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Abstract

Some of the basic concepts and most important results of perturbative QCD
are presented, together with some illustrative comparisons with experiment.
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1 The QCD Lagrangian

The QCD Lagrangian is, up to gauge-fixing terms,

1 a a)uv Tqr
Locp = _ZF‘S")F( W 4 3 FHiH(Dy)ij — mgbis )y
q
F() = 08,43 - 0,A% + g fur AL AS
(Dy)i; = 60, —ig, TLAS (1)

where g, is the QCD coupling constant, T3 and fg are the SU(3) colour matrices
and structure constants respectively, the ¥J(z) are the 4-component Dirac spinors
associated with each quark field of colour ¢ and flavour g, and the A%(z) are the
eight Yang-Mills gluon fields.

2 Colour Matrix Identities

Explicit forms for the SU(3) colour matrices and structure constants can be found,
for example, in the Review of Particle Properties [1]. The following are some useful
identities:
[Ta, Tb] = ifabCTc
{Ta,Tb} — dabcTc+ %5ab
facd fbcd — CA 6ab
(T°T*);; = TaTi; = Créy
Tr(T°T%) = T2TS. = Twé®

iyt
Cy = N.=3
N2 -1 4
C = < = —
F 2N, 3
1
TF = 5
THT°T'T?) = _f*+ %d““
fabcfabc = 24
dabcdabc — % (2)

where summation over repeated indices is understood.
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3 The QCD Coupling Constant

The scale dependence of the renormalized QCD coupling o, = ¢g2?/4n is determined
by the B-function coefficients:

p? Ba,(u?) 3 a(p1?) a,(p1?) as(u?)
a,(u?) Ou? T T 4n Bo — ( pp ) B — (T)sﬁz + ...
BO = 11 —_— g-nf

38

— 2857 5033 325 ,
Br(MS) = == Z—n,+ Tnd (3)

Retaining only the first two terms on the right hand side and solving the differential
equation for a,(u?) gives

1 blas ) - llz
a—s + b1 log(m = bo IOg F, (4)
with 5 8
_ Po _ B
bO - an ’ bl 47Tﬂ0 . (5)

Note that a constant of integration in the form of a dimensionful parameter A has
been introduced — replacing A by cA also gives a solution to the differential equation.
The convention chosen here is such that the left hand side vanishes when p = A.
This is the standard definition of the ‘two-loop’ coupling constant as a function of
the scale p and the fundamental QCD scale parameter A. It is adequate for ‘next-
to-leading order’ phenomenology. The above expression for a, can be generalized
to include also the 8, term [2].

An explicit form for o, can be obtained by expanding in inverse powers of

log(p?/A?):

o 127 _ 6(153 — 19n;) loglog(u®/A?)
) = g g AT L~ @ legen T ©

which illustrates the characteristic ‘asymptotic freedom’ property — the coupling
decreases monotonically as p? increases. Note however that this expansion corre-
sponds to a slightly different definition of A from the implicit expression (4) for
a,, the expansion of which would contain a term ~ const./log?. The freedom to
multiply A by a constant can be used to remove this term. There is a O(15%)
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A P B AB__ 1
T T p? +ie
a,1 p baj ab !

(p—m +ic)

~9f4B% [¢°P (p— q) + g% (g — )" + g7 (r — »)’]

(all momenta incoming)

—ig? fXAC fXBD (g.50.6 — Gas9py)
—ig? fXAP fXBC (9059, — Gavgss)
—ingXABfXCD (gavg[% - 9069[31)

C,v D, é
A«
ngBan
RN
B/ \C’
A«
—ig (tA)cb('Ya)j;
bt ¢, g

Table 1: Feynman rules for QCD in a covariant gauge.
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Ak (MeV) | ay(M3)
50 0.0970
100 0.1060
150 0.1122
200 0.1170
250 0.1210
300 0.1245
350 0.1277
400 0.1305
450 0.1332
500 0.1356
550 0.1379
600 0.1401

Table 2: a,(M2) for various A%.

difference in the A’s defined by (4) and (6). Since in practice it is usually a, which
is measured experimentally, it is important when comparing A values to check that
the same equation has been used to determine A from the coupling constant.

