Heavy Quarkonia Studies at LHCb

Jibo HE (for the LHCb collaboration)

LAL, Orsay

ReteQuarkonii Thematic Day @ IPN (Orsay), 09/02/2010

- The LHC and LHCb experiment
- Charmonium
 - J/ψ production
 - $\psi(2S)$, χ_c , $h_c(1P)$, X(3872) and $Z(4430)^{\pm}$ studies
- 3 B_c[±]
- Bottomonium

The Large Hadron Collider (LHC)

- The LHC experiments
 - ALICE: dedicated heavy-ion experiment
 - ATLAS and CMS: general purpose detectors
 - LHCb: dedicated b-physics experiment
 - LHCf and TOTEM Forward production of neutral particles & Total Cross Section, Elastic Scattering and Diffraction Dissociation
- The LHC status
 - ▶ 23/11/2009, first pp collision at \sqrt{s} =900 GeV
 - ▶ 30/11/2009, 2 circulating p-beams, each at 1.18 TeV

The b production at the LHC

• Correlated production of b and \bar{b} , $\sigma_{b\bar{b}} \sim 500~\mu b$

• Different momenta of the participating partons: $x_1 \neq x_2$

ightharpoonup b, \bar{b} boosted and in same "cone"

➤ ⇒ Forward detector (NOT a fixed-target experiment!)

The pileup and the LHCb luminosity

Pileup

- ► Inelastic pp interactions in a bunch crossing are Poisson-distributed with mean $n_{pp} = \frac{\sigma_{pp}^{\rm inel} \cdot L}{v_{\rm bx}}$ $\sigma_{pp}^{\rm inel} = 80$ mb for $\sqrt{s} = 14$ TeV; L - instantaneous luminosity; $v_{\rm bx}$ - bunch crossing rate
- ATLAS/CMS
 - Nominal $L = 10^{34} \text{cm}^{-2} \text{s}^{-1}$, $n_{pp} = 25$
- LHCb
 - Low luminosity: $2 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$ by not focusing the beam as much as ATLAS/CMS, $n_{pp} = 0.7$
 - $\sim 10^{12} \ b\bar{b} \ {\rm per \ year} \ (10^7 \ {\rm s})$
- Startup phase
 - ► Lower \sqrt{s} , low L and very low v_{bx} ⇒ significant pileup
 - similar L_{int} to each experiment

The LHCb detector

Geometry acceptance

(15 - 300) mrad; $1.9 < \eta < 4.9$

Vertex Locator

Warm magnet, \sim 4 Tm.

Magnet

Tracking system (TT, T1-T3) $\Delta p/p$: 0.35%-0.55%, σ_m :12-25 MeV/ c^2

 $\sigma_{\mathrm{PV,x/v}} \sim$ 10 μ m, $\sigma_{\mathrm{PV,z}} \sim$ 60 μ m; $\sigma_{L} \sim$ 250 μ m

The LHCb detector (cont.)

RICH1 & RICH2

$$\varepsilon(extbf{K}
ightarrow extbf{K}) \sim$$
 95%, mis-ID rate $(\pi
ightarrow extbf{K}) \sim$ 5%

Muon system (M1-M5)

$$\varepsilon(\mu
ightarrow \mu) \sim$$
 94%, mis-ID rate $(\pi
ightarrow \mu) \sim$ 3%

ECAL

$$\sigma_{E}/E=$$
 10%/ $\sqrt{E}\oplus$ 1% (E in GeV)

(HCAL

$$\sigma_E/E = (69 \pm 5)\%/\sqrt{E} \oplus (9 \pm 2)\% \ (E \text{ in GeV})$$

The LHCb trigger system

- Level-0 Trigger (Hardware)
 - High p_Γ μ, e, γ, hadron candidates

			μμ			
p_{Γ} >(GeV)	3.5	1	$\Sigma > 1.5$	2.6	2.3	4.5

- ► Efficiency: Muon (90%), Electromagnetic (70%), Hadronic (50%)
- High Level Trigger (Software)
 - ► HLT1: Check L0 candidate with more complete info, add impact parameters and lifetime cuts
 - ► HLT2: Global event reconstruction + selections (inclusive or exclusive)
 - ► Efficiency: Muon (80%), Electromagnetic (60%), Hadronic (80%)

