreviations c2β = cos 2β and s2β = sin 2β, and

m̃2
Y = m2

Y +m′2
Y +M2

Y + 4(MD
Y )2 + 1

2λ
2
Y v

2 , (2.57)

m̃2
I = m2

I +m′2
I +M2

I + 4(MD
I )2 + 1

2λ
2
Iv

2 . (2.58)

The Higgs vevs vu,d are determined by

0 = (m2
Hu

+ µ2)vu −Bµvd +
1

8
(g′2 + g2)(v2

u − v2
d)vu +

1

2
(λ2

Y + λ2
I)vuv

2
d

+(
√

2λY µ+ g′MD
Y )vY vu + (

√
2λIµ− gMD

I )vIvu

− 1√
2
(MY +AY )λY vY vd −

1√
2
(MI +AI)λIvIvd +

1

2
(λY vY + λIvI)

2vu , (2.59)

0 = (m2
Hd

+ µ2)vd −Bµvu −
1

8
(g′2 + g2)(v2

u − v2
d)vd +

1

2
(λ2

Y + λ2
I)v

2
uvd

+(
√

2λY µ− g′MD
Y )vY vd + (

√
2λIµ+ gMD

I )vIvd

− 1√
2
(MY +AY )λY vY vu −

1√
2
(MI +AI)λIvIvu +

1

2
(λY vY + λIvI)

2vd , (2.60)

after inserting the vevs vY,I from eq. (2.56). The values of vu,d and vI can be deter-

mined phenomenologically in terms of the observables tan β and m2
W ,m2

Z , vide eqs. (2.32)

and (2.33).

The terms in the Lagrangian which are bi-linear in the fields build up the scalar/Higgs

mass matrices. Decomposing the neutral fields into ground-state values, real and imagi-

nary parts,

H0
u =

1√
2

[sβ(v + h) + cβH + i(cβA− sβa)] , H+
u = cβ H

+ − sβ a
+ , (2.61)

H0
d =

1√
2

[cβ(v + h)− sβH + i(sβA+ cβa)] , H−
d = sβ H

− + cβ a
− , (2.62)

with the abbreviations cβ = cos β and sβ = sin β, and

σ0
Y =

1√
2
(vY + sY + iaY ) , (2.63)

σ3
I =

1√
2
(vI + sI + iaI) , σ1

I =
1√
2
(σ+

2 + σ−1 ) , σ2
I =

i√
2
(σ+

2 − σ−1 ) , (2.64)
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it can be ascertained that the matrix of the imaginary fields involves a massless Goldstone

field a, and likewise the charged fields involve a±G = [va± +
√

2vI(σ
±
1 + σ±2 )]/

√
v2 + 4v2

I .

These are absorbed to provide masses to the neutral and charged gauge bosons. The neu-

tral fields h,H, sY , sI are parity-even scalars while A, aY , aI are parity-odd pseudoscalars;

the charged fields H± mix with the associated charged scalar fields s±1,2, defined later in

eq. (2.80). These elements build up the neutral pseudoscalar 3×3 mass matrix, the neutral

scalar 4× 4 mass matrix and the charged scalar 3× 3 mass matrix:

(i) Neutral pseudoscalars.

In the {A, aY , aI} basis, the 3 × 3 real and symmetric pseudoscalar mass matrix

squared is given by

M2
P =




M2
A − 1√

2
(MY −AY )λY v − 1√

2
(MI −AI)λIv

− 1√
2
(MY −AY )λY v m̃′2

Y
1
2λY λIv

2

− 1√
2
(MI −AI)λIv

1
2λY λIv

2 m̃′2
I


 , (2.65)

where

M2
A = 2

[
Bµ + λY vY (MY +AY )/

√
2 + λIvI(MI +AI)/

√
2
]
/s2β , (2.66)

m̃′2
Y = m2

Y −m′2
Y +M2

Y + 1
2λ

2
Y v

2 , (2.67)

m̃′2
I = m2

I −m′2
I +M2

I + 1
2λ

2
Iv

2 . (2.68)

This matrix can easily be diagonalized in approximate form in the limit of the genuine

supersymmetry parameters, mY,I being much larger than the electroweak scale v,

i. e. v/mY,I ≪ 1. This leaves us with three approximately unmixed states with

their masses

M
2
A1

= M2
A , M

2
A2

= m̃′2
Y , M

2
A2

= m̃′2
I . (2.69)

The expressions for the mass eigenvalues and mixing elements, when the weak cou-

pling among the {A, aY , aI} states is retained, are given in appendix C.

(ii) Neutral scalars.

In the {h,H, sY , sI} basis, the real and symmetric 4× 4 scalar mass matrix squared
M2

S is given by

M2
S =




m2
Z + δHs2β δHc2β − vY

v
(2m̃2

Y − λ2
Y v

2) − vI

v
(2m̃2

I − λ2
Iv

2)

δHc2β M2
A − δHs2β ∆Y ∆I

− vY

v
(2m̃2

Y − λ2
Y v

2) ∆Y m̃2
Y

1
2λY λIv

2

− vI

v
(2m̃2

I − λ2
Iv

2) ∆I
1
2λY λIv

2 m̃2
I


 , (2.70)

where

δH =
[
(λ2

Y + λ2
I)v

2 − 2m2
Z

]
s2β/2 , (2.71)

∆Y = g′MD
Y v s2β − 1√

2
λY (MY +AY )v c2β , (2.72)

∆I = −gMD
I v s2β − 1√

2
λI(MI +AI)v c2β . (2.73)
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Note that δH vanishes in the N=2 SUSY limit. Thus, in this limit, the eigenvalues

of the Higgs submatrix {h,H} are just m2
Z and M2

A [32], with no dependence on

tan β, a feature markedly different from the MSSM. This submatrix receives several

radiative corrections, the most important one accruing from stop/top loops, due to

their large Yukawa couplings. As a result, the Higgs submatrix is modified to
(
m2

Z + δHs2β δHc2β

δHc2β M2
A − δHs2β

)
→

(
m2

Z + δHs2β + ǫH δHc2β + ǫH/tβ
δHc2β + ǫH/tβ M2

A − δHs2β + ǫH/t
2
β

)
,

(2.74)

where

ǫH ≃
3GFm

4
t√

2π2
ln
mt̃1

mt̃2

m2
t

. (2.75)

The transition from the current basis to the diagonal 2 × 2 Higgs matrix

with eigenvalues

M
2
S1
≈ m2

Z + δHs2β + ǫH −
(δHc2β + ǫH/tβ)2

M2
A −m2

Z

, (2.76)

M
2
S2
≈ M2

A − δHs2β + ǫH/t
2
β +

(δHc2β + ǫH/tβ)2

M2
A −m2

Z

, (2.77)

is carried out by an orthogonal transformation with the mixing element given by

tan θh =
m2

Z + δHs2β + ǫH −M2
S1

|δHc2β + ǫH/tβ|
, (2.78)

with 0 ≤ θh ≤ π/2.
In the limit of mY,I being much larger than the electroweak scale v, the {sY , sI}
submatrix leads to the two approximate mass eigenvalues

M
2
S3

= m̃2
Y , M

2
S4

= m̃2
I . (2.79)

The {h,H} and {sY , sI} systems are weakly coupled at the order v/MA, v/mY,I , and

the block diagonalization allows to derive the results given in appendix C.

(iii) Charged scalars.

After the charged Goldstone bosons a±G are absorbed into the charged gauge bosons,

there remain three physical charged scalar states {H±, s±1 , s
±
2 } with the second and

third states defined by

s±1 = (σ±1 − σ±2 )/
√

2 and s±2 =
v(σ±1 + σ±2 )/

√
2− 2vIa

±
√
v2 + 4v2

I

. (2.80)

The real symmetric 3× 3 charged scalar mass matrix squaredM2
H± is then given in

the {H±, s±1 , s
±
2 } basis by

M2
H± =




M̃2
H± ∆± −√ρ∆I

∆± m̃′2
I + g2v2

I
1
2

√
ρ
(
λ2

I − 1
2g

2
)
v2c2β

−√ρ∆I
1
2

√
ρ
(
λ2

I − 1
2g

2
)
v2c2β ρ m̃2

I


 , (2.81)
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where

M̃2
H± = M2

A +m2
W +

1

2
(λ2

I − λ2
Y )v2 − 4

v2
I

v2
m̃2

I + 4λ2
Iv

2
I − 4

√
2µnλIvI ,

∆± =
(
g2/2− λ2

I

)
vIvs2β − (MI −AI)λIv/

√
2 , (2.82)

and ∆I is introduced in eq. (2.73). We note in passing that in the N = 2 SUSY

scenario with λI = g/
√

2 the charged states s±1,2 do not mix.

Assuming that m̃2
I > m̃′2

I > M̃2
H± and MI , AI ∼ MA, and observing that, again,

the charged Higgs/scalar states are weakly coupled at the order of v/m̃I or v/m̃′
I ,

the block-diagonalization procedure provides approximate solutions as given in ap-

pendix C.

The extension of the Higgs sector by the novel SU(2)I×U(1)Y adjoint sigma fields has two

important consequences:

• Each of the neutral pseudoscalar/scalar and charged sectors are extended by two new

states with masses of the order of the characteristic scalar parameters mY and mI .

As a result, one of the new pseudoscalar/scalar states may acquire mass between a

few hundred GeV up to several TeV, while the other will be heavy, i.e., O(TeV); both

the new charged states will be heavy likewise.

• The mass matrix of the Higgs system is modified compared to the MSSM. As pointed

out before, the tree-level Higgs masses are independent of the mixing parameter tan β.

In addition, the lower bound on the [lightest] charged Higgs mass is not guaranteed

to exceed the W mass any more [experimentally of course, any charged Higgs boson

with mass below ∼ 100 GeV is excluded by direct searches [34].]

The tableau in figure 3 illustrates the evolution of the three neutral pseudoscalar,

four neutral scalar, and three charged masses with the hyper-singlet mass parameter mY

introduced in the soft SUSY breaking Lagrangian while all other parameters are kept fixed.

These parameters have been chosen as indicated in the figure caption.

3 Characteristic physical processes

New colored particles like gluinos and squarks are expected to be generated, and detected,

at the LHC for masses up to 2-3 TeV, and the strikingly different phenomenology of novel

Dirac gluinos and colored adjoint scalars have been discussed in refs. [14–17]. In contrast,

the mass window for generating non-colored states like charginos/neutralinos directly in

quark-antiquark collisions is much smaller as a result of the small electroweak production

cross sections. Cascade decays of colored states, however, provide a copious source of non-

colored particles with large masses i.e. through the decay q̃ → q + χ̃. Pair production of

non-colored states at TeV e+e− and e−e− lepton colliders ILC/CLIC, on the other hand,

gives access to the non-colored sector up to masses close to half the c.m. energy, i. e.

about 0.5 TeV and 1.5 TeV at the ILC and CLIC, respectively, while non-colored adjoint
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Figure 3. (a) The lightest neutral scalar boson including one-loop top/stop radiative corrections.

