Open Charm and Charmonium Production at the LHCb Experiment

Érica Polycarpo

LAPE/Instituto de Física Universidade Federal do Rio de Janeiro On behalf of the LHCb Collaboration

XVIII International Workshop on Deep-Inelastic Scattering (DIS) and Related Subjects

Outline

Open Charm

Charmonium

< A >

A 30 M

- 2) Open Charm
- 3 The Muon Identification in LHCb
- 4) Charmonium
- 5 Final Remarks

LHCb Experiment

Large Hadron Collider beauty & charm experiment for CPV and rare decays measurements

E. Polycarpo (LAPE/IF-UFRJ)

Charm and Charmonium at LHCb

DIS 2010 4 / 29

LHCb Status

- First Run in 2009 at $\sqrt{s} = 900 \text{ GeV}$
 - 6.8±0.1 μb⁻¹ accumulated (more details on D. Moran's talk today)
 - Detector and trigger commissioning, alignment, calibration
 - π^0 , K_s , ϕ and Λ signals (details given on M. Schiller's talk yesterday)
- 2010 Run at $\sqrt{s} = 7$ TeV
 - Very successfull start !
 - \sim 176 μb^{-1} accumulated up to last Friday
 - VELO fully closed (8 mm from the beam)
 - First K^{*}, Ξ , *D* and J/Ψ evidences
 - and perhaps already our first fully reconstructed B !

イヨト イヨト イヨト

2 Open Charm

3) The Muon Identification in LHCb

4) Charmonium

5 Final Remarks

E. Polycarpo (LAPE/IF-UFRJ)

Open Charm Production

Analysis focused on prompt charm production

- high cross-section ($\sigma_{c\bar{c}} \sim 7\sigma_{b\bar{b}}$)
- trigger optimization for charm and beauty
- potentially large backgrounds

E. Polycarpo (LAPE/IF-UFRJ)

DIS 2010 7 / 29

Open Charm

Charm Physics in LHCb: many interesting topics

- → Ratios of D mesons rates in early data $\begin{pmatrix} \# D^0 \to K^+ \pi^- \\ \# D^0 \to K^- \pi^+ \end{pmatrix}$ and $\frac{\# D^+ \to K^- \pi^+ \pi^+}{\# D^- \to K^+ \pi^- \pi^-}$
- \rightarrow Measurement of $\sigma_{c\bar{c}}$ and/or $\sigma_{c\bar{c}}/\sigma_{b\bar{b}}$
- $\rightarrow D^0 \overline{D^0}$ mixing (evidences reported by BaBar, Belle and CDF¹)
- SM predictions for CPV asymmetries in charm are small; NP effects enhancements can be easier detected
 - CPV using $D^0 \rightarrow K\!K, K\pi, \pi\pi$ decays
 - Direct CPV in $D \rightarrow hhh$ (Dalitz Plot search for anisotropy² and full amplitude analysis)
- $\twoheadrightarrow\,$ Rare D decays ($D \to \mu^+ \mu^-)$ and semileptonic decays
- → Expect to reconstruct 4×10^6 prompt $D^* \rightarrow D(KK)\pi$ in 100 pb^{-1} (BaBar reported $\sim 3 \times 10^5)^3$

We will soon have the world largest sample of D mesons!

¹BaBar: Phys.Rev.Lett 98(2007)211802; Belle: Phys.Rev.Lett. 98(2007)211803; CDF: Phys.Rev.Lett. 100(2008)121802 ²DOI:10.1103/PhysRevD.80.096006.

³PRD.80.071103

E. Polycarpo (LAPE/IF-UFRJ)

DIS 2010 8 / 29

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Triggering D mesons

trigger is a key ingredient

- retuned for low luminosity (lower thresholds)
- → prompt charm yields improved by a factor 4 compared to trigger settings optimised for B physics ($\epsilon_{L0xHLT1}$ for prompt $D^* \sim 70\%$)
- → results shown here: L0 only with even lower thresholds (Rate~ 100 Hz)

A 30 b

D mesons reconstruction

- selection based on flight distance, vertex quality, impact parameter and particle ID
- → no evidence in 2009 Collisions at $\sqrt{s} = 900$ GeV (due to the low statistics)
- → first signal peaks seen in 2010 Collisions at $\sqrt{s} = 7000$ GeV

masses and widths compatible with expectation selection not optimized (corresponds to $\sim 110~\mu b^{-1}$).