A second difficulty with the above definitions is that A depends on the number
of active flavours. Values of A for different numbers of flavours are defined by
imposing the continuity of o, at the scale 4 = m, where m is the mass of the heavy
quark. For example, for the b-quark threshold: a,(m?,4) = a,(m?,5). Using the
next-to-leading order form (4) for a,(Q?) one can show that

my mg

A(4) ~ A(s)(X(?))E [1n(A(5)2)]m. (7)

In practice, most higher order QCD corrections are carried out using the modified
minimal subtraction (MS) regularization scheme. To be consistent, then, one uses
the above results for a,(p?) with A = Ay,

Some recent a, measurements are shown in Fig.1. The lines indicate different
values of A(M%' Extreme caution should be exercised when comparing the precision
of the various measurements, as the errors have different meanings in different
processes. A central value of A% ~ 150 MeV is indicated. With the advent of
high precision measurements of o, at LEP, one can nowadays take a,(M2%) as the
fundamental parameter of QCD, rather than Agg. Table 2 gives the conversion

between A% and o,(M%) using the definition given in eqn.(4).
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Figure 1: A compilation of o, measurements from different processes.
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4 Deep Inelastic Scattering

Consider the deep inelastic process Ip — [X. Label the incoming and outgoing
lepton four-momenta by k# and k’* respectively, the incoming proton momentum
by p# (p* = M?) and the momentum transfer by ¢# = k* — k’#. The standard deep
inelastic variables are defined by:

Q2 - __q2 p2=M2

2 2

r = Q = Q
2p-q 2M(E-E)

q-p !
= —= —E
y ko p 1 /E

s = (k+ )"’—M2+Q—2 (8)
p) = po

where the energies are defined in the rest frame of the target. The structure func-
tions Fi(z,Q?) are then defined in terms of the lepton scattering cross sections. For
charged lepton scattering, Ip — I.X,

d?o®™  4ma®(s — M?) [(1 +(1- y)z) om
dedy 0t 2 225,
2
H1 = g)(F™ = 22F7™) — — ey, (9)

and for neutrino (antineutrino) scattering, v(#)p — 1X,
d?ov®) _ G%(s — M?) [(1
dzdy 27 ¥ =% M?

2RO + ()1 - /22RO (10)

zy) Fy®)

In the quark-parton model, these structure functions are related to the quark ‘dis-
tribution functions’ or ‘densities’ g(z, Q?) , where g(z,Q?)dr is the probability that
a parton carries a momentum fraction z of the target nucleon’s momentum when
probed (by a gauge boson v*, W or Z ) at energy scale Q. Thus
F! = 2z[d+s+a+7
cFy = 2z[d+s—u—7
F} = 2zfu+c+d+3]
zF? = 2zfu+c—d- 3

4 1 -
o= :c[§(u+u+c+6)+-g—(d+d+8+§)]
2$F1 = Fz. (11)
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Figure 2: Quark and gluon distributions at Q% = 5 GeV? from reference [3].

Note that when the nature of the target is unambiguous the notation g(z,Q?%) and
G(z,Q?) for the quark and gluon densities can be used, otherwise a general notation
is faja(z,Q?), where a = u, d, ... g and A = p, n, Fe, Cu, etc.

Fig.2 shows some representative quark and gluon distributions (the KMRS(BO0)
distributions of reference [3]) extracted from deep inelastic scattering and other
processes. Note that ‘sea’ refers to the (equal) % and d distributions in the proton.

5 Scaling Violations — the Altarelli-Parisi Equa-
tions
In the ‘naive’ parton model the structure functions scale, i.e. F(z,Q?) — F(z) in

the asymptotic (Bjorken) limit: @? — oo, z fixed. In QCD, this scaling is broken by
logarithms of Q2. In describing the way in which scaling is violated it is convenient
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to define singlet and non-singlet quark distributions:
F¥=g-q, F'=3(a+a) (12)

The non-singlet structure functions have non-zero values of flavour quantum num-
bers such as isospin or baryon number. The variation with Q? of these functions is
described by the so-called Altarelli-Parisi equations [4]:

JFNs a,(Q?)
2 = i 9 NS
Q 502 o P¥x F
s 2
0 ggz = aéf )(qu * FS 4+ 2n,P% % G)
oG 2
Vg = 8T paFs+ g, (13)
where * denotes a convolution integral:
1d x
frg=[ L) (14)
In leading order the Altarelli-Parisi splitting functions are
pu — é (1 + 1'2)
3\1—-=« +

P = %(32_*_(1 _x)z)

P9 = i(M)

3 z
P (A e (),
(5 + )81 - ). (15)

Note the ‘plus prescription’ for the functions which are singularas z — 1 :

/01 dz f(z)(g9(z)), = /01 dz(f(z) — £(1))g(z). (16)

The Altarelli-Parisi equations can be solved analytically by defining moments (for-
mally, the Mellin transforms) of the structure functions, MNS =< FNS > =
Jo dzz™1FN5 etc. The convolution integral then becomes a simple product. Intro-
ducing the leading order expression for the QCD coupling constant (see above),

2y 4
Q)= Blg(@7h)’ o
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one obtains, for the non-singlet solution,

NS(2) — NS{ A2 as(Q2))_d"
M@ = M@ (Z5s) 18)
where d, = 2 < P% >, /B,. Note that d, = 0 and that d, <'0 for n > 2, which
implies that the z distributions decrease and increase with increasing Q? at large
and small z respectively. Solutions for the singlet and gluon moments can be found
in a similar way, by first diagonalizing the coupled equations.

