$B_d \rightarrow K^{*0} \mu^+ \mu^-$ as a lab for discovering new physics at LHCb

Hugh Skottowe, University of Cambridge on behalf of the LHCb collaboration

Lake Louise Winter Institute 18 February 2010 Introduction: $B_d \rightarrow K^{*0} \mu^+ \mu^-$

- Flavour changing neutral current: $b \rightarrow s$ transition
- Proceeds via loop and box diagrams
- Has been observed, with [PDG09]: BR = $(9.8 \pm 2.1) \times 10^{-7}$
- Decay described by three angles θ_L,θ_K,φ
 & μμ invariant mass squared q² (or s)
- Many interesting observables for new physics
- e.g. forward-backward asymmetry of muons, *A*_{FB}
- $A_{\rm FB}$ formed from helicity angle $\theta_{\rm L}$ and varies with q^2

Introduction cont.

- A_{FB} can be predicted precisely in Standard Model
- Hadronic uncertainties cancel at zero-crossing point, s_0 , of A_{FB}
- Best theoretical control in $1 < q^2 < 6 \, {\rm GeV^2} \label{eq:eq:expansion}$
- Use model-independent Operator Product Expansion
- Dominated by Wilson coefficients
 C₇, C₉, C₁₀ in Standard Model

Status

- BaBar, Belle and CDF have each observed $\mathcal{O}(100)$ events
- Measurements of branching ratio and $A_{FB}(q^2)$

Note: opposite sign convention to previous slide for $A_{\rm FB}$

Event trigger and selection

Hardware ('Level 0') trigger:

- Cuts on single μp_{T} , or $(p_{T,\mu 1} + p_{T,\mu 2})$
- \sim 93% efficiency

Software ('High Level') trigger:

- Cuts on Impact Parameter & *p*_T of single μ, or IP & vertex displacement of μ+track
- \sim 95% efficiency

Offline event selection:

- Cut on Fisher discriminant
 - Relies mostly on B_d vertex χ^2 , p_T , flight distance, Kaon ID
- Veto possible mis-ID backgrounds from $B_s \rightarrow \phi \mu \mu$ and $B_d \rightarrow (X \rightarrow Y \pi)(J/\psi \rightarrow \mu \mu)$
- Expected event yields / 2 fb^{-1} :
 - $S = 6200^{+1700}_{-1500}$
 - $B = 1550 \pm 310$

Acceptance correction

- Acceptance can vary with θ_L, and therefore shift measured value of A_{FB}
- Can be caused by *p*,*p*_T cuts on both muons, detector geometry, or reconstruction
- Have avoided such cuts in trigger and selection
- Largest effect is from LHCb geometry: requirement for muons to reach muon detectors is equivalent to *p* > 3 GeV cut on both muons
- Acceptance correction using $B_d \rightarrow J/\psi K^{*0}$ control channel also under investigation
- Correction is under control

 $B_d \rightarrow K^* \mu \mu$ as a lab for discovering new physics at LHCb (10/16)

• Both methods perform similarly: $\sigma(s_0) = 0.5 \text{ GeV}^2$ after 2 fb^{-1}

LHCb's sensitivity to A_{FB} : what can we do with early data?

3.5+3.5 TeV running recently announced, for first 18-24 months
 ⇒ bb production cross-section reduced by ~2 from nominal 7+7 TeV

LHCb's sensitivity to A_{FB} : what can we do with early data?

3.5+3.5 TeV running recently announced, for first 18-24 months
 ⇒ bb production cross-section reduced by ~2 from nominal 7+7 TeV

LHCb's sensitivity to A_{FB} : what can we do with early data?

3.5+3.5 TeV running recently announced, for first 18-24 months
 ⇒ bb production cross-section reduced by ~2 from nominal 7+7 TeV

18 February 2010

Hugh Skottowe

 $B_d \rightarrow K^* \mu \mu$ as a lab for discovering new physics at LHCb

(15/16)

- $B_d \rightarrow K^{*0} \mu \mu$ has properties such as A_{FB} that are precisely predicted in Standard Model and other models
- Decay is very sensitive to new physics
- LHCb is ideally suited to study of this decay
- Yields will be comparable to B factories & CDF with 0.1 fb⁻¹
 ⇒ Will quickly achieve precise measurements of A_{FB}
- Many further interesting observables will be measured precisely with $> 2 \text{ fb}^{-1}$

18 February 2010

What can LHCb do with early data?

• CDF: dark green open circles

(18/16)

What can LHCb do with more data?

- Access other observables
- Angular projections e.g. longitudinal polarization F_L (1-(3)
- Full angular fit
 - Need $> 2 \text{ fb}^{-1}$ for fits to converge
 - More observables
 - e.g. transverse asymmetry $A_{\rm T}^{(2)}$ (4),5
 - sensitive to sign and magnitude of \mathcal{C}_7'

18 February 2010

Hugh Skottowe

 $B_d \rightarrow K^* \mu \mu$ as a lab for discovering new physics at LHCb (19/16)

Other observables: $A_{\rm T}^{(3)}$, $A_{\rm T}^{(4)}$

Green: SM prediction Blue: LHCb 10 fb^{-1} sensitivity in a SUSY scenario

JHEP 11 (2008) 032 / 0807.2589

Acceptance correction with control channel

• $B_d \rightarrow K^{*0}(J/\psi \rightarrow \mu\mu)$ control channel has $q = m_{\mu\mu}$ constrained: $q = m_{J/\psi}$ \Rightarrow different kinematics