E. Polycarpo (LAPE/IF-UFRJ)

2 Open Charm

3 The Muon Identification in LHCb

4 Charmonium

5 Final Remarks

Muon Identification: the basic strategy

- Look for hits in the MS within Fields of Interest (FOI) around the track extrapolation
- Select muon candidate requiring a minimum number of stations with hits within FOI
- Build likelihood for Muon and Non-muon hypotheses

Both local and global alignment are important,

E. Polycarpo (LAPE/IF-UFRJ)

Charm and Charmonium at LHCb

Fields of Interest

- Look for hits in the MS within Fields of Interest (FOI) around the track extrapolation
- Select muon candidate requiring a minimum number of stations with hits within FOI
- Build likelihood for Muon and Non-muon hypotheses

FOI: function of p and Muon System position

Loosest Muon Candidate requirement

- Look for hits in the MS within Fields of Interest (FOI) around the track extrapolation
- Select muon candidate requiring a minimum number of stations with hits within FOI
- Build likelihood for Muon and Non-muon hypotheses

p range	Stations
3-6 GeV/c	2 out of M2-M4
>6 GeV/c	3 out M2-M5

minimum requirement, robust against possible innefficiencies

E. Polycarpo (LAPE/IF-UFRJ)

・ 同 ト ・ ヨ ト ・ ヨ

Likelihoods

- Look for hits in the MS within Fields of Interest (FOI) around the track extrapolation
- Select muon candidate requiring a minimum number of stations with hits within FOI
- Build likelihood for Muon and Non-muon hypotheses

Calibration and Monitoring using Data

Calibration of FOI and muon likelihood & monitoring of efficiency

- \rightarrow probe muons in a pure sample of J/Ψ
- two tracks in the MS acceptance making a good vertex
- \rightarrow invariant mass within J/Ψ mass
- one tag muon selected using MS information
- one probe muon compatible with MIP in Ecal/Hcal
- Calibration of non-muon likelihood & monitoring of misidentification rate
 - \rightarrow protons and pions from $\Lambda \rightarrow p\pi$
 - \rightarrow pions from K_s
 - \implies pions and kaons from $D \rightarrow K\pi$

・ 同 ト ・ ヨ ト ・ ヨ ト …

First Look at 2009 Data

Good Data/MC agreement for the spectra

E. Polycarpo (LAPE/IF-UFRJ)

Charm and Charmonium at LHCb

DIS 2010 17 / 29

э

Image: A math

< ∃ >

2 Open Charm

3) The Muon Identification in LHCb

Oharmonium

5 Final Remarks

E. Polycarpo (LAPE/IF-UFRJ)

Charmonium Production

- $\rightarrow J/\Psi$ production cross-section and polarization measurement
 - ✓ Color Octect Mechanism can reproduce well the cross-section and P_T spectrum measured at Tevatron
 - but predicts predominance of transverse polarization in disagreement with CDF data⁴
 - higher order corrections to Color Singlet Model⁵ have better agreement with data, but still room for improvements
 - LHCb provides η coverage where theoretical predictions are less accurate and can help in the comprehension of the underlying production mechanism of charmonium states

- → similar measurements with $\Psi(2S)$, production of χ_c , h_c
 - → J/Ψ is also essential for detector and PID calibration

E. Polycarpo (LAPE/IF-UFRJ)

Charm and Charmonium at LHCb

DIS 2010 19 / 29

⁴Phys.Rev.Lett.79 (1997)572,578;Phys.Rev.Lett.(2007)132001

⁵ Phys. Rev. Lett. 98 (2007) 252002 [arXiv:hep-ph/0703113] & JHEP 0802 (2008) 102 [arXiv:0712.2770 [hep-ph]]. 📒 🔗 🤇