The LHCb status

- The LHCb detector is fully installed. First data at \sqrt{s} =900 GeV recorded, analysis ongoing.
- Very preliminary K_S^0 and Λ mass distributions, real data!

$$egin{aligned} M_{K_{S}^{0}} &= 497.3 \pm 0.2 (\mathrm{stat.}) \ \mathrm{MeV}/c^{2} \ \sigma_{m} &= 4.3 \pm 0.1 (\mathrm{stat.}) \ \mathrm{MeV}/c^{2} \ M_{K_{S}^{0}}^{\mathrm{PDG}} &= 497.7 \ \mathrm{MeV}/c^{2} \end{aligned}$$

$$M_{\Lambda} = 1115.6 \pm 0.1 ({
m stat.}) \ {
m MeV}/c^2 \ \sigma_m = 1.4 \pm 0.1 ({
m stat.}) \ {
m MeV}/c^2 \ M_{\Lambda}^{
m PDG} = 1115.7 \ {
m MeV}/c^2$$

J/ψ production: motivation

- The J/ψ was discovered more than 30 years ago, but we still do not understand the underlying production mechanism:
 - LO color octet mechanism (COM) can describe the $p_{\rm T}$ spectrum and cross section of the J/ψ produced at Tevatron, but can not explain the polarization, NLO doesn't help.
 - The other models, e.g., color evaporation model, k_T factorization, soft color interaction model can not describe the cross section and polarization simultaneously, either.
 - New measurements at the LHCb experiment (higher energy, special η coverage) will help resolve this issue.
- Large cross section and clear $J/\psi \to \mu^+\mu^-$ signal
 - ▶ J/ψ crucial for detector alignment, calibration, μ -ID and tracking efficiencies measurements, and so on.
 - The measurements of the cross sections of the prompt J/ψ and the J/ψ from b decays are important for later analysis in LHCb, e.g., absolute branching fraction measurements, assess event yields.

J/ψ selection

- Selection studied with the simulated minimum bias events
 - Loose μ ID selection, loose cuts on $p_T(\mu^{\pm})$, μ^+ and μ^- coming from a common vertex, at least one reconstructed primary vertex
- Expect about 2.8×10^6 reconstructed J/ψ for 5 pb⁻¹ of data at $\sqrt{s} = 7$ TeV
- Very good mass resolution: ~11 MeV/c²

Separation of prompt J/ψ from $b \rightarrow J/\psi$

Pseudo-lifetime t_z

$$t_z = \frac{dz}{\rho_z^{J/\psi}} m^{J/\psi}$$

Simple approximation of b lifetime

t_z distribution

- t_z distribution has four components
 - Prompt J/ψ , peak at 0, Gaussian
 - ▶ J/ψ from b decays, Exponential convoluted with Gaussian
 - Background distribution, estimated from mass sidebands
 - Long tail due to association to wrong primary vertex, measured using the J/ψ vertex and the PV in different event

J/ψ cross section measurement

- Measurement in bins of p_T and η
 - ▶ 7 bins for p_T 0-7 GeV/c, 4 bins for η 3-5
- Combined mass and lifetime fit used to extract number of prompt J/ψ and J/ψ from b decays
- Tests of fitting procedure on sample corresponding to 0.145 pb⁻¹
 @ 14 TeV ⇒ Good agreements between fit result and MC input

Only binning in p_T , because of small Monte Carlo statistics

Number of prompt J/ψ

Fraction of J/ψ from b

J/ψ cross section measurement (cont.)

 Reconstruction, selection and trigger efficiencies required to obtain the cross sections, estimated using Monte Carlo

- Results (p_T in range 0-7 GeV, two μ in LHCb acceptance)
 - ► $\sigma(\text{prompt }J/\psi) \times \mathcal{B}(J/\psi \to \mu^+\mu^-) = 3104.2 \pm 2.2(\text{fit}) \pm 7.3(\text{efficiency}) \text{ nb (input: 3102.0 nb)}$
 - ► $\sigma(J/\psi \text{ from } b) \times \mathcal{B}(J/\psi \to \mu^+\mu^-) =$ 233.6±1.7(fit)±2.0(efficiency) nb (input: 235.7 nb)

Systematics by J/ψ polarization

 Polarization, using helicity frame. Will also use Gottfried-Jackson (GJ) and Collins-Soper (CS) frames, as suggested.