The red dashed line indicates the present experimental lower bound on the mass MS1
& 114 GeV;

(b) the neutral scalar masses; (c) the neutral pseudoscalar masses; (d) the charged scalar masses,

as a function of the hypercharge soft scalar mass mY ; the isospin soft scalar mass is set to mI = 6v

to accommodate the small ρ-parameter and the N=2 values for the couplings λY,I in eq. (2.10)

are adopted. The other parameters are fixed to tanβ = 5, mt̃1
= mt̃2

= 1TeV, MA = 2v,

m′
Y = MD

Y = v/2, m′
I = MD

I = µ = v, AY = AI = 2v and MY = MI = 0 for Dirac gauginos.

scalars can be produced with high masses in γγ collisions. Without specifying the rel-

ative size of the masses of the new particles, a myriad of possible cascade decays would

be predicted, which can, nevertheless, be analyzed phenomenologically by applying quite

similar techniques. To present a transparent overview we, therefore, focus on represen-

tative chains in which sigma masses generally exceed the chargino/neutralino masses, as

motivated already earlier.

3.1 Charginos and neutralinos

Below, explicit formulae will be given for the N=1 MSSM and the N=2 Dirac limit,

while scenarios interpolating between the MSSM and the Dirac limit could be obtained
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by summing up the two individual chargino/Majorana neutralino contributions after the

proper diagonalization of the hyper-system.

In the hybrid theory, only the original N=1 chargino and neutralino fields couple

to the matter fields. The analysis is simplified considerably by restricting ourselves to

interactions with first and second generation (s)fermions. In this sector, which is most

relevant experimentally, only the gauge components of charginos and neutralinos couple to

the matter fields.

In the limit of large supersymmetry scales (in relation to the electroweak scale), the

Dirac chargino fields and their charge conjugates are given by

χ̃−
D1 = W̃ ′−

L + W̃−
R , χ̃+

D1 = −W̃+
L − W̃ ′+

R , (3.1)

χ̃−
D2 = W̃−

L + W̃ ′−
R , χ̃+

D2 = −W̃ ′+
L − W̃+

R , (3.2)

χ̃−
D3 = H̃−

dL + H̃−
uR , χ̃+

D3 = H̃+
uL + H̃+

dR , (3.3)

whereas the Dirac neutralino fields and their charge conjugates are

χ̃0
D1 = B̃′

L + B̃R , χ̃0c
D1 = −B̃L − B̃′

R , (3.4)

χ̃0
D2 = W̃ ′0

L + W̃ 0
R , χ̃0c

D2 = −W̃ 0
L − W̃ ′0

R , (3.5)

χ̃0
D3 = i(H̃0

dL − H̃0
uR) , χ̃0c

D3 = i(H̃0
uL − H̃0

dR) , (3.6)

up to terms of order v/MSUSY. Expressed in terms of these fields, the Lagrangians for

matter-chargino/neutralino interactions in the MSSM Majorana limit and in the Dirac

theory can be written as

LC
Majo = g uL χ̃

+
1 d̃L + g χ̃+

1 uL d̃
∗
L − g dL χ̃

−
1 ũL − g χ̃−

1 dL ũ
∗
L , (3.7)

LC
Dirac = g uL χ̃

+
D2d̃L + g χ̃+

D2 uL d̃
∗
L − g dL χ̃

−
D1ũL − g χ̃−

D1 dL ũ
∗
L , (3.8)

and

LN
Majo = −gLi fL χ̃

0
i f̃L − g∗Li χ̃

0
i fL f̃

∗
L + gRi fR χ̃

0
i f̃R + g∗Ri χ̃

0
i fR f̃

∗
R , (3.9)

LN
Dirac = −gLi fL χ̃

0
Di f̃L − g∗Li χ̃

0
Di fL f̃

∗
L + gRi fR χ̃

0c
Di f̃R + g∗Ri χ̃

0c
Di fR f̃

∗
R , (3.10)

where

gLi =
√

2
[
g′YfL

δi1 + gI3
f δi2

]
and gRi =

√
2 g′YfR

δi1 . (3.11)

Here u/ũ correspond to up-type (s)quarks or (s)neutrinos, whereas d/d̃ denote down-type

(s)quarks or charged (s)leptons. As mentioned above, mixings from electroweak symmetry

breaking as well as from the CKM matrix have been neglected.

In the approximation described by the Dirac Lagrangians a Dirac charge D [14, 15]

can be defined which is conserved in all processes:

D[q̃1,2
L ] = D[ℓ̃1,2

L ] = D[ν̃1,2] = D[χ̃0c
D ] = D[χ̃+

D1] = D[χ̃−
D2] = −1 , (3.12)

D[q̃1,2
R ] = D[ℓ̃1,2

R ] = D[χ̃0
D] = D[χ̃−

D1] = D[χ̃+
D2] = +1 . (3.13)

Antiparticles carry the corresponding opposite Dirac charges −D. The Dirac charges of all

SM particles vanish. The squarks q̃1,2, sleptons ℓ̃1,2, and sneutrinos ν̃1,2 belong to the first
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and second generation. L,R mixing and large couplings to higgsinos preclude the extension

of this approximate scheme to the third generation. Nevertheless, the scheme proves useful

for a quick overview of allowed and forbidden processes in the first two generations. For

example, in the Dirac limit, the production processes e−Le
−
L → ẽ−L ẽ

−
L and e−Re

−
R → ẽ−Rẽ

−
R with

equal helicities are forbidden while the opposite-helicity process e−Le
−
R → ẽ−L ẽ

−
R is allowed.

3.1.1 Squark cascade decays at LHC

Cascade decays, see e.g. ref. [38], are crucial for the analysis of the non-colored supersym-

metry sector at LHC. Following the rules discussed earlier, we will study invariant masses

of quark-jets with charged leptons in squark cascade decays:

Charginos: MSSM: ũL → d χ̃+
1 → d νl l̃

+
L , d l

+ ν̃l → d l+ νl χ̃
0
1,

d̃L → u χ̃−
1 → u ν̄l l̃

−
L , u l

− ν̃∗l → u l− ν̄l χ̃
0
1, (3.14)

Dirac: ũL → d χ̃+
D1 → d l+ ν̃l → d l+ νl χ̃

0c
D1 ,

d̃L → u χ̃−
D2 → u ν̄l l̃

−
L → u l− ν̄l χ̃

0c
D1, (3.15)

Neutralinos: MSSM: q̃L → q χ̃0
2 → q l± l̃∓L → q l± l∓ χ̃0

1, (3.16)

Dirac: q̃L → q χ̃c0
D2 → q l+ l̃−L → q l+ l− χ̃0

1. (3.17)

Due to CP invariance, the charge conjugated versions of these processes are obtained simply

by flipping the gauge/Dirac charges and chiralities at each step.

As evident from the list above, the decay chains differ in their chirality structure

between the MSSM and the Dirac theory, which will leave a characteristic imprint on the

angular distributions of visible decay jets and leptons. For the squark-chargino cascades

this is illustrated by the quark-lepton invariant mass distributions shown in figure 4.

Also shown in the figure is an example of the general 2-Majorana hyper-system away

from the Dirac limit. In this case one obtains two wino-like charginos χ±
1,2 with distinct

masses. The dotted lines in the plots corresponds to a scenario with relatively small

departure from the Dirac limit, so that the two chargino masses are of the same order and

the W̃/W̃ ′ mixing angle is close to maximal mixing.

Nevertheless, the distributions of the 2-Majorana hyper-system are closer to the MSSM

in the plots, while the Dirac limit leads to drastically different distributions. This can be

understood from the fact that the two independent charginos χ̃±
1 and χ̃±

2 in the hybrid

model become degenerate in the exact Dirac limit. Interference effects lead to large mixing

between the two states in this limit. However, a slight deviation from the Dirac limit is

already sufficient to effectively turn off these interference contributions, since the width of

both charginos is relatively small.

The squark-neutralino cascades have been worked out in ref. [14, 15], and are repro-

duced in figure 5. Again, the plots show distinct differences between the MSSM and Dirac

limits, which can be exploited to experimentally distinguish the two cases at the LHC.

3.1.2 Selectron pair-production in e−e− and e+e− collisions

Conservation of the Dirac charge D in the first generation forbids the production of selec-

trons in equal-helicity e−e− collisions but allows the production in opposite-helicity colli-
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Figure 4. Quark-lepton invariant mass distributions for squark decay chains with intermediate

charginos, comparing the N=1 MSSM (solid lines) with the N=2 Dirac gaugino theory (dashed

lines) and the intermediate hybrid theory (dotted lines). Numerical inputs for the plots are mq̃ =

565 GeV, mχ̃
±

1

= mχ̃
±

D1

= mχ̃
±

D2

= 184 GeV, ml̃ = mν̃ = 125.3 GeV, and mχ̃0

1

= mχ̃0

D1

= 97.7 GeV.

For the case of the hybrid model, the second chargino mass is mχ̃
±

2

= 199 GeV, corresponding to a

mixing angle cos θ2 = 0.6. Electroweak symmetry breaking effects on the chargino and neutralino

mixing matrices have been neglected.

sions in the Dirac theory, while all three helicity combinations are non-trivially realized in

Majorana theories:

e−Le
−
L → ẽ−L ẽ

−
L , e

−
Re

−
R → ẽ−Rẽ

−
R , (3.18)

e−Le
−
R → ẽ−L ẽ

−
R . (3.19)

Three other independent processes are possible in e−e+ collisions:

e−Le
+
L → ẽ−L ẽ

+
R , (3.20)

e−Le
+
R → ẽ−L ẽ

+
L , e

−
Re

+
L → ẽ−Rẽ

+
R . (3.21)

Noting that (ψL/R)c = (ψc)R/L, the additional process e−Re
+
R → ẽ−Rẽ

+
L in the second group

is the CP-conjugate of the first process and needs not be analyzed separately. Since non-

zero s-channel γ, Z exchange requires opposite lepton helicities, the first electron/positron

process is driven only by neutralino exchanges while the other two processes are mediated

by both t-channel neutralino and s-channel vector-boson exchanges. Moreover, the first

process violates conservation of the D charge and thus is forbidden in the Dirac theory.

Simulations of some processes have been presented in refs. [39–41].

(i) e−e− collisions.