$J/\Psi ightarrow \mu^+ \mu^-$ Reconstruction

- → Long tracks matching hits in the Muon System
- \Rightarrow 0.7GeV/c < p_T < 7GeV/c
- → 3 < η < 5</p>
- ightarrow good quality $\mu^+\mu^-$ vertex
- → From MC studies at 14 TeV:
 - ✗ ∼11 MeV/c² mass resolution

```
✗ S/B∼18
```


Prompt and Secondary $J/\Psi \rightarrow \mu^+\mu^-$ Separation

- → based on pseudo-propertime $t_z = \frac{dz}{p_z} \times m_{J/\Psi}$
- prompt component: peak at 0
- → secondary component: exponential decay
- → wrong PV association: long tail (got from a different event PV)

combined mass and pseudo-proper time fit: cross-sections in

 $\pmb{\times} \ \mathbf{4} \ \eta \ \mathbf{bins} \ \mathbf{3} < \eta < \mathbf{5}$

• □ ▶ • □ ▶ • □ ▶

x 7 p_T bins $p_T < 7$ GeV/c

E. Polycarpo (LAPE/IF-UFRJ)

Charm and Charmonium at LHCb

DIS 2010 21 / 29

Monte Carlo example of cross-section measurement

- $\sigma(\text{prompt J/\psi}) \ge \text{Br}(J/\psi \rightarrow \mu^+ \mu^-) = 2597 \pm 12 \text{ (stat)} \pm 24 \text{ (eff) nb}$ [Input: 2667 nb]
- $\sigma(J/\psi \text{ from b}) \ge Br(J/\psi \rightarrow \mu^+ \mu^-) = 161 \pm 4 \text{ (stat)} \pm 2 \text{ (eff) nb}$ [Input: 153 nb]
- → expect ~ 3×10^6 reconstructed J/Ψ for 5 pb^{-1} at $\sqrt{s} = 7$ TeV:
- maximum 10% statistical error in each bin
- systematic uncertainties up to 25% when ignoring polarization
- ightarrow polarization will be measured in bins of η and p_T with full angular analysis **E** -9

E. Polycarpo (LAPE/IF-UFRJ)

Charm and Charmonium at LHCb

DIS 2010 22 / 29

2009 Data: J/Psi hunting

 \rightarrow loose selection based on vertex quality, muon ID and high p_T

ightarrow no signal evidence in 2009 data (6.8 \pm 0.1 μb^{-1})

3.5

2010 Data: J/Psi hunting

Di-muon invariant mass

- \rightarrow selection based on vertex quality, muon ID, p and p_T
- \rightarrow corresponding to $\sim 160 \mu b^{-1}$

Charmonium

Our first $B^+ \rightarrow J/\Psi K^+$ candidate

LHCb 2010 Preliminary

E. Polycarpo (LAPE/IF-UFRJ)

Charm and Charmonium at LHCb

イロト イポト イヨト イヨト

Charmonium

Our first $B^+ \rightarrow J/\Psi K^+$ candidate: zoom in y-x view

LHCb 2010 Preliminary

E. Polycarpo (LAPE/IF-UFRJ)

Charm and Charmonium at LHCb

DIS 2010 26 / 29

Charmonium

Our first $B^+ \rightarrow J/\Psi K^+$ candidate: zoom in y-z view

E. Polycarpo (LAPE/IF-UFRJ)

Charm and Charmonium at LHCb

DIS 2010 27 / 29

2 Open Charm

3 The Muon Identification in LHCb

Summary and final comments

- many interesting physics topics with open charm
- \rightarrow LHCb will measure J/Ψ cross-section and polarization
- similar studies for Ψ(2S) and measurements of other charmonium states (χ_c, h_c(1P),...)
- D and J/Ψ decays also important for detector and particle ID software calibration, MC tuning, ...
- → we have just started hard and interesting work
- → first evidences of D and J/Ψ produced at p p collisions at $\sqrt{s} = 7$ TeV in the LHCb experiment !

DIS 2010 29 / 29