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Abstract
Pion is important in Nuclear Physics. Yukawa introduced pion as a mediator
of nucleon-nucleon interaction in 1934 [1]. However, Nuclear Physics started
by shell model with strong spin-orbit interaction in 1949 by Meyer and Jensen.
The shell model is a phenomenological model and it has to be explained from
more basic dynamics by explicitly using pion. The pion had not played the
central role in nuclear physics until recent years. In this paper, we would like
to discuss the recent development on the role of pion in nuclei.

1 Introduction
Ikeda proposed in 2000 that the pion should be playing the dominant role in nuclear physics. He then
suggested the introduction of the pion explicitly in the study of nuclear structure, whose strength should
be the strongest in 4He the amount of which is indicated by the d-wave probability. This statement
triggered me to think deeply and interpreted his statement as pion condensation in finite nuclei. This was
difficult for me to accept at the first instance, since pion condensation was considered to happen only at
high density as more than the twice of the saturation density in nuclear matter (ρc ≥ 2ρ0) [2]. However, a
nucleus has a surface which may allow pion mean field to be developed at the nuclear surface in order to
make the source term of the pion mean field have the spatial derivative on the spin-isospin density finite.
This was the starting point of our study of nuclei with the pionic degree of freedom to be considered
explicitly. Hence, we started to study a possibility of surface pion condensation in finite nuclei.

2 Surface pion condensation
We study the pionic effect in the relativistic mean field (RMF) model with the pion term, which interacts
with the nucleon by the pseudovector coupling [3],

L = ψ̄[iγµ∂µ −M − gπγ5γ
µτa∂µπ

a − gσσ − gωγµωµ − gργµτaρaµ]ψ + Lmeson . (1)

Here, we write other mesons as σ, ω and ρ mesons with proper couplings to the nucleon. The meson
Lagrangian Lmeson contains the meson masses and kinetic terms in the standard form [4]. The mean
field approximation provides the following Dirac equation for the nucleon,

[iγµ∂µ −M − gσσ − gωωγ0 − gρργ0τ0 − gπ ~∇πγ5~γτ0]ψ = 0 . (2)

The equation of motion for the pion mean field is written as

(~∇2 −m2
π)π = −gπ ~∇〈ψ̄γ5~γτ0ψ〉 . (3)

Here, the bracket 〈· · · 〉 above denotes the ground state expectation value. The pion term in the Dirac
equation has the negative parity because ~∇·γ5~γ ∼ ~∇·~σ. Hence, when the wave function for the nucleon
has a definite parity, the pion term becomes zero. This is the reason that the pion does not enter in the
RMF model. We have to mix the parity for the single particle wave function,

ψjm = αjmψ
+
jm + βjmψ

−
jm . (4)

Here the superscript ± denotes the parity of single particle wave function with total angular momentum
jm, which is conserved. Hence, we call this ansatz as spherical ansatz. We should further note that



the derivative ~∇ operates on the pion mean field. This fact indicates that the source term should vary
spatially. As for the pion mean field, the spin-isospin density has to be non-zero. At the same time, in
order for pion mean field to be finite, it is necessary to make the spatial derivative of the spin-isospin
density to be finite. These facts make us try to calculate the surface pion condensation in finite nuclei.

We have calculated the nuclear ground states in a wide mass range using the spherical ansatz
in the RMF model. The coupling constant of the pion with the nucleon gπ is taken from the Bonn
potential [5]. Other parameters are taken from the TM1 parameter set [4]. We have found that the
surface pion condensation takes place [3]. We show in Fig.1 the pionic energy per nucleon as functions
of mass number. The pionic energy increases with mass as A2/3. At the same time we have found that
the amounts of the pion contribution are much larger for the jj-closed shell nuclei as compared with the
LS-closed shell nuclei.

Fig. 1: The pionic energy per nucleon as functions of the mass number A. The pionic energy increases with mass
as A2/3 (surface property). This means that the pionic energy per nucleon decreases with A−1/3. The pionic
energy contributions for the jj-closed shell nuclei are much larger than those for the LS-closed shell nuclei.