Recalling the definitions introduced in ref. [14, 15], the e−e− scattering amplitudes

for selectron pair production in the general hybrid hyper-system on which we have
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Figure 5. ql invariant mass distributions for squark decay chains involving Majorana or Dirac

neutralinos. In the N=1 MSSM (solid lines) the squark and anti-squark decay chains lead to

identical distributions, in contrast to the N=2 Dirac gaugino theory (dashed and dotted lines).

Numerical inputs for the plots are mq̃ = 565GeV, mχ̃0

2

= mχ̃0

D2

= 184GeV, ml̃ = 125.3GeV, and

mχ̃0

1

= mχ̃0

D1

= 97.7GeV. Electroweak symmetry breaking effects on the chargino and neutralino

mixing matrices have been neglected.

based the detailed analyses, can be written as

A[e−Le
−
L → ẽ−L ẽ

−
L ] = −2e2 [MLL(s, t) +MLL(s, u)] , (3.22)

A[e−Re
−
R → ẽ−Rẽ

−
R] = 2e2 [M∗

RR(s, t) +M∗
RR(s, u)] , (3.23)

for same helicity-pairs and

A[e−Le
−
R → ẽ−L ẽ

−
R] = e2λ

1/2
LR sin θDLR(s, t) , (3.24)

A[e−Re
−
L → ẽ−L ẽ

−
R] = −e2λ1/2

LR sin θDRL(s, u) , (3.25)

for opposite helicity-pairs, with the two-body final state kinematic factor λab =

λ(1,m2
ẽa
/s,m2

ẽb
/s) [a, b = L,R] and

λ(1, x, y) = 1 + x2 + y2 − 2(x+ y + xy) . (3.26)

Here θ is the scattering angle, and the dimensionless neutralino functions Mab and

Dab (a, b = L,R) [42, 43] are defined by

Mab(s, t/u) =

6∑

k=1

mχ̃0
k√
s
VakVbkDkt/u , (3.27)

Dab(s, t/u) =

6∑

k=1

VakV∗bk Dkt/u , (3.28)
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They are determined by the normalized neutralino propagators Dkt = s/(t −m2
χ̃0

k

),

and similarly for Dku, and the effective mixing coefficients

VLk = UN2k/(2cW ) + UN4k/(2sW ) , VRk = UN2k/cW . (3.29)

The neutralino mixing matrix elements UNαk, introduced in (2.45), have a very simple

structure if effects from electroweak symmetry breaking are neglected, see eq. (2.49).

After calculating the polarization averaged squared matrix elements and including

the phase space factor the differential cross sections are

dσLL

d cos θ
=
πα2

4s
λ

1/2
LL |MLL(s, t) +MLL(s, u) |2 , (3.30)

dσRR

d cos θ
=
πα2

4s
λ

1/2
RR |MRR(s, t) +MRR(s, u) |2 , (3.31)

dσLR

d cos θ
=
πα2

4s
λ

3/2
LR sin2 θ

[
|DLR(s, t)|2 + |DRL(s, u)|2

]
. (3.32)

Finally, the unpolarized total cross sections can be obtained by performing the re-

maining integration over the scattering angle θ. Note that σLR and σRL are not

physically distinguishable in the e−e− case, unlike for e+e− annihilation. The cross

sections reduce, on the one side, to the familiar MSSM form, see ref. [39, 40], while

in the Dirac theory, on the other side, they simplify considerably to

σ[e−e− → ẽ−L ẽ
−
L ] = σ[e−e− → ẽ−R ẽ

−
R] = 0 , (3.33)

σ[e−e− → ẽ−L ẽ
−
R] =

πα2

2c4W s

[
(1 + 2m2

χ̃0
D1

/s−m2
ẽL
/s−m2

ẽR
/s)L′

D1 − 2β′
]
, (3.34)

with β′ = λ
1/2
LR and the logarithmic function defined by

L′
i = log

1 + β′ + (2m2
χ̃0

i

−m2
ẽL
−m2

ẽR
)/s

1− β′ + (2m2
χ̃0

i

−m2
ẽL
−m2

ẽR
)/s

. (3.35)

The vanishing of the LL and RR cross sections is obvious fromD-charge conservation.

In the absence of higgsino exchanges only the bino-exchange can drive the LR process.

The evolution of the total cross section from the MSSM to the Dirac limit is illustrated

for the two characteristic processes e−e− → ẽ−L ẽ
−
L and e−e− → ẽ−L ẽ

−
R in the left panel

of figure 6, which demonstrates how the first process is switched off when the Dirac

limit is approached.

(ii) e+e− collisions.

The analysis of the e−e+ processes follows the same path. By introducing a nor-

malized s-channel Z boson propagator DZ = s/(s − m2
Z + imZΓZ) and four bi-

linear charges

Z+
LL = 1 +

s2W − 1/2

c2W
DZ , Z−

LL = 1 +
(s2W − 1/2)2

c2W s2W
DZ , (3.36)

Z+
RR = 1 +

s2W
c2W

DZ , Z−
RR = 1 +

s2W − 1/2

c2W
DZ , (3.37)
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Figure 6. Dependence of the cross sections for same-sign (left) and opposite-sign (right) selectron

production on the Dirac/Majorana control parameter y, for
√
s = 500GeV and SPS1a′ param-

eters [44]. Not shown are the cross sections for e−e± → ẽ−Rẽ
±

R, which, apart from the different

normalization, shows a similar behavior as the cross section for e−e− → ẽ−L ẽ
±

L .

we obtain six non-vanishing helicity amplitudes

A[e−Le
+
R → ẽ−L ẽ

+
L ] = −e2λ1/2

LL sin θ
[
DLL(s, t) + Z−

LL

]
, (3.38)

A[e−Re
+
L → ẽ−L ẽ

+
L ] = −e2λ1/2

LL sin θZ+
LL , (3.39)

A[e−Le
+
R → ẽ−Rẽ

+
R] = −e2λ1/2

RR sin θZ−
RR , (3.40)

A[e−Re
+
L → ẽ−Rẽ

+
R] = −e2λ1/2

RR sin θ
[
DRR(s, t) + Z+

RR

]
, (3.41)

A[e−Le
+
L → ẽ−L ẽ

+
R] = 2e2MLR(s, t) , (3.42)

A[e−Re
+
R → ẽ−Rẽ

+
L ] = −2e2M∗

RL(s, t) . (3.43)

By squaring the helicity amplitudes, the differential cross sections can easily be de-

rived. The squares are summed incoherently if the initial lepton helicities are not

specified experimentally.

As before, the cross sections reduce to the familiar MSSM limit on one side, while

in the Dirac limit, on the other side, the processes with LR/RL initial state helicities

remain allowed, but the LL and RR processes are excluded by D-charge conservation.

The D-charge of the pair ẽ−L ẽ
−
R vanishes, thus allowing production in e−e− collisions, but

the pair ẽ−L ẽ
+
R carries the charge D = 2 so that production of this pair in e−e+ collisions

is forbidden.

The continuous transition from the MSSM to the Dirac limit is illustrated in the right

panel of figure 6, for the two representative total cross sections of e−e+ → ẽ−L ẽ
+
R and

e−e+ → ẽ−L ẽ
+
L .
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3.1.3 Chargino and neutralino production in e+e− collisions

Direct production of chargino and neutralino pairs in e+e− annihilation are ideal laborato-

ries to study the properties of these particles, see e.g. ref. [45, 46]. As will be shown here,

the characteristic differences between the Dirac theory and the MSSM also become evident

in these processes.

The chargino reactions proceed in general through s-channel γ, Z and t-channel ν̃e

exchanges. Focusing on the gaugino sector, doubled in the general hybrid theory compared

to the MSSM, the production cross sections for diagonal and non-diagonal charged gaugino

pairs are given by

dσ

d cos θ
[e+e− → χ̃+

1 χ̃
−
1 ] =

πα2λ
1/2
11

16s4W s

[
[s2 − 4s2Wm2

Zs+ 8s4Wm4
Z ][2− λ11 sin2 θ]

(s−m2
Z)2

+ 2 s22
[s− 2s2Wm2

Z ][1− λ11 + (1− λ1/2
11 cos θ)2]

(s−m2
Z)(η11 − λ1/2

11 cos θ)

+ 2s42
(1− λ1/2

11 cos θ)2

(η11 − λ1/2
11 cos θ)2

]
, (3.44)

dσ

d cos θ
[e+e− → χ̃+

2 χ̃
−
2 ] =

πα2λ
1/2
22

16s4W s

[
[s2 − 4s2Wm2

Zs+ 8s4Wm4
Z ][2− λ22 sin2 θ]

(s−m2
Z)2

+ 2 c22
[s− 2s2Wm2

Z ][1− λ22 + (1− λ1/2
22 cos θ)2]

(s −m2
Z)(η22 − λ1/2

22 cos θ)

+ 2c42
(1− λ1/2

22 cos θ)2

(η22 − λ1/2
22 cos θ)2

]
, (3.45)

dσ

d cos θ
[e+e− → χ̃±

1 χ̃
∓
2 ] =

πα2λ
1/2
12

4s4W s
c22s

2
2

(1 − λ12 cos θ)2 − (m2
χ̃±

1

−m2
χ̃±

2

)2/s2

(η12 − λ1/2
12 cos θ)2

, (3.46)

and the production cross section of a charged higgsino pair by

dσ

d cos θ
[e+e− → χ̃+

3 χ̃
−
3 ] =

πα2λ
1/2
33

16s

(8s4W − 4s2W + 1)(s2W − 1/2)2

c4W s4W

s2(2− λ33 sin2 θ)

(s−m2
Z)2

, (3.47)

with ηij = 1 + (2m2
ν̃ −m2

χ̃±
i

−m2
χ̃±

j

)/s, where we ignore the Z boson width and introduce

the usual Kállen functions λij = λ1/2(1,m2
χ̃±

i

/s,m2
χ̃±

j

/s). As before electroweak symmetry

breaking effects in the chargino mixing matrix have been neglected. The mixing angles c2
and s2, derived from eq. (2.40) by neglecting vI and explicitly given by

c2/s2 =
√

[1± (M ′
2 −M2)/δ2] /2 with δ2 =

√
(M ′

2 −M2)2 + 4(MD
2 )2 , (3.48)

under the assumption M ′
2 + M2 ≤ 0 and M

(D)
2 ≥ 0, only modify the t-channel sneutrino

amplitude, so that they can be determined from the angular distribution of χ̃+
1 χ̃

−
1 produc-

tion in a straightforward manner. The MSSM limit corresponds to (3.44) with c2 = 0 and
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s2 = 1. In the Dirac limit, using the basis (3.1), (3.2) for the two degenerate gauginos,

one finds

dσ

d cos θ
[e+e− → χ̃+

D1χ̃
−
D1] =

πα2λ
1/2
11

16s4W s

[
[s2 − 4s2Wm2

Zs+ 8s4Wm4
Z ][2− λ11 sin2 θ]

(s−m2
Z)2

+2
[s− 2s2Wm2

Z ][2 − 2λ
1/2
11 cos θ − λ11 sin2 θ]

(s−m2
Z)(η11 − λ1/2

11 cos θ)

+2
(1− λ1/2

11 cos θ)2

(η11 − λ1/2
11 cos θ)2

]
, (3.49)

dσ

d cos θ
[e+e− → χ̃+

D2χ̃
−
D2] =

πα2λ
1/2
22

16s4W s

[s2 − 4s2Wm2
Zs+ 8s4Wm4

Z ][2− λ22 sin2 θ]

(s−m2
Z)2

, (3.50)

dσ

d cos θ
[e+e− → χ̃±

D1χ̃
∓
D2] = 0 , (3.51)

while the higgsino production is identical to the MSSM case. It is noteworthy that unlike

the MSSM, three distinct pairs of charginos can be produced in the Dirac limit, but the

cross sections for χ̃+
1 χ̃

−
1 (χ̃+

3 χ̃
−
3 ) production, in the MSSM limit, are identical to those for

χ̃+
D1χ̃

−
D1 (χ̃+

D3χ̃
−
D3) production in the Dirac limit. The latter characteristic is in obvious

contrast to neutralino and gluino production, which are Majorana particles in one limit

and Dirac particles in the other.