▶
$$\frac{dN}{d\cos\theta}$$
 $\propto 1 + \alpha\cos^2\theta$; ($\alpha = 1$, Transverse; $\alpha = -1$, Longitudinal)

LHCb acceptance generates an artificial polarization

lab direction

Systematics by J/ψ polarization (cont.)

- Tevatron measurements disagree with theoretical predictions
 - Not possible to put correct polarization in Monte Carlo
- Systematic error up to 25% if ignoring polarization

Input $lpha$	Input σ [nb]	Measured σ [nb]	Discrepancy	
	input o [iio]	assuming $lpha=0$		
0	4340	4337.3 ± 7.7	_	
+1 (T)	4909	4305.4 ± 7.7	-12%	
-1 (L)	3518	4383.0 ± 7.9	+25%	

 Working on measuring polarization and cross section simultaneously

$\psi(2S)$

- $\psi(2S) \to \mu^+\mu^-$ similar to $J/\psi \to \mu^+\mu^-$, yield about 2-4% of the J/ψ yield, lower S/B (1-2), similar mass resolution: 13 MeV/ c^2 .
- Goal is to measure $\sigma(\psi(2S))/\sigma(J/\psi)$, as a function of ρ_T , with separation of prompt $\psi(2S)$ from non-prompt $\psi(2S)$.
- Early measurement (most systematics cancelled), with precision of about 10%: $\frac{\varepsilon_{\text{rec\&sel\&L0}}(\psi(2S))}{\varepsilon_{\text{rec\&sel\&L0}}(J/\psi)} = 1.01 \pm 0.07 \text{(stat.)}$

• Also complicated by the unknown polarization (systematics up to 22% on $\sigma(\psi(2S))/\sigma(J/\psi)$).

- \sim 30% of J/ψ come from $\chi_{c1,2} \rightarrow J/\psi \gamma$ [Tevatron measurements]. Important observables: fraction of J/ψ from $\chi_{c1,2}$, $R_{\chi_c} = \sigma(\chi_{c2})/\sigma(\chi_{c1})$
- J/ψ selection + $E_{\rm T}(\gamma)$ >500 MeV for $\chi_{c1,2} o J/\psi \gamma$
- Plot $\Delta M = m(J/\psi\gamma) m(J/\psi)$
 - Signal modelled as two Gaussians
 - ▶ Background: $P(\Delta M) = (\Delta M)^{c0} \cdot exp(-c1 \cdot \Delta M c2 \cdot \Delta M^2)$
- $\sigma_m \sim 27~\text{MeV/}c^2$ [M(χ_{c2}) M(χ_{c1}) = 55 MeV], some sensitivity to $\sigma(\chi_{c2})/\sigma(\chi_{c1})$

$h_c(1P)$

- Very limited experimental studies of the h_c decays.
 - Only $h_c \to \eta_c \gamma$ and $h_c \to 2(\pi^+\pi^-)\pi^0$ observed.
- At LHCb, $h_c \to \eta_c \gamma$ ($\eta_c \to \phi \phi$) is difficult ($E_{\gamma} \sim 500$ MeV in the h_c rest frame)
 - will be covered in the nominal running
- Ongoing studies of hadronic channels, e.g., $h_c \rightarrow p\bar{p}$, $h_c \rightarrow \phi K^+ K^-, h_c \rightarrow \phi \pi^+ \pi^-, \dots$
 - $h_c \rightarrow p\bar{p}$ probably accessible in 2010, improving trigger efficiency
- Simultaneous measurements of the $[J/\psi, \chi_{c0.1.2}, h_c] \rightarrow p\bar{p}$ ongoing:
 - Mass resolutions are about 10 MeV/c².
 - Will measure

$$rac{\sigma(h_c) imes\mathscr{B}(h_c o
hoar
ho)}{\sigma(J/\psi) imes\mathscr{B}(J/\psi o
hoar
ho)}$$

cross check from the measurements of $\frac{\sigma(\chi_{ci}) \times \mathscr{B}(\chi_{ci} \to p\bar{p})}{\sigma(J/\nu_i) \times \mathscr{B}(J/\nu_i \to p\bar{p})}$.

