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.. Introduction: Bd→K∗ μ+ μ−
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Flavour changing neutral current: b→s transition

Proceeds via loop and box diagrams

Has been observed, with [PDG]:
BR = (.± .)× −

Decay described by three angles θL,θK,φ
& μμ invariant mass squared q (or s)

Many interesting observables for
new physics

e.g. forward-backward asymmetry
of muons, AFB

AFB formed from helicity angle θL
and varies with q
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AFB can be predicted
precisely in Standard Model
Hadronic uncertainties cancel at
zero-crossing point, s, of AFB

Best theoretical control in
 < q < GeV

Use model-independent
Operator Product Expansion
Dominated by Wilson coefficients
𝒞, 𝒞, 𝒞 in Standard Model
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.. Status
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.. Event trigger and selection
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Cuts on single μ pT, or

(
pT,μ + pT,μ

)
∼% efficiency

Software (‘High Level’) trigger:
Cuts on Impact Parameter & pT of single μ,
or IP & vertex displacement of μ+track
∼% efficiency

Offline event selection:
Cut on Fisher discriminant

– Relies mostly on Bd vertex 𝜒, pT,
flight distance, Kaon ID

Veto possible mis-ID backgrounds from
Bs→φμμ and Bd → (X→Yπ)(J/ψ→μμ)
Expected event yields /  fb−:

S = +
−

B = ±
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.. Acceptance correction
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effect of
pT > MeV

cut on both muons

effect of
LHCb geometry
and reconstruction

Acceptance can vary with θL, and
therefore shift measured value of AFB

Can be caused by p,pT cuts on both muons,
detector geometry, or reconstruction

Have avoided such cuts in trigger
and selection

Largest effect is from LHCb geometry:
requirement for muons to reach
muon detectors is equivalent to
p > GeV cut on both muons

Acceptance correction using Bd→J/ψK∗

control channel also under investigation

Correction is under control
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.. Measuring AFB
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6.2 Correcting for Background using Sidebands

It is important to understand the effect of the background. Firstly, the addition of background with no
forward-backward preference can dilute the magnitude of the asymmetry. The denominator in Eq. 5
will increase while the numerator will not change, causing a smaller asymmetry. This dilution will not
change the zero-crossing point, s0. However, the LHCb experiment aims to measure the full AFB(s)
and not only the zero-crossing point. Background that have some intrinsic forward backward asym-
metry (such as cascade decays) can fake a forward-backward asymmetry, biasing the zero-crossing
point measurement.

A correction for the background in the B0 mass region is applied by constraining the background
under the peak by using events from the sidebands. The procedure is described below.

To be conservative, the correction for the background described by scenario I and II is modelled by a
linear Chebychev polynomial in s, while they were generated with 2nd order polynomials. In the peak
region the signal and background PDFs are added. First, a fit to the s-distribution of the sidebands
is performed, for the forward and backward events separately, see Fig 17(a) and (d). Subsequently
the background parameters are fixed. Second, the s-distribution of the peak region is fitted with a 3rd

order Chebychev polynomial for the signal events, keeping the background term fixed, see Fig 17(b).
Due to the constraint from the background in the sidebands, the signal part of the PDF is recovered,
as shown in Fig 17(c). The same procedure is followed for the backward events, see Fig 17(d-f).
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Figure 17 (a) Background from the B0 mass sidebands is used to determine the shape and size of
the background in the peak region. (b) The signal plus background (S+B) in the peak are fitted. (c)
This enables a correction (C) to be made which is close to the original signal (S). Bottom plots (d), (e)
and (f) depict the same information for backward events.
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change the zero-crossing point, s0. However, the LHCb experiment aims to measure the full AFB(s)
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A correction for the background in the B0 mass region is applied by constraining the background
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To be conservative, the correction for the background described by scenario I and II is modelled by a
linear Chebychev polynomial in s, while they were generated with 2nd order polynomials. In the peak
region the signal and background PDFs are added. First, a fit to the s-distribution of the sidebands
is performed, for the forward and backward events separately, see Fig 17(a) and (d). Subsequently
the background parameters are fixed. Second, the s-distribution of the peak region is fitted with a 3rd

order Chebychev polynomial for the signal events, keeping the background term fixed, see Fig 17(b).
Due to the constraint from the background in the sidebands, the signal part of the PDF is recovered,
as shown in Fig 17(c). The same procedure is followed for the backward events, see Fig 17(d-f).
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Figure 17 (a) Background from the B0 mass sidebands is used to determine the shape and size of
the background in the peak region. (b) The signal plus background (S+B) in the peak are fitted. (c)
This enables a correction (C) to be made which is close to the original signal (S). Bottom plots (d), (e)
and (f) depict the same information for backward events.
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The contribution of the background in the peak region is obtained from the fit of the B mass distribu-
tion. The resulting expectation of AFB(s) is shown in Fig. 18 for all three models of the s-distribution
of the background events. The left plots show the AFB(s) before background correction and the right
plots show the AFB(s) after correcting for the background contribution. A dilution of the asymmetry
is observed when the background is added, but is properly corrected for after applying the described
procedure. Moreover, the different s-distribution for forward and backward background events of
scenario III, even results in the expected shift of the zero-crossing point s0 (see Fig. 18(e)), this is in-
deed the worst scenario. The shifted s0 is also properly corrected for, see Fig. 18(f). The sensitivity on
the determination of the zero-crossing point s0 after background correction amounts to

σs0 = 0.48GeV2, (11)

where the background scenario II is assumed.
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Figure 18 The AFB(s) is shown before (left) and after (right) background correction for the three
background scenarios I (a-b), II (c-d) and III (e-f).
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.. LHCb’s sensitivity to AFB: what can we do with early data?
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.. LHCb’s sensitivity to AFB: what can we do with early data?
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.. LHCb’s sensitivity to AFB: what can we do with early data?
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.. What can LHCb do with more data?
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Figure 5: The distribution in the 3 angular projections of the Bd → K∗0µ+µ− decay using
SM values integrated over the range 1 < q2 < 6GeV2/c4 with data points corresponding
to 2 fb−1. The solid line is the theoretical distribution of the total, and the dashed line
indicates the background contribution.