As a characteristic example in the neutralino sector we will focus on the production of

wino pairs, e+e− → χ̃2χ̃
(c)
2 in the MSSM and Dirac limits for the comparison of Majorana

and Dirac theories. Neglecting neutralino mixing from electroweak symmetry breaking,

the production mechanisms proceed via exchange of selectrons in the t-channel for Dirac

neutralinos, and both the t, u-channels for Majorana neutralinos. The differential cross

sections as a function of the production angle θ read

MSSM:
dσ

d cos θ
[e+e−→ χ̃0

2χ̃
0
2]=

πα2

32s4W s
λ

3/2
22

η2
2L+(η2

2L−4η2L+2−λ22) cos2 θ+λ22 cos4 θ

(η2
2L−λ22 cos2 θ)2

,

(3.52)

Dirac:
dσ

d cos θ
[e+e− → χ̃0c

D2χ̃
0
D2] =

πα2

32s4W s
λ

1/2
22

(1− λ1/2
22 cos θ)2

(η2L − λ1/2
22 cos θ)2

. (3.53)

As before, λ22 denotes the usual 2-body phase space function and η2L = 1+2(m2
ẽL
−m2

χ̃0
2

)/s.

Two characteristics distinguish the Dirac from the Majorana cross section, see figure 7.

Dirac particles are generated in S-waves near threshold, identical Majorana particles in P -

waves, giving rise to threshold onsets proportional to the χ̃ velocity and its third power,

respectively. In contrast to identical Majorana particle production, Dirac particle pro-

duction is not forward-backward symmetric in the production angle θ. The integrated

asymmetry is substantial, for example AFB ≈ −0.30 for mχ̃0
D2

= 200 GeV, mẽL
= 400 GeV

and
√
s = 500 GeV. In practice, the measurable asymmetry is somewhat reduced by ex-

perimental acceptances and cuts, and the fact that the neutralino cannot be reconstructed
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Figure 7. Left: the total cross sections for pair production of wino-like neutralinos near threshold

in the MSSM and the Dirac theory. Right: dependence of the cross sections on the production

angle θ for
√
s = Ecm = 500GeV. The sparticle masses in both plots are mχ̃0

2

= mχ̃0

D2

= 200GeV

and mẽL
= 400GeV.

fully from its decay products, but it is nevertheless an important tool to discriminate the

Dirac theory from the MSSM. It should be noted finally that the cross section for Dirac pair

production is equal to the sum of the cross sections for the corresponding {kl} diagonal and

off-diagonal Majorana pairs as shown explicitly by meticulous accounting of interference

effects for gluino production in ref. [14, 15].

3.2 Scalar particles

At the Born level the iso-triplet and hyper-singlet sigma fields, σi
I and σ0

Y , couple to

sfermions, charginos/neutralinos and Higgs bosons. The relevant couplings can be derived

from the Lagrangian terms and the scalar potential listed in subsection 2.1. The set of

new Born and effective loop couplings relevant for the phenomenological analyses of the

dominant σ production and decays is displayed in figure 8. Only the generic form of the

couplings are noted explicitly at the vertices.

3.2.1 Sigma decays

Expressed by the effective couplings, gB and gF , in the Lagrangians L = gBsB
∗B and

L = gFφ F̄ [iγ5]F , φ = s, a, the partial decay widths can be derived generically for bosons

B and fermions F as

Γ[s→ BB̄] =
g2
B

16πms
β , (3.54)

Γ[s→ FF̄ ] =
g2
Fms

8π
β3 , (3.55)

Γ[a→ FF̄ ] =
g2
Fma

8π
β , (3.56)
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Figure 8. Diagrams relevant for (a) electroweak σ decays and (b) electroweak σ production. The

γγ couplings to σ include also loops of charginos, W and charged Higgs bosons. [Values of the

couplings denoted at the vertices, are generic.]

with β denoting the velocity of the final state particles. The two standard coefficients β

and β3 correspond to S- and P -wave decays.

In the following analyses we will focus on the gross features of production channels

and decay modes of the novel scalar states so that small block mixing can be neglected.

The mass eigenstates are therefore approximately identified with the unmixed states sY,I ,

aY,I and s±1,2, and the MSSM states h,H,A,H± correspondingly.

For unspecified masses and couplings the following decays are the leading modes of the

particles sY and aY :

sY → hh, hH, HH, AA, H+H−; f̃ f̃∗; χ̃+χ̃−, χ̃0χ̃0(c) , (3.57)

aY → χ̃+χ̃−, χ̃0χ̃0(c) . (3.58)

The pseudoscalar particle aY decays only to (higgsino-type) neutralino or chargino pairs,

with equal probability sufficiently above the threshold region. If 2-body decays are kine-

matically forbidden, 3-body decays to a (higgsino-type) neutralino, (bino-type) neutralino

and Higgs boson, as well as loop-decays to tt̄ pairs and photons are predicted. It should

also be noted that the mass eigenstate proper, A2, may decay through channels opened by

the mixing with the pseudoscalar A Higgs boson. As the couplings are of size O(g′MD
Y )

and/or O(λY µ, λYMY , λYAY ), the ensuing partial widths are typically of electroweak size

above the 2-body threshold regions.

A detailed set of leading decay branching ratios is shown for the hyper-singlet scalar

particle sY in figure 9. The relevant couplings gB and gF for the scalar sY to Higgs

bosons are:

gB [sY hh] = −
√

2λY µn + g′MD
Y c2β + (MY +AY )λY s2β/

√
2 ,

gB [sY hH] = −g′MD
Y s2β + (MY +AY )λY c2β/

√
2 ,

gB [sYHH] = gB [sYAA] = −
√

2λY µn − g′MD
Y c2β − (MY +AY )λY s2β/

√
2 ,

gB [sYH
+H−] = −

√
2λY µc + g′MD

Y c2β − (MY +AY )λY s2β/
√

2 , (3.59)
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Figure 9. Dependence of the branching ratios for sY decays on the mass MsY
. The values of the

relevant SUSY parameters are taken to be tanβ=5, µ = 400GeV, m′
Y = MD

Y = v/2, m′
I = MD

I = v,

AY = AI = 2v, together with ml̃L
= v, mẽR

= 0.95ml̃L
, mq̃L

= 2v, mq̃R
= 0.95mq̃L

, mt̃R
= 0.8mq̃L

,

mt̃L
= Xt = 0.9mq̃L

, mH = mA = m±

H = 2v, mh = 114GeV. For the charginos and neutralinos the

Dirac limit with M
(′)
1,2 = 0 is assumed. Only the leading 2-body decays are shown.

those to supersymmetric particles are:

gB [sY f̃Lf̃
∗
L] = −2g′MD

Y YfL
,

gB [sY f̃Rf̃
∗
R] = 2g′MD

Y YfR
,

gF [sY H̃
+
u H̃

−
d ] = gF [sY χ̃

+
D3χ̃

−
D3] = −λY /

√
2 ,

gF [sY H̃
0
uH̃

0
d ] = −gF [sY χ̃

0
D3χ̃

0c
D3] = λY /

√
2 , (3.60)

and the relevant couplings for the pseudoscalar aY are:

gF [aY H̃
+
u H̃

−
d ] = gF [aY χ̃

+
D3χ̃

−
D3] = λY /

√
2 ,

gF [aY H̃
0
u H̃

0
d ] = −gF [aY χ̃

0
D3χ̃

0c
D3] = −λY /

√
2 . (3.61)

The Dirac chargino and neutralino, χ̃±
D3 and χ̃0

D3, are defined in terms of higgsinos in

eqs. (3.3) and (3.6), respectively. For the specific set of parameters the hyper-singlet scalar

sY decays dominantly to Higgs bosons and sleptons. The decays to gaugino-like neutralinos

are forbidden due to gauge symmetry and the decays to higgsino-like neutralinos and

charginos are kinematically allowed only when the particle is very heavy.
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The iso-triplet scalar states, sI , aI and s±1,2, have been assumed very heavy. Several

features of the iso-triplet scalar interactions determine their potential decay modes. In

parallel to the hypercharge states, they do not couple to quarks and leptons, but they

couple to gauginos, higgsinos and scalar pairs, sfermions, as well as Higgs bosons and/or

gauge bosons. Thus, if kinematically allowed, the gauge/Higgs bosons, sfermions, charginos

and neutralinos constitute the dominant decay channels for the sI , aI and s±1,2 states:

sI → hh, hH, HH, AA, H+H−; f̃ f̃∗; χ̃+χ̃−, χ̃0χ̃0(c) , (3.62)

aI → χ̃+χ̃−, χ̃0χ̃0(c) , (3.63)

s±1,2 → H±h, H±H, H±A; f̃ f̃ ′
∗
; χ̃+χ̃0/χ̃−χ̃0c , (3.64)

with partial widths of the electroweak scale. In addition, the small couplings to elec-

troweak gauge bosons, developed by the small iso-triplet vev vI , lead to the two-boson

decay sI →W+W−, albeit at reduced rate. Furthermore, the iso-triplet scalar states may

decay to gluons, photons, electroweak bosons, quarks and leptons through sfermion and

chargino/neutralino loops.