• Would be interesting to measure $\mathscr{B}(B^+ \to h_c K^+)$

X(3872) and $Z(4430)^{\pm}$

- At LHCb, large sample of prompt $X(3872) \to J/\psi \pi^+ \pi^-$ (and the control channel $\psi(2S) \to J/\psi \pi^+ \pi^-$) and X(3872) from b decays make it possible to study X(3872) systematically
 - ▶ About 1.8K $B^{\pm} \to X(3872)(\to J/\psi\pi^+\pi^-)K^{\pm}$ signal events can be selected from 2 fb⁻¹ of data at \sqrt{s} =14 TeV. Possible to disentangle unknown J^{PC} : 1⁺⁺/2⁻⁺

Expected distributions for 1⁺⁺ and 2⁻⁺ hypotheses for 2 fb⁻¹ of data. Generator level only, no detector simulation, no acceptance corrections yet!

- Similar studies for $B^0 o Z(4430)^\pm (o \psi(2S)\pi^\pm)K^\mp$
 - ▶ About 6.2K signal events can be selected from 2 fb⁻¹ of data at $\sqrt{s} = 14$ TeV assuming $\mathscr{B}(B^0 \to Z(4430)^{\pm}K^{\mp}) \times \mathscr{B}(Z(4430)^{\pm} \to \psi(2S)\pi^{\pm}) = 4.1 \times 10^{-5}$
 - Possible to confirm the Belle discovery with about 100 pb⁻¹ of data at $\sqrt{s} = 7$ TeV if the $Z(4430)^{\pm}$ exists

$$B_c^{\pm}$$

- $\sigma(B_c^+)_{LHC}/\sigma(B_c^+)_{Tevatron} \sim O(10)$ $B_c^\pm \to J/\psi(\mu^+\mu^-)\pi^\pm$
- - About 310 signal events can be selected from 1 fb⁻¹ of data at $\sqrt{s}=14~\text{TeV}$ assuming $\sigma_{ ext{tot}}(B_{c}^{\pm})=0.4~\mu ext{b}$ and $\mathscr{B}(B_{c}^{\pm} o J/\psi\pi^{\pm})=0.13\%$
 - ► Mass: ± 1.7 (stat.) MeV/ c^2 (CDF: 2.9 (stat.) \pm 2.5 (syst.) MeV/ c^2)

- ▶ Lifetime: ±27 (stat.) fs. (D0: 38 (stat.) ± 32 (syst.) fs)
- $B_c^{\pm} \rightarrow J/\psi(\mu^+\mu^-)\mu^{\pm}X$
 - Signal yield one order of magnitude higher
 - Lifetime and production cross section measurements possible with 2010 data

$\Upsilon(1S)$

- About 50% $\Upsilon(1S)$ produced directly, 40% $\Upsilon(1S)$ from the feed-down of $\chi_{b2}(1P)$
- $\Upsilon(1S) \rightarrow \mu^+ \mu^-$ selection
 - Loose muon particle ID
 - $p_{\rm T}(\mu) > 1.5~{\rm GeV}/c$
- ε(L0) ~ 96%
- Mass resolution, about 37 MeV/c²

$\chi_{b2}(1P)$

- About 40% of $\Upsilon(1S)$ is from the feed-down of $\chi_{b2}(1P) \to \Upsilon(1S)\gamma$.
- $\Upsilon(1S)$ selection + $E_{\rm T}(\gamma) > 500$ MeV
- Mass resolution: about 47 MeV/c².

Summary

- Many analysis of heavy quarkonia ongoing at the LHCb experiment.
- About 2.8M $J/\psi \to \mu^+\mu^-$ events can be selected from 5 pb⁻¹ of data in the coming run ($\sqrt{s}=7$ TeV), the production cross sections of prompt J/ψ and the J/ψ from b decays will be measured.
- Other studies will also be possible with 2010 data
 - $\psi(2S) \rightarrow \mu^+\mu^-$
 - \blacktriangleright $B^0 \rightarrow Z(4430)^{\pm} (\rightarrow \psi(2S)\pi^{\pm})K^{\mp}$
 - $B_c^{\pm} \rightarrow J/\psi \mu^{\pm} X$
 - $\ \, \Upsilon(1S) \rightarrow \mu^+\mu^-$
 - **...**