Around the same time (∼ 2000), there appeared several interesting findings. Pieper et al. [6]
showed that their variational method can reproduce nuclear ground states with a few excited states up to
the mass number A ≤ 10 by using the bare nucleon-nucleon interaction together with a properly chosen
three-body interaction. A surprising finding was that the matrix elements of the pion exchange interaction
for those states were about 80% of the entire two body matrix element, 〈Vπ〉 ∼ 0.8〈VNN 〉. A new high
resolution experimental method was developed at RCNP with the use of (3He, t) reactions. With this
method of the order of ∼ 35 keV energy resolution, Fujita et al. [7] showed that the Gamow-Teller (GT)
strengths were highly fragmented. Considering a simple operator structure ~σ~τ , these experimental data
with high resolution indicate that the ground state configurations are much more complicated than the
shell model predictions.

3 The pion and the chiral symmetry
The important fact about the pion is its relation with the chiral symmetry, which was recognized by
Nambu in 1961 [8]. The chiral symmetry is the key symmetry to connect the hadronic world with the
QCD physics. Particularly important is that the nucleon acquires mass dynamically due to the sponta-
neous breaking of chiral symmetry. The pion is the Nambu particle of the chiral symmetry breaking and
therefore it oughts to play the most important role in hadron physics. The NJL model has a similarity to
BCS theory, where the pair condensate 〈ψψ〉 is the pairing gap and the excitation mode is the plasmon.
In the NJL model, the density condensate 〈ψ̄ψ〉 is related with the quark (hadron) mass and the excitation
mode is the pion.

It is therefore a good starting point to take a Lagrangian with the chiral symmetry for the construc-
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tion of nuclear ground state. We take the Gell-Mann-Levy linear sigma model Lagrangian [9].

Lσω = ψ̄(iγµ∂µ − gσ(σ + iγ5~τ · ~π)− gωγµωµ)ψ (5)

+
1
2
∂µσ∂

µσ +
1
2
∂µ~π∂

µ~π − µ2

2
(σ2 + ~π2)− λ

4
(σ2 + ~π2)2

−1
4
ωµνω

µν +
1
2
g̃ω

2(σ2 + ~π2)ωµωµ + εσ.

The pion field appears symmetrically with the σ filed to make the Lagrangian of Gell-Mann and Levy
chiral symmetric. In order to provide a small mass to the pion after the chiral symmetry breaking, there
appears an explicit chiral symmetry breaking term εσ. We introduce the ω meson terms to introduce a
proper amount of repulsion, which probably reflects from the nucleon-nucleon hard core. The symmetry
breaking of the chiral symmetry provides experimental masses of the nucleon and ω meson.

The pseudo-scalar pion-nucleon coupling in the linear σ model leads to unrealistically large attrac-
tive contribution through the strong coupling between positive and negative-energy states, and we have
to treat seriously the effect of the negative energy states. We thus employ the non-linear realization of
the chiral Lagrangian which is obtained by the Weinberg transformation of the linear σ model [10]. We
take the lowest order term in the pion field and the Lagrangian density in the non-linear representation is
written as [11, 12],

L = Lσ,ω + Lπ, (6)

where

Lσ,ω = ψ̄(iγµ∂µ −M − gσσ − gωγµωµ)ψ (7)

+
1
2
∂µσ∂

µσ − 1
2
mσ

2σ2 − λfπσ3 − λ

4
σ4

− 1
4
ωµνω

µν +
1
2
mω

2ωµω
µ

+ g̃ω
2fπσωµω

µ +
1
2
g̃ω

2σ2ωµω
µ

and
Lπ = − gA

2fπ
ψ̄γ5γµ∂

µπaτaψ +
1
2
∂µπ

a∂µπa − 1
2
mπ

2πa2. (8)

We have worked out the above chiral sigma model Lagrangian in the RMF model using the spher-
ical ansatz as performed for the ordinary Lagrangian [12]. We have obtained the similar conclusion as
made with the ordinary Lagrangian. The surface pion condensation takes place and the pion contribu-
tion is much larger for the jj-closed shell nuclei than the LS-closed shell nuclei. We also point out that
the spatial distributions of particle wave functions become very compact to include the high momentum
components owing to the tensor character of pion exchange interaction [12, 13].