3.2.2 Stop and stau decays to sigma particles

Sigma fields carry positive R-parity, but they couple preferentially to gaugino and

squark/slepton pairs. Assuming, as before, that they are heavier than charginos and

neutralinos, this leaves us with heavy sfermion decays as a possible source for neutral

sigma particles:

f̃2 → f̃1 + sY . (3.65)

While the sI channel is likely too heavy to be open, the pseudoscalars aY,I do not couple.

Since the mass splitting between the two stops is typically large, let us examine the

process t̃2 → t̃1 + sY first. The partial width for this decay mode is given by

Γt̃2
=

g2
t̃

16πmt̃2

λ1/2(1,m2
t̃1
/m2

t̃2
,M2

sY
/m2

t̃2
) , (3.66)

with λ denoting the usual phase space function defined in (3.26) and the coupling

gt̃ =
5

6
√

2
g′MD

Y sin 2θt̃ . (3.67)

Even for large values of the stop mixing angle θt̃, Γt̃ is typically less than 1GeV for sparticle

masses of a few 100 GeV, compared to a typical t̃2 total width of a few tens of GeV. Thus the

branching ratio for t̃2 → t̃1+sY can amount to a few per-cent at most, so that experimental

discovery of this decay channel will be very challenging.

In the stau system, the decay mode τ̃2 → τ̃1+sY only becomes viable for large values of

the mass splitting mτ̃2−mτ̃1 and of tan β. In such a scenario, however, one typically obtains

sizable branching ratios of order 10%. This can be explained by the larger hypercharges

of the staus compared to the stops, leading to a similar expression for the partial width as

above but with gt̃ replaced by

gτ̃ =
3

2
√

2
g′MD

Y sin 2θτ̃ . (3.68)
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While heavy staus will be swamped by background at hadron colliders, the process τ̃2 →
τ̃1 +sY could be a possible discovery mode for the sY scalar at high-energy lepton colliders.

3.2.3 Production of sigma particles at LHC

The neutral hyper-singlet and iso-triplet scalar particles sY and sI can, in principle, be

generated singly in gluon fusion processes at the LHC, analogous to Higgs bosons:

pp → gg → sY,I . (3.69)

Since the pseudoscalar states aY,I do not couple to gluons through squark loops, their single

formation channel is shut. The adjoint sY,I scalar coupling to the gluons are mediated by

squark triangles, theD-terms providing the interactions of the squarks with the sigma fields.

The partonic fusion cross section for sY production, with the Breit-Wigner function in

units of 1/M2
sY

factored off,

σ̂[gg → sY ] =
π2

8MsY

Γ(sY → gg) , (3.70)

can be expressed in terms of the partial width for sY → gg,

Γ[sY → gg] =
αY α

2
s

8π2

(MD
a )2

MsY

∣∣∣
∑

[YLτLf(τL)− YRτRf(τR)]
∣∣∣
2
. (3.71)

with αY = g′2/4π. The standard triangular function f(τ) is defined by

f(τ)=
[
sin−1(1/

√
τ)
]2

if τ ≥ 1, and − 1

4

[
ln

(
1 +
√

1− τ
1−
√

1− τ

)
− iπ

]2

if 0 ≤ τ < 1, (3.72)

with τL,R = 4M2
q̃L,R

/M2
sY

and YL,R being the hypercharges of the L and R-squarks. It

should be noted that the hypercharges add up to zero for complete generations, but not in-

dividually for up- and down-type states for which the L/R hypercharge difference amounts

to ∓1. While for mass-degenerate complete generations the sum of the form factors in

the partial width vanishes, the cancelation is lifted for stop states, in particular, with the

non-zero difference enhanced by the different L/R hypercharges. The pp cross section is

finally found by convoluting the parton cross section with the gg luminosity [47],

σ[pp→ sY ] =
π2

8s

Γ(sY → gg)

MsY

∫ 1

M2
sY

/s

dx

x
g(x;M2

sY
) g(τ/x;M2

sY
) , (3.73)

in the usual notation. The cross section for sY production is shown in figure 10 as a

function of the sY mass.

An analogous expression holds for sI production in pp collisions. However, since the

mass of sI needs to be very large due to the ρ-parameter constraint, the actual size of the

fusion cross section will be significantly below 1 fb.

Other production channels are offered by Higgs-strahlung and electroweak boson fu-

sion. Pairs of electroweak gauge bosons couple to the lightest Higgs boson h and the

iso-vector sI . All these couplings involve either the electroweak vev v or the iso-scalar vev
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Figure 10. Cross sections for single sY production through gg fusion in pp collisions at LHC

(
√
s = 14TeV). The MSSM benchmark point SPS1a′, ref. [44], is adopted for the numerical analysis.

vI . Rotating the mass eigenstates si to the current eigenstates h etc, the cross sections

for Higgs-strahlung and vector-boson fusion can easily be expressed by the corresponding

cross section for the production of the SM Higgs boson with equivalent mass:

σ[pp→W →Wsi] =
(
OS1i + 4

vI

v
OS4i

)2
σ[pp→W →WHSM ] , (3.74)

σ[pp → Z → Zsi] = (OS1i)
2 σ[pp→ Z → ZHSM ] , (3.75)

with OS denoting the 4 × 4 rotation matrix diagonalizing the scalar mass matrix squared

M2
S in eq. (2.70) as OT

SM2
SOS = diag(M2

S1
, . . . ,M2

S4
). Cross sections for vector boson

fusion are related in the same way.

Numerical analyses taking into account the experimental constraint on the ρ parameter

and the mass bound on the lightest neutral scalar lead to mixing coefficients of 10−2 and

less so that these channels are presumably of little value in practice.

3.2.4 Charged adjoint scalar pair-production in e+e− and γγ collisions

(i) e+e− collisions.

Resonance production of sigma particles in e+e− collisions is strongly suppressed as

the production amplitude scales with the electron mass. Since the quantum numbers

Q, I3, Y of the neutral sigma states σ0
I,Y all vanish, these particles cannot be pair-

produced in e+e− collisions. However, production channels open up for diagonal
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Figure 11. The cross sections for charged s±1,2 pair production in e+e− collisions at TeV energies.

The charged scalar masses are assumed to be Ms̃
±

1

= 0.5 TeV and Ms̃
±

2

= 1.0TeV. For comparison,

the cross section for charged Higgs pair production is shown with its mass MH± = 0.5TeV.

charged scalar pairs s±1,2 defined in eq. (2.80),

e+e− → s+n s
−
n [n = 1, 2] , (3.76)

through s-channel γ, Z exchanges. With effective charges

gL∗[s
±
n ] = 1− s

2
W − 1/2

s2W

s

s−m2
Z

≈ 2, gR∗[s
±
n ]=1− s

s−m2
Z

≈ 0, (3.77)

gL∗[H
±] = 1+

(s2W − 1/2)2

c2W s2W

s

s−m2
Z

≈ 4

3
, gR∗[H

±]=1+
s2W − 1/2

c2W

s

s−m2
Z

≈ 2

3
,

with n=1, 2 for L and R-chiral electron pairs coupled to the s±1,2 pairs and equivalently

to the H± pair, the cross section reads:

σ =
πα2

3s

g2
L∗ + g2

R∗
2

β3 , (3.78)

where s is the total c.m. energy squared and β the velocity of the particles s±1,2 and

H±; s2W = sin2 θW denotes the electroweak mixing parameter. The size of the three

production cross sections, identical in form, is illustrated in figure 11 for two different

mass values Ms±
1

,H± = 0.5 TeV and Ms±
2

= 1.0 TeV.

(ii) γγ collisions.

Excellent instruments for searching for heavy scalar/pseudoscalar particles and study-

ing their properties are γγ colliders, see ref. [48]. About 80% of the incoming electron
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energy can be converted to a high-energy photon by Compton back-scattering of laser

light, with the spectrum peaking at the maximal energy by choosing proper helicities.

Depending on the nature of the neutral scalars/pseudoscalars, their couplings to the

two photons is mediated by charged W -bosons, charginos, and charged scalars and

Higgs bosons. As before, the formation cross sections for the states φ = sY , sI and

aY , aI can be expressed by the γγ widths of the particles and the γγ luminosity:

〈σ(γγ → φ)〉 = 8π2 Γ(φ→ γγ)

M3
φ

τφ
dLγγ

τφ

= σ0(γγ → φ) τφ
dLγγ

τφ
, (3.79)

with τφ = M2
φ/s. For qualitative estimates the luminosity function τφdLγγ/dτφ can

be approximated by unity after splitting off the overall e+e− luminosity [49].

The partial γγ widths are parameterized by couplings and loop functions,

Γ(s/a→ γγ) =
α2

64π3
Ms/a

∣∣∣∣∣
∑

i

Nci
e2i g

s/a
i A

s/a
i

∣∣∣∣∣

2

. (3.80)

The factor Nci
denotes the color factor of the loop line, while the couplings g

s/a
i are

expressed by

gsY

H̃±
D

= λY /
√

2 , gsY

f̃L,R
= ±YfL,R

MD
Y /MsY

,

gsY

H± =
(√

2λY µc − g′MD
Y c2β + λY (MY +AY )s2β/

√
2
)
/MsY

, (3.81)

gsI

W± = 2g2vI/MsI
, gsI

H̃±
D

= λI/
√

2 , gsI

W̃±
1,2

= ∓g , gsI

f̃L,R
= ±gIf

3M
D
I /MsI

,

gsI

H± = −
(√

2λIµc − gMD
I c2β + λI(MI −AI)s2β/

√
2
)
/MsI

, (3.82)

for the hyper-singlet scalar sY and the iso-triplet scalar sI , and

gaY

H̃±
D

= −λY /
√

2 ,

gaI

H̃±
D

= λI/
√

2 , gaI

W̃±
1,2

= ±g , (3.83)

for the hyper-singlet pseudoscalar aY . The loop functions A
s/a
i , identical in form

for the particles of a given spin, include the standard triangular function f(τ) in

eq. (3.72) as

As
0 = 1− τf(τ), As

1/2 =−2
√
τ [1+(1− τ)f(τ)] , As

1 =2/τ+3+3(2 − τ)f(τ), (3.84)

for the scalar s, and

Aa
1/2 = −2

√
τf(τ) , (3.85)

for the pseudoscalar a, where the subscripts 0, 1/2 and 1 stand for spin-0, spin-1/2

and spin-1 intermediate particles.
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Figure 12. The reduced production cross sections σ0(γγ → φ) for φ = sY,I and aY,I . The SPS1a′

parameter set [44] for the (s)particle masses, couplings and mixing parameters are adopted for the

numerical analysis.

Adopting the SPS1a′ parameters in the SUSY sector [44], the reduced γγ cross section

σ0(γγ → φ) for φ = sY,I and aY,I , defined in eq. (3.79), amounts to order 1 fb as shown

in figure 12 so that for an overall luminosity of several hundred fb−1 a sizable sample

of neutral scalars sY,I and pseudoscalars aY,I can be generated in γγ collisions.