• The signal is assumed to have a Gaussian distribution in mB with a width of
14MeV/c2 in a window of mB ± 50MeV/c2 and a Breit-Wigner in mKπ with width
48MeV/c2 in a window of mK∗0 ± 100MeV/c2.

• The background is assumed flat in all variables. This means effectively that all
background is treated as combinatorial, which we from [7] know is not quite true.
In particular any non-resonant Bd → K+π−µ+µ− is not modelled.

• The Standard Model scenario of no CP violation is assumed and Bd → K∗0µ+µ−

and its charge conjugate are considered simultaneously.

Numbers for the yield and background levels in 2 fb−1 are taken from the selection
study in [7] to be 4032 signal events and 1168 background events in the interval of q2

from 4m2
µ to 9GeV2/c4.

A toy Monte Carlo model incorporating these assumptions is created within the
RooFit framework. For a given bin in q2 the number of signal events is calculated
as

ns = N0

∫ qmax

qmin

dΓ
dq2

dq2

∫ 9GeV2/c4

4m2
µ

dΓ
dq2

dq2
, (24)

where N0 = 4032 is the number of signal events expected in 2 fb−1 with q2 < 9GeV2/c4

according to the full simulation study [7] and dΓ
dq2

is based on the same calculation as was

used for [4]. Within the bin the values for AFB, FL, and A
(2)
T are calculated by using an

average within the bin with the appropriate weighting according to the differential cross
section. All values used are from an SM prediction with the assumptions given in [4].

5 Results

The toy Monte Carlo model used for describing the experimental results was used for
a large number pseudo experiments with subsequent fits for all free parameters. In the
fit AFB, FL, A

(2)
T , and AIm are parameters of interest. AIm carries information about
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Figure 5: The distribution in the 3 angular projections of the Bd → K∗0µ+µ− decay using
SM values integrated over the range 1 < q2 < 6GeV2/c4 with data points corresponding
to 2 fb−1. The solid line is the theoretical distribution of the total, and the dashed line
indicates the background contribution.

• The signal is assumed to have a Gaussian distribution in mB with a width of
14MeV/c2 in a window of mB ± 50MeV/c2 and a Breit-Wigner in mKπ with width
48MeV/c2 in a window of mK∗0 ± 100MeV/c2.

• The background is assumed flat in all variables. This means effectively that all
background is treated as combinatorial, which we from [7] know is not quite true.
In particular any non-resonant Bd → K+π−µ+µ− is not modelled.

• The Standard Model scenario of no CP violation is assumed and Bd → K∗0µ+µ−

and its charge conjugate are considered simultaneously.

Numbers for the yield and background levels in 2 fb−1 are taken from the selection
study in [7] to be 4032 signal events and 1168 background events in the interval of q2

from 4m2
µ to 9GeV2/c4.

A toy Monte Carlo model incorporating these assumptions is created within the
RooFit framework. For a given bin in q2 the number of signal events is calculated
as

ns = N0

∫ qmax

qmin

dΓ
dq2

dq2

∫ 9GeV2/c4

4m2
µ

dΓ
dq2

dq2
, (24)

where N0 = 4032 is the number of signal events expected in 2 fb−1 with q2 < 9GeV2/c4

according to the full simulation study [7] and dΓ
dq2

is based on the same calculation as was

used for [4]. Within the bin the values for AFB, FL, and A
(2)
T are calculated by using an

average within the bin with the appropriate weighting according to the differential cross
section. All values used are from an SM prediction with the assumptions given in [4].

5 Results

The toy Monte Carlo model used for describing the experimental results was used for
a large number pseudo experiments with subsequent fits for all free parameters. In the
fit AFB, FL, A

(2)
T , and AIm are parameters of interest. AIm carries information about
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.. Summary

Bd→K∗μμ has properties such as AFB that are precisely predicted
in Standard Model and other models

Decay is very sensitive to new physics

LHCb is ideally suited to study of this decay

Yields will be comparable to B factories & CDF with . fb−

⇒Will quickly achieve precise measurements of AFB

Many further interesting observables will be measured
precisely with>  fb−

 February  Hugh Skottowe Bd→K∗μμ as a lab for discovering new physics at LHCb (/)
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.. What can LHCb do with early data?

zv
zv

zv

x

1.5σ SM exclusion
√

s = 7 TeV
σbb = 219 µb

p p

p p

1

LHCb:
∫ℒdt=.fb−⇒ evts

CDF: dark green open circles

 February  Hugh Skottowe Bd→K∗μμ as a lab for discovering new physics at LHCb (/)



.. What can LHCb do with more data?
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.. Other observables: A()
T , A()
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.. Acceptance correction with control channel

Bd→K∗(J/ψ→μμ) control channel has q = mμμ constrained: q = mJ/ψ

⇒ different kinematics

Bd→K∗μμ Bd→K∗(J/ψ→μμ)
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