4 Relativistic chiral mean field model
We have noticed that the pion contribution does not increase with the mass numberA but rather increases
with the nuclear surface due to the surface condensation physics. On the other hand, the chiral expansion
model of Kaiser et al. [14] demonstrated the dominant contribution of 2 particle-2 hole (2p-2h) excitation
diagrams of the pion exchange interaction. Hence, we ought to improve the spherical ansatz approxi-
mation. Very important physics of the pion exchange between two nucleons is that the spins of the two
nucleons have to flip and therefore the two nucleons cannot stay under the Fermi surface. It is therefore
necessary to include explicitly 2p-2h configurations in the process of performing the energy variation of
nuclear ground state. In the non-relativistic framework, we have developed the tensor optimized shell
model (TOSM) to treat the strong tensor interaction coming from the pion exchange interaction [15]. We
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note here that the RMF model description of the pion needs the parity projection to the positive parity
state and the projected wave function can be related with the 2p-2h states with the particle pairs to be in
Jπ = 0− [18].

We solve the equations of motion for the meson and nucleon fields by introducing the following
wave function in the relativistic chiral mean field model [18],

Ψ = ΨNΨM . (9)

The meson wave function ΨM is assumed to be the coherent states for the sigma and omega mesons. On
the other hand, the nuclear wave function is written as

ΨN = C0|RMF 〉+
∑
i

Ci|2p− 2h〉i . (10)

The RMF equation provides the basic wave functions for the σ and ω mesons and the nucleon. The 2p-2h
wave functions provide large contributions to the ground state energy and therefore the self-consistent
calculations of the wave functions are essential for the good ground state properties. For the calculation
of pion matrix elements we use the formulation of particle-hole excitation used extensively for the dis-
cussion of the effect of pionic excitation in nuclei [2]. We have to consider in addition the short range
correlation, for which we use the unitary correlation operator method (UCOM) developed by Feldmeier
and his collaborators [17].

We have solved the RCMF model equations for 4He [18], 12C and 16O [19]. We have found large
energy contributions from the 2p-2h configurations as expected. We should note for this that we have
to take into account 2p-2h configurations up to very high pionic spin as Jπ ∼ quπR with R being the
nuclear radius and quπ the upper pionic momentum carried by single particle nucleon states. This pionic
spin amounts to Jπ ∼ 10 for 12C. We found that the contribution of the pion exchange interaction is on
the order of 80% for 4He, that agrees with the variational calculation [6].

The comparison of 12C and 16O is very interesting, since the former is a jj-closed shell nucleus
and the latter is a LS-closed shell nucleus. We show one interesting result on the pion contribution to
these two nuclei in Fig.2. The pionic energies are shown as functions of the pionic quantum number Jπ

for 12C and 16O. We see that the pion contributions saturate around Jπ ∼ 10. The pionic contribution
per nucleon is larger for 12C than 16O as seen in the left hand figure. In the right hand side, we show
each contribution of the pionic quantum number to the pionic energy. We observe an interesting feature
where more energy gain is seen for smaller pionic quantum number Jπ ≤ 3 for 12C than 16O and a
similar gain is obtained for larger pionic quantum numbers. This is very interesting, because the pion
makes additional contribution to the jj-closed shell nuclei over the LS-closed shell nuclei. Hence, we
should make a statement that the pionic contribution has a strong shell effect. We have calculated the
change of the effective nucleon mass and also the change of the chiral condensate as a function of the
radial coordinate [18, 19].

We can make a clear discussion on the recovery of the chiral condensate in nuclear matter with
the RCMF model. We have applied the RCMF model to nuclear matter [20]. The calculated results
are in general very close to those of Kaiser et al. [14]. We show in particular the results on the chiral
condensate in nuclear matter in Fig.3. In the left hand side, the full calculated result on the chiral
condensate is shown as a function of the nuclear density, which is compared with the model independent
result. They are very similar. However, its breakdown is very interesting as shown in the right hand side.
The σ mean field result takes care about a half of the chiral condensate and the pionic cloud contribution
provides about another half at small densities. On the other hand, as the density increases, the 2p-2h
contribution increases with the density. As the net result, the total quark condensate behaves similarly as
the model independent value. We note that the σ mean field contribution provides the reduction of the
hadron masses and it is important to measure the mass change of hadrons in nuclei.
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Fig. 2: The pionic energies per nucleon are shown as functions of the pionic quantum number Jπ for 12C and 16O.
The cut-off momentum Λ is taken as 1000 MeV. The other free parameters, σ meson mass and ω-nucleon coupling
constant, are adjusted to reproduce the binding energy and r.m.s. matter radius.
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Fig. 3: In the left panel, we show the chiral condensate in nuclear matter calculated with the RCMF model in-
cluding the pion cloud contribution Σ(π)

N =20 MeV [21]. For comparison, the model independent result is shown
by dot-dashed curve with ΣN = 50 MeV. In the right panel, we show each component of the chiral condensate,
where the full value is denoted by solid curve. The σ mean field contribution is shown by dash-dotted curve, the
2p-2h contribution by dotted curve. The pion cloud contribution is shown by dashed curve.