4 Summary

In minimal supersymmetric extensions of the Standard Model the fermionic partners of

color and electroweak gauge bosons are self-conjugate Majorana fields. Their properties

are characteristically distinct from Dirac fields. To investigate this point quantitatively, we

have adopted an N=1/N=2 hybrid supersymmetry model in which the gauge and Higgs

sectors are extended to N=2 while the matter sector remains restricted to N=1. This

extension is wide enough to allow the joining of Majorana to Dirac fields while keeping

the matter sector chiral. By properly varying gaugino mass matrices, the original MSSM

Majorana theory can be transformed smoothly to the Dirac theory.

The transition from N=1 to N=2 expands the gauge sector by a matter supermultiplet

composed of a new gaugino and adjoint scalar multiplet.

(i) The doubling of the gauginos in N=2 gives rise to new particles along the path from

the MSSM to the Dirac theory:
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– 8 Majorana gluinos → 16 Majorana gluinos → 8 Dirac gluinos

– 2 charginos → 3 charginos

– 4 Majorana neutralinos → 6 Majorana neutralinos → 3 Dirac neutralinos

(ii) The adjoint scalars expand also the number of states originally present in the MSSM

scalar sector; the new SU(2)I×U(1)Y scalars mix with the Higgs fields in the elec-

troweak sector:

– 8 octet complex scalar gluons, generally termed sgluons

– 1 pseudoscalar state → 3 pseudoscalar states

– 2 scalar states → 4 scalar states

– 1 charged scalar [±] pair → 3 charged scalar [±] pairs

The scale of the new degrees of freedom is strongly restricted by the experimentally

allowed deviation of the ρ parameter from unity. Since the new electroweak SU(2)I and

U(1)Y scalars acquire vacuum expectation values, the SU(2)I iso-triplet vev must be small,

and the iso-triplet scalar mass parameter is driven into the TeV region. The U(1)Y hyper-

singlet vev, on the other hand, is not restricted by the ρ parameter and the hyper-singlet

scalar mass may still be characterized by a fraction of TeV.

The new degrees of freedom are coupled to the original MSSM fields rather weakly at

the order gv/M̃ . This allows us to solve the complicated chargino, neutralino and scalar

systems analytically in a systematic expansion, i.e. mass eigenvalues and mixings. This

leads in a straightforward way to the prediction of production channels and decay modes.

The Majorana or Dirac character of gluinos and neutralinos can nicely be discriminated

in sfermion-sfermion production. While allowed by Majorana exchanges, equal L- or R-

sfermion pair production is forbidden in Dirac theories, i.e. q̃Lq̃L and ẽ−L ẽ
−
L production

in pp and e−e− collisions. In addition, cascade decays involving Majorana neutralinos

give rise to charge-symmetric lepton final states, while Dirac neutralinos predict charge

sequences as governed by the conservation of Dirac charges. Total cross sections and

angular distributions in pair production of charginos and neutralinos in e+e− collisions

depend on the Majorana or Dirac nature of the underlying gaugino theory.

A variety of production channels are predicted for the scalar states, depending on the

nature of the particles:

− Scalar and pseudoscalar sgluons can be produced in pairs in pp collisions, and scalars

singly via gluon-gluon fusion.

− The U(1)Y scalar state can be generated in pp collisions via gluon fusion or in stop

or stau decays, but not the corresponding pseudoscalar partner.

− γγ collisions offer production channels for all neutral scalar and pseudoscalar, iso-

scalar and iso-vector states.

− The charged iso-vector states can be generated pairwise in e+e− collisions.
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Thus in contrast to the color sector it is quite difficult to cover experimentally the

electroweak hyper-singlet and iso-triplet states, the main reason being the expected heavy

masses of the new scalar and pseudoscalar particles. Nevertheless, given the joint potential

of hadron and lepton colliders, all the new scalar and pseudoscalar particles introduced

by the N=1/N=2 supersymmetric hybrid theory can in principle be accessed. Only the

basics of the processes have been investigated in this report, while detailed analyses of final

states under realistic detector conditions are far beyond the scope of this study.

On the other hand, the suppression of reaction channels and cascade decays in gaug-

ino Dirac theories as opposed to Majorana theories for color and electroweak gauginos

should provide unique signatures for the Majorana or Dirac nature of gluinos and elec-

troweak gauginos.
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A Analytic analysis of the singular value decomposition of a 2×2 matrix

For any n× n complex matrix, there exist two unitary matrices UL and UR such that

UT
LMUR =MD = diag(m1,m2, . . . ,mn) , (A.1)

where the diagonal elements mk are real and non-negative. This procedure is the singular

value decomposition (SVD) of the matrix M. If the matrix M is symmetric, there exists

a single unitary matrix U such that UTMU =MD with UL = UR = U , called the Takagi

diagonalization of the symmetric matrixM.

The singular value decomposition of a 2× 2 real matrix can be performed analytically.

The result is more involved than the standard diagonalization of a 2× 2 symmetric matrix
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by a single orthogonal matrix. The 2× 2 matrix be defined as:

M =

(
a c

c̃ b

)
, (A.2)

where at least c or c̃ be non-zero. Generally we can parameterize two 2×2 unitary matrices

UL and UR in eq. (A.1) by

UL = OLP =

(
cos θL ǫ

L
sin θL

−ǫ
L

sin θL cos θL

) (
α 0

0 β

)
, (A.3)

UR = ORP =

(
cos θR ǫ

R
sin θR

−ǫ
R

sin θR cos θR

) (
α 0

0 β

)
, (A.4)

where 0 ≤ θL,R ≤ π/2, ǫL,R = ±1 and α, β = 1, i. The two phase matrices, which map

the singular values onto non-negative values, can be identified without loss of generality,

as only their product is fixed.

If two singular valuesm1,2 of the matrixM are non-degenerate, they can be determined

by taking the positive square root of the non-negative eigenvalues m2
1,2 of the orthogonal

matrix MTM:

m1,2 =
1

2
|σ+ ∓ σ−| with σ± =

√
(a± b)2 + (c∓ c̃)2 . (A.5)

Two eigenvalues become identical only if a = ±b and c = ∓c̃. The smaller eigenvalue, m1,

vanishes if the invariant determinant vanishes, detM = ab− cc̃ = 0.

Explicitly performing the diagonalization of MTM by UR and MMT by UL, the

rotation angles and signs can be computed:

cos θL,R =

√
σ+σ− + b2 − a2 ± c̃2 ∓ c2

2σ+σ−
, sin θL,R =

√
σ+σ− − b2 + a2 ∓ c̃2 ± c2

2σ+σ−
, (A.6)

ǫ
L

= sign(ac̃+ bc) , ǫ
R

= sign(ac+ bc̃) . (A.7)

In the final step of the computation the phase parameters α and β can be determined by

inserting eqs. (A.6) and (A.7) into eq. (A.1):

α =
√

sign [ a(σ+σ− + b2 − a2)− a(c2 + c̃2)− 2bcc̃ ] , (A.8)

β =
√

sign [ b(σ+σ− + b2 − a2) + b(c2 + c̃2) + 2acc̃ ] , (A.9)

up to an arbitrary overall sign of both parameters. If the smaller singular value m1

vanishes for det(M) = 0, the parameter α is undefined while all the other angles are

uniquely determined.

In the case a = b = 0 and c̃ = c, two singular values are degenerate with m1,2 = |c|,
and the unitary matrices UL and UR reduce to a single unitary matrix U :

U =

(
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

)
·
(

1 0

0 i

)
=

(
1/
√

2 −i/
√

2

1/
√

2 i/
√

2

)
, (A.10)

corresponding to a π/4 rotation matrix and a phase matrix, which turns the second eigen-

value positive.
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B The small-mixing approximation in the singular value decomposition

In this second appendix, we provide details of the singular value decomposition of the mass

matrix4 in the small mixing approximation, in which the coupling by two off-diagonal

matrix blocks is weak and can be treated perturbatively. For mathematical clarity, we

present the solution for a general (N + M) × (N + M) matrix in which the N × N and

M ×M submatrices are coupled weakly so that their mixing is small:

MN+M =

(
MN XNM

X̃T
NM MM

)
. (B.1)

To obtain the corresponding physical masses, we must perform a singular value decompo-

sition of MN+M :5

LT
N+MMN+M RN+M = diag(m1′ , m2′ , . . . , mN ′+M ′) , mk′ ≥ 0 , (B.2)

where LN+M and RN+M are unitary.6 The non-negative diagonal elements mk′ are called

the singular values of MN+M , which are defined as the non-negative square roots of the

eigenvalues ofM†
N+MMN+M or, equivalently, MN+MM†

N+M .

In eq. (B.1),MN andMM are N×N and M×M symmetric submatrices with singular

values assumed to be generally larger than the matrix elements of the N ×M rectangular

matrices, XNM and X̃NM . In this case, one can treat the off-diagonal parts XNM and

X̃NM as a perturbation as long as there are no accidental near-degeneracies between the

singular values of MN andMM , respectively.

(1) In the first step, we separately perform a singular value decomposition of MN

and MM :

MD
N = LT

NMNRN = diag(m1′ , . . . mN ′) , (B.3)

MD
M = LT

MMMRM = diag(mN ′+1′ , . . . ,mN ′+M ′) , (B.4)

where the diagonal elements mk′ are real and non-negative. The ordering of the

diagonal elements may conveniently be chosen according to footnote 5.

Step (1) results in a partial singular value decomposition of MN+M :

MN+M ≡
(
LT

N O

OT LT
M

)(
MN XNM

X̃T
NM MM

)(
RN O

OT RM

)
=

(
MD

N LT
NXNMRM

LT
MX̃

T
NMRN MD

M

)

≡
(
MD

N YNM

Ỹ T
NM M

D
M

)
, (B.5)

4The formalism applies also to general complex matrices [50].
5In eq. (B.2), we use primed subscripts to indicate that the corresponding states are continuously con-

nected to the states of the unperturbed block matrix, diag(M
D

N , M
D

M ), where the diagonal matrices M
D

N

and M
D

M are defined in eqs. (B.3) and (B.4).
6When N and M are used in subscripts of matrices, they refer to the dimension of the corresponding

square matrices. For rectangular matrices, two subscripts will be used.
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where O is an N × M matrix of zeros. The upper left and lower right blocks of

MN+M are diagonal with real non-negative entries, but the upper right and lower

left off-diagonal blocks are non-zero.

(2) The ensuing (N + M) × (N + M) matrix, MN+M , can be subsequently block-

diagonalized by performing an (N +M)× (N +M) singular value decomposition of

MN+M in an approximate expansion. Since the elements of the off-diagonal blocks

in MN+M are small compared to the diagonal elements mk′ , we may treat YNM

and ỸNM as a perturbation. More precisely, YNM and ỸNM can be treated as a

perturbation if
∣∣∣∣
(YNM )i′j′

mi′ −mj′

∣∣∣∣≪ 1 and

∣∣∣∣∣
(ỸNM )i′j′

mi′ −mj′

∣∣∣∣∣≪ 1 , (B.6)

for all choices of i′ = 1′, . . . , N ′ and j′ = N ′ + 1′ . . . , N ′ +M ′. These conditions, as

can generally be anticipated, will naturally emerge from the formalism below.

The perturbative block-diagonalization is accomplished by introducing two (N+M)×
(N +M) unitary matrices:

LN+M ≃
(
1N×N − 1

2ΩLΩ†
L ΩL

−Ω†
L 1M×M − 1

2Ω†
LΩL

)
, (B.7)

RN+M ≃
(
1N×N − 1

2ΩRΩ†
R ΩR

−Ω†
R 1M×M − 1

2Ω†
RΩR

)
, (B.8)

where ΩL and ΩR are N ×M complex matrices that vanish when XNM and X̃NM

vanish and hence, like XNM and X̃NM , are perturbatively small. Straightforward
matrix multiplication then yields:

L
T
N+M

 
M

D

N YNM

eY T
NM M

D

M

!
RN+M ≈

 
M

′ D
N YNM − Ω∗

LM
D

M + M
D

NΩR

eY T
NM −M

D

MΩ†
R + ΩT

L M
D

N M
′ D
M

!
,

(B.9)

where

M′D
N ≡ MD

N +Ω∗
LM

D
MΩ†

R−Ω∗
LỸ

T
NM − YNMΩ†

R−
1

2
Ω∗

LΩT
LM

D
N−

1

2
MD

NΩRΩ†
R , (B.10)

M′D
M ≡ MD

M +ΩT
LM

D
NΩR+ΩT

LYNM + Ỹ T
NMΩR−

1

2
ΩT

LΩ∗
LM

D
M−

1

2
MD

MΩ†
RΩR , (B.11)

The block-diagonalization is achieved by demanding that

YNM = Ω∗
LM

D
M −M

D
NΩR , , (B.12)

ỸNM = Ω∗
RM

D
M −M

D
NΩL . (B.13)

Inserting these relations in eqs. (B.10) and (B.11) and eliminating YNM and ỸNM ,

we obtain:

M′D
N = MD

N +
1

2
MD

NΩRΩ†
R +

1

2
Ω∗

LΩT
LM

D
N − Ω∗

LM
D
MΩ†

R , (B.14)

M′D
M = MD

M +
1

2
MD

MΩ†
RΩR +

1

2
ΩT

LΩ∗
LM

D
M − ΩT

LM
D
NΩR . (B.15)
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The results above simplify somewhat when we recall thatMD
N andMD

M are diagonal

matrices [see eq. (B.3) and (B.4)]. Combining the matrix elements of eqs. (B.12)

and (B.13) yields two equations for the elements of ΩL and ΩR:

ΩLi′j′ ≡
1

m2
j′ −m2

i′

[
mi′ ỸNMi′j′ + Y ∗

NMi′j′mj′

]
, (B.16)

ΩRi′j′ ≡
1

m2
j′ −m2

i′

[
mi′YNMi′j′ + Ỹ ∗

NMi′j′mj′

]
, (B.17)

with i′ = 1′, . . . , N ′ and j′ = N ′+1′ . . . , N ′+M ′. Since the elements ΩLi′j′ and ΩRi′j′

are the small parameters of the perturbation expansion, the perturbativity conditions

previously given in eq. (B.6) arise naturally.

At this stage, the result of the perturbative block diagonalization is:

LT
N+M

(
MD

N YNM

Ỹ T
NM M

D
M

)
RN+M =

(
M′D

N O

O M′D
M

)
, (B.18)

up to third order in Ω in the off-diagonal blocks. The O(Ω3) terms can be neglected

consistently. Also the re-diagonalization of the two diagonal blocks can be omitted.

Though the off-diagonal elements of M′D
N and M′D

M are of O(Ω2), they only effect,

in the singular value decomposition, the corresponding diagonal elements at O(Ω4),

which we neglect in this analysis. However, the diagonal elements ofM′D
N andM′D

M

also contain terms of O(Ω2), which generate second-order shifts of the diagonal ele-

ments relative to the mk′ obtained at step (1). These corrections are easily obtained

from the diagonal matrix elements of eqs. (B.14) and (B.15) after making use of

eq. (B.16):

mi′ ≃mi′+
1

2

N ′+M ′∑

j′=N ′+1′

{
mi′(|YNMi′j′ |2 + |ỸNMi′j′ |2)

m2
i′ −m2

j′
+2

mj′YNMi′j′ỸNMi′j′

m2
i′ −m2

j′

}
, (B.19)

mj′ ≃ mj′ −
1

2

N ′∑

i′=1′

{
mj′(|YNMi′j′ |2 + |ỸNMi′j′ |2)

m2
i′ −m2

j′
+ 2

mi′YNMi′j′ỸNMi′j′

m2
i′ −m2

j′

}
, (B.20)

with i′ = 1′, .., N ′ and j′ = N ′ + 1′, .., N ′ +M ′. The shifted mass parameters corre-

spond to the physical mass values if the original mass matrix is real.

(3) However, for complex mass matrices the shifted mass parameters would in general

be complex. These phases can be removed by substituting L → LP and R → RP
with properly chosen phases

P = diag(e−iα1′ , . . . , e−iαN′+M′ ) . (B.21)

Starting from eqs. (B.19) and (B.20), one can evaluate P to second order in the

perturbation ΩL,R. In particular, for ǫ1,2 ≪ a, we have a+ ǫ1 + iǫ2 ≃ (a+ ǫ1)e
iǫ2/a.

From this result, we easily derive the second-order expressions for the physical masses

by just substituting

Y Ỹ → ℜe(Y Ỹ ) , (B.22)

– 43 –



J
H
E
P
0
8
(
2
0
1
0
)
0
2
5

while the phases are given by the imaginary part of Y Ỹ ,

αi′ ≃
1

2

N ′+M ′∑

j′=N ′+1′

mj′

mi′(m
2
i′ −m2

j′)
ℑm

(
YNMi′j′ỸNMi′j′

)
, (B.23)

αj′ ≃ −
1

2

N ′∑

i′=1′

mi′

mj′(m
2
i′ −m2

j′)
ℑm

(
YNMi′j′ỸNMi′j′

)
, (B.24)

with i′ = 1′, .., N ′ and j′ = N ′ + 1′, .., N ′ +M ′.

This completes the perturbative singular value decomposition of the mass matrix forN -

dimensional and M -dimensional subsystems of fermions weakly coupled by an off-diagonal

perturbation. Thus the physical masses and the elements of the mixing matrices can be

derived from the parameters of the N ×N and M ×M subsystems and the weak couplings

XNM , X̃NM of the subsystems [rotated to YNM , ỸNM finally].

As noted in eq. (B.6), the perturbation theory breaks down if any mass mi′ from the

N -dimensional subsystem is nearly degenerate with a corresponding mass mj′ from the

M -dimensional subsystem (if the corresponding residues do not vanish). In this case the

formalism developed in ref. [35] can be adopted to calculate the physical masses also in the

cross-over zones analytically.

C Chargino, neutralino and scalar masses and mixing elements by block-

diagonalization

When the weak couplings among the gaugino and higgsino sectors are switched on the mass

eigenvalues and mixing parameters are calculated using the block-diagonalization method

adopting the formulae in the preceding appendices.

Charginos. Using the short-hand notation mχ̃±
i

= m±
i , the chargino mass eigenvalues

are given approximately by

m±
1 =m±

1 +
v2

2((m±
1 )2 − µ2

c)

{
m±

1

[
(λIvuc+ + gvdǫ+s+/

√
2)2 + (λIvdc− − gvuǫ−s−/

√
2)2
]

−2µcα
2
c(λIvuc+ + gvdǫ+s+/

√
2)(λIvdc− − gvuǫ−s−/

√
2)
}
, (C.1)

m±
2 =m±

2 +
v2

2((m±
2 )2 − µ2

c)

{
m±

2

[
(λIvuǫ+s+ − gvdc+/

√
2)2 + (λIvdǫ−s− + gvuc−/

√
2)2
]

−2µcβ
2
c (λIvuǫ+s+ − gvdc+/

√
2)(λIvdǫ−s− + gvuc−/

√
2)
}
, (C.2)

m±
3 = µc −

v2

2((m±
1 )2 − µ2

c)

{
µc

[
(λIvuc+ + gvdǫ+s+/

√
2)2 + (λIvdc− − gvuǫ−s−/

√
2)2
]

−2m±
1 α

2
c(λIvuc+ + gvdǫ+s+/

√
2)(λIvdc− − gvuǫ−s−/

√
2)
}

− v2

2((m±
2 )2 − µ2)

{
µc

[
(λIvuǫ+s+ − gvdc+/

√
2)2 + (λIvdǫ−s− + gvuc−/

√
2)2
]

−2m±
2 β

2
c (λIvuǫ+s+ − gvdc+/

√
2)(λIvdǫ−s− − gvuc−/

√
2)
}
, (C.3)
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Figure 13. Evolution of the approximate versus exact chargino masses as a function of the control

parameter y from the MSSM doublet (y = −1) to the Dirac (y = 0) triplet along the path PC in

eq. (2.42) for m = 200GeV and tanβ = 5. The singularity in the cross-over zone can be removed

by using the specific formalism for degenerate states as developed in ref. [35].

where the signs ǫ± and the phases α± and β± are defined by

ǫ± = sign[(M ′
2 +M2)M

D
2 ± g(M ′

2 −M2)vI ] , (C.4)

αc =
√

sign[M ′
2(σ+σ− −M ′2

2 +M2
2 )− 2(M ′

2 +M2)(MD
2 )2 − 2g2(M ′

2 −M2)vI ] , (C.5)

βc =
√

sign[M2(σ+σ− −M ′2
2 +M2

2 ) + 2(M ′
2 +M2)(M

D
2 )2 − 2g2(M ′

2 −M2)vI ] , (C.6)

and the abbreviations c± = cos θ± and s± = sin θ±, and c2β = cos 2β, s2β = sin 2β have

been adopted.