5 Deeply bound pionic atom
We have an interesting experimental data on the recovery of the chiral condensate in the systematic
analysis of deeply bound pionic atoms. As the Nambu particle, the pion property is directly related with
the value of the chiral condensate in nuclear matter. Toki and Yamazaki [22] proposed the existence of
deeply bound pionic atoms in heavy nuclei in 1988. A systematic experimental study was performed to
measure the deeply bound pionic atom states on the Pb and Sn isotopes [23].

The analysis of the experimental data on the deeply bound pionic atom states extracted the change
of the isovector s-wave parameter as [23]

b1
b1(ρ)

= 1− 0.37
ρ

ρ0
. (11)

The Weinberg-Umezawa relation is written as b1 ∼ 1/f2
π . On top of this, we have the GOR relation

f2
πm

2
π = −2mq〈ψ̄ψ〉. The pion mass mπ is known to stay unchanged by the circumstance as the

temperature and density owing to its Nambu particle character. Therefore the experimental finding states
that the chiral condensate changes with the nuclear density as

〈ψ̄ψ〉ρ
〈ψ̄ψ〉

= 1− 0.37
ρ

ρ0
. (12)

73



This relation is very close to the model independent relation of the chiral condensate.

〈ψ̄ψ〉ρ
〈ψ̄ψ〉

= 1− ΣNρ0

f2
πm

2
π

ρ

ρ0
= 1− 0.39

ρ

ρ0
. (13)

For getting the last number, we have used ΣN = 50MeV . The extracted tendency of the experimental
finding (12) on the recovery of the chiral condensate is quite close to the model independent relation.
This may merely tell that there are non-interacting nucleons in the nucleus. However, we have to keep in
mind that the experimental data is extremely precious. The nuclear matter effect on the chiral condensate
has very deep physics as the pionic cloud effect, the change of the hadron masses and the 2p-2h pionic
contributions on the nuclear ground state. It is now very important to extract informations on the change
of the hadron masses and the 2p-2h contributions by performing further experiments.

6 Conclusion
We have studied the role of pion in nuclear structure. We have started from the relativistic mean field
model with inclusion of the pion terms in the RMF Lagrangian. We have shown that the pion mean
field becomes finite and the pionic effect behaves as nuclear surface. We have then introduced the chiral
symmetry in the relativistic Lagrangian for nuclear many body system. To be explicit, we take the Gell-
Mann-Levy linear sigma model Lagrangian and construct finite nuclei.

We have developed extended relativistic chiral mean field model, where the pion exchange inter-
action is treated in terms of the 2 particle-2 hole configurations in the basis of the RMF ground state. All
the wave functions including those of the 2p-2h states are variationally determined by the condition of
the energy minimization of the ground state. The energy gain due to the pion contribution is enormous,
the amount of which agrees with the findings of the few-body calculations and chiral model calculations
of nuclear matter.

We have calculated finite magic number nuclei as 4He, 12C and 16O. The energy gain due to the
pion is very large. It is about 80% for A=4 and decreases with the mass number. Very important to point
out is that the energy gain due to the pion for 12C is larger than that for 16O. This is the Pauli blocking
effect of the tensor excitations of nucleons. The extra energy gain is expected in other jj-closed shell
nuclei, since the similar Pauli blocking effect happens in heavier nuclear systems. We should mention
also that the particle wave functions become very compact in order to make the tensor contribution of the
pion exchange interaction most effective. Hence, we may obtain the magic number effect in the whole
periodic regions due to the pionic effect.

We have discussed also the change of the chiral condensate in nuclear matter as a function of the
matter density. The chiral condensate decreases with the density due to the change of the hadron masses
and the pionic cloud effect in addition to the 2p-2h contributions. The net result becomes similar to the
model independent model value. This change of the chiral condensate seems to have been observed in
the deeply bound pionic atom experiments.
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