The gaugino/higgsino mixing elements read in this approximation

U±11 = αcc± , U±12 = βcǫ±s± , U±13 = αcc±Ω±13 + βcǫ±s±Ω±23 ,

U±21 = −αcǫ±s± , U±22 = βcc± , U±23 = −αcǫ±s±Ω±13 + βcc±Ω±23 ,

U±31 = −Ω∗
±13 , U±32 = −Ω∗

±23 , U±33 = 1 ,

(C.7)

The matrix elements of the rectangular Ω± matrices, which block-diagonalize the mass

matrix are as follows

Ω+13 =
[
m±

1 αc(λIvdc−−gvuǫ−s−/
√

2)−µcα
∗
c(λIvuc++gvdǫ+s+/

√
2)
]
/(µ2

c−(m±
1 )2) ,

Ω+23 =
[
m±

2 βc(λIvdǫ−s−+gvuc−/
√

2)−µcβ
∗
c (λIvuǫ+s+−gvdc+/

√
2)
]
/(µ2

c−(m±
2 )2),

(C.8)
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and

Ω−13 =−
[
m±

1 αc(λIvuc++gvdǫ+s+/
√

2)−µcα
∗
c(λIvdc−−gvuǫ−s−/

√
2)
]
/(µ2

c−(m±
1 )2),

Ω−23 =−
[
m±

2 βc(λIvuǫ+s+−gvdc+/
√

2)−µcβ
∗
c (λIvdǫ−s−+gvuc−/

√
2)
]
/(µ2

c−(m±
2 )2),

(C.9)

where the signs ǫ± and the phase factors αc and βc are defined in eqs. (C.4) to (C.6).

As a numerical check for the analytic expansion we show in figure 13 the evolution of

the approximate versus exact chargino masses as a function of the control parameter y from

the MSSM doublet (y = −1) to the Dirac (y = 0) triplet along the path PC in eq. (2.42)

for the same parameter set used in figure 1. The descending order of the physical masses in

the figure reflects, in obvious notation, the pattern w′ ≫ h > w in the MSSM limit. When

the states w′ and h become degenerate near y = −0.6, the standard analytical expansion

cannot be applied any more. In this situation the mass spectrum must either be obtained

numerically or analytical expansions tailored specifically for cross-over phenomena, see

ref. [35]. On the other hand, the ordering h > w′ > w is kept until the Dirac limit is

reached. The level-crossing phenomenon near y = −0.2 is due to the mixing between the

gaugino and higgsino sectors but not due to the w′-w cross-over, as m±
2 > m±

1 along the

entire path.

Neutralinos. With mχ̃0
i

= m0
i the neutralino mass eigenvalues are given by

bino sector :

m0
1 = m0

1 −
1

4(m0
1 + µ)

[
g′v−s1/

√
2− λY v+c1

]2
− 1

4(m0
1 − µ)

[
g′v+s1/

√
2 + λY v−c1

]2
,

(C.10)

m0
2 = m0

2 −
1

4(m0
2 − µ)

[
g′v−c1/

√
2 + λY v+s1

]2
− 1

4(m0
2 + µ)

[
g′v+c1/

√
2− λY v−s1

]2
,

(C.11)

wino sector :

m0
3 = m0

3 −
1

4(m0
3 + µ)

[
g v−s2/

√
2 + λI v+c2

]2
− 1

4(m0
3 − µ)

[
g v+s2/

√
2− λI v−c2

]2
,

(C.12)

m0
4 = m0

4 −
1

4(m0
4 − µ)

[
g v+c2/

√
2− λI v+s2

]2
− 1

4(m0
4 + µ)

[
g v+c2/

√
2 + λI v−s2

]2
,

(C.13)

higgsino sector :

m0
5 = µn +

1

4(m0
1 + µ)

[
g′v−s1/

√
2− λY v+c1

]2
− 1

4(m0
2 − µ)

[
g′v−c1/

√
2 + λY v+s1

]2

+
1

4(m3 + µ)

[
gv+s2/

√
2 + λIv+c2

]2
− 1

4(m4 − µ)

[
gv−c2/

√
2 − λIv+s2

]2
,

(C.14)
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m0
6 = µn −

1

4(m0
1 − µ)

[
g′v+s1/

√
2 + λY v−c1

]2
+

1

4(m0
2 + µ)

[
g′v+c1/

√
2− λY v−s1

]2

− 1

4(m0
3 − µ)

[
gv+

uds2/
√

2− λIv
−
udc2

]2
+

1

4(m0
4 + µ)

[
gv+c2/

√
2 + λI v−s2

]2
,

(C.15)

where v± = vu ± vd.

The final 6× 6 diagonalization matrix reads approximately:

UN = UN

(
14×4 Ω4×2

−Ω†
4×2 12×2

)
, (C.16)

where the elements of the rectangular matrix Ω4×2 are as follows:

bino sector :

Ω15 =
−i

2(m0
1 + µ)

[
g′v−s1/

√
2− λY v+c1

]
, Ω16 =

1

2(m0
1 − µ)

[
g′v+s1/

√
2 + λY v−c1

]
,

Ω25 =
1

2(m0
2 − µ)

[
g′v−c1/

√
2− λY v−s1

]
, Ω26 =

i

2(m0
2 + µ)

[
g′v+c1/

√
2− λY v−s1

]
, (C.17)

and

wino sector :

Ω35 =
i

2(m0
3 + µ)

[
gv−s2/

√
2 + λIv+c2

]
, Ω36 =

1

2(m0
3 − µ)

[
gv+s2/

√
2− λIv−c2

]
,

Ω45 =
−1

2(m0
4 − µ)

[
gv−c2/

√
2− λIv+s2

]
, Ω46 =

i

2(m0
4 + µ)

[
gv+c2/

√
2 + λIv−s2

]
, (C.18)

with abbreviations as before.

Scalar/higgs particles. The block-diagonalization of the Higgs/scalar mass matrix

when the weak coupling between the Higgs and the sigma fields is included gives the

following results.

(i) Neutral pseudoscalars.

The physical pseudoscalar masses are given approximately by

M2
A1

= M2
A −

(MY −AY )2

2(m̃′2
Y −M2

A)
λ2

Y v
2 − (MI −AI)

2

2(m̃′2
I −M2

A)
λ2

Iv
2 , (C.19)

M2
A2

= m̃′2
Y +

(MY −AY )2

2(m̃′2
Y −M2

A)
λ2

Y v
2 , (C.20)

M2
A3

= m̃′2
I +

(MI −AI)
2

2(m̃′2
I −M2

A)
λ2

Iv
2 , (C.21)

up to the order of v2/m2
I,Y , while the physical pseudoscalar states are mixed according

to the relation OT
P M2

P OP = diag(M2
A1
,M2

A2
,M2

A3
) with the mixing elements given

approximately by

OP11 = OP22 = OP33 = 1 , OP12 = −OP21 = −(MY −AY )λY v√
2(m̃′2

Y −M2
A)
,

OP13 = −OP31 = − (MI −AI)λIv√
2(m̃′2

I −M2
A)
, OP23 = −OP32 =

λY λIv
2

2(m̃′2
I − m̃′2

Y )
, (C.22)
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up to the order of v/mI,Y .

(ii) Neutral scalars.

The block diagonalization is described by the 2× 2 matrix ΩS with its elements

ΩS13 = −(2m̃2
Y − λ2

Y v
2)vY

(m̃2
Y −m2

Z)v
, ΩS23 =

∆Y

m̃2
Y −M2

A

,

ΩS14 = −(2m̃2
I − λ2

I v
2)vI

(m̃2
I −m2

Z)v
, ΩS24 =

∆I

m̃2
I −M2

A

, (C.23)

up to the order of v/MA, v/mY,I . Performing these subsequent transformations gives

rise to the four physical masses

M2
S1

=m2
Z +δHs2β +ǫH−

(δHc2β +ǫH/tβ)2

M2
A −m2

Z

−(2m̃2
Y − λ2

Y v
2)2v2

Y

(m̃2
Y −m2

Z)v2
− (2m̃2

I − λ2
Iv

2)2v2
I

(m̃2
I −m2

Z)v2
, (C.24)

M2
S2

=M2
A−δHs2β+ǫH/t

2
β +

(δHc2β +ǫH/tβ)2

M2
A −m2

Z

− ∆2
Y

m̃2
Y −M2

A

− ∆2
I

m̃2
I −M2

A

, (C.25)

M2
S3

= m̃2
Y +

(2m̃2
Y − λ2

Y v
2)2v2

Y

(m̃2
Y −m2

Z)v2
+

∆2
Y

m̃2
Y −M2

A

, (C.26)

M2
S4

= m̃2
I +

(2m̃2
I − λ2

Iv
2)2v2

I

(m̃2
I −m2

Z)v2
+

∆2
I

m̃2
I −M2

A

, (C.27)

up to the order of v2/M2
A, v

2/m2
Y,I , and the 4×4 mixing matrixOS , connecting current

with mass eigenstates as OT
SM2

SOS = diag(M2
S1
, · · · ,M2

S4
), with its elements:

OS11 =OS22 =OS33 =OS44 =1, OS12 =−OS21 =sh, OS34 =−OS43 =0,

OS13 =−OS31 =−(2m̃2
Y − λ2

Y v
2)vY

(m̃2
Y −m2

Z)v
, OS23 =−O32 =

∆Y

m̃2
Y −M2

A

,

OS14 =−OS41 =−(2m̃2
I − λ2

Iv
2) vI

(m̃2
I −m2

Z)v
, OS24 =−O42 =

∆I

m̃2
I −M2

A

, (C.28)

up to the order of v/MA, v/mY,I with the abbreviation sh = sin θh.

(iii) Charged scalars.

In the weak coupling limit the charged H± and s±1,2 states are mixed by the 3 × 3

matrix O±
S with components

O±
S11 = O±

S22 = O±
S33 = 1 , O±

S12 = −O±
S21 = ∆1±/(m̃

′2
I −M2

A) ,

O±
S13 = −O±

S31 = ∆2±/(m̃
2
I −M2

A) , O±
S23 = −O±

S32 = 0 , (C.29)

up to the order of v/MA, v/mY,I to generate the physical charged scalar masses

M2
S±

1

= M̃2
H± −∆2

1±/(m̃
′2
I −M2

A)−∆2
2±/(m̃

2
I −M2

A) , (C.30)

M2
S±

2

= m̃′2
I + g2v2

I c
2
2β/4(m̃

2
I − m̃′2

I ) + ∆2
1±/(m̃

′2
I −M2

A) , (C.31)

M2
S±

3

= ρm̃2
Ic

2
2β/4(m̃

2
I − m̃′2

I ) + ∆2
2±/(m̃

2
I −M2

A) , (C.32)

– 48 –



J
H
E
P
0
8
(
2
0
1
0
)
0
2
5

up to the order of v2/M2
A, v

2/m2
Y,I .
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