The precision of contemporary deep inelastic data demands that the QCD pre-
dictions are calculated to next-to-leading order. This amounts to the replacements
(shown schematically):

P(a) — PO(z)+ 22p)()
F=Eq — F(l)zz:C*q, C=61-2z)+0(a,). (19)

An example of a next-to-leading order QCD fit [3] to recent high-precision data on
F#P from the BCDMS collaboration [5] is shown in Fig.3.

6 Hard Processes in Hadronic Collisions

A fundamental theorem of QCD states that if there is a large momentum transfer in
the quark or gluon scattering subprocess (here ‘large’ generally means much greater
than the QCD scale A) then hadronic cross sections can be expressed as a convo-
lution of universal parton distributions, measurable for example in deep inelastic
scattering, and a subprocess cross section calculable in principle to arbitrary order
in strong or electroweak perturbation theory:

(20)

ZaZhSAB

1
0,AB—»X+... — Z /(; d:l:adillb fa/A(ma,Qz)fb/B(xb’ Q'Z) . &ab-—»XI§=

a,b=q,9

with the factorization scale @ usually taken to be a ‘typical’ energy for the subpro-
cess. The general expression for a scattering cross section is given in Appendix A.
Some specific examples are given below.

(a) Drell-Yan, W and Z production cross sections are obtained from the subprocess
cross sections:

- aa—lti-
dg 99—t 4ra® ,

dM? To9Mz e
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Figure 3: Next-to-leading order QCD fit to F}’ D [5] from reference [3].
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2 2
dro vg + ag

5992 8(5 — M2
? 3 4sin? Oy cos? Oy (8 z)
= 4ra 1
g9V = T §(5 — M2 2
g 3 4sin2 6W (S W)7 ("’1)
where the (vy,ay) couplings are, for different fermion types,
11
v 53
- 1 . 1
e (—§+2Sln26W,—§)
1 4 1
u (§—§sm29w,§)
1 2, 1
d (—-2— + 551112 BW,—E). (22)
b) For the production of a pair of heavy quarks of mass M:
y
+ 03—QQ TaiBp
§519-QQ — Ve (2 + )
-+ 09—Q0 maiBp 1+
5990 = Tk [5(,0 +16p +16)log - —5 8- 31p), (23)
where p = 4M?/38, B = /T — p.
(¢) Two important Higgs production mechanisms are
2
oﬂ,gg—bH — aaszzf I m? (24)
576 sin® Oy M3, M3

where I(z) is a dimensionless function given by
I{(z) = 3z[24 (4 —1)F(z)]

1 1+vi—4z\ .]° L 2
= —4z)= STVo TR - - ~1(1/2
F(z) 6(1 4:5)2 [log <1 — m) zw] 6(4z — 1)2 [sm (1/ \/5)] ,
(25)
and .
i —WH _ ma?  2p p*+3My _AZ(8, M, ME)
? 36sin? GW\/—(s—M2 )2’ P= 2/

(d) The inclusive jet cross section in hadronic collisions is given, to leading order,

by

(26)

do
EJd3pJ = ayb’;d:q‘g/ dzodzs fora(za, Q) fora(zs, Q%)
-6(3 -i-1,‘+u)16 2,|H°b—'°d|2, (27)
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Figure 4: The jet inclusive cross in next-to-leading order QCD, from reference [10].

with §, {, @ the Mandelstam invariants for the subprocess, and the bar on the
scattering amplitude denotes a spin and colour sum/average. Note that this result
corresponds to massless quarks and gluons and that no distinction is made between
quark and gluon jets. A complete list of all the 2 — 2 scattering matrix elements
is given in Appendix B.

The next-to-leading order QCD corrections to all the above processes (a) — (d)
have been calculated [6,7,8,9,10]. Where data are available, the agreement between
theory and experiment is excellent. As an example, Fig.4 shows a comparison of
data from the CDF collaboration on the inclusive jet cross section in pp collisions
at v/s = 1800 GeV with the NLO predictions from S.D. Ellis et al. [10].
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7 QCD in High Energy ete~ Collisions

7.1 The Total Hadronic Cross Section

The total hadronic cross section is obtained from the cross section for ete~ anni-
hilation into quark and gluon final states. Thus, ignoring weak effects and treating
all quarks as massless,

4ma?
Otot = 3

3s
R = I{QCD 3262,
q

Kocp = 1+Zc,,(%)". (28)

n>1

The coeflicients Cy, C; and C3 have been calculated - they are (in the MS scheme
with the renormalization scale choice u = /s):

21 i 1( 11 365
2 = (5@-5)w+ (5o-11e)

o~ 1986—0115nf
87029 1103
¢ o=

275
e — @)+ 224(5)

7847 262
—(m——cu +220))ng

151 19
223 \n2
+(162 57! )>"f
432<33 2ng) 40 (25 - 20(3))
~ —6.637 — 1.200n; — 0.005n2 — 1.2407, (29)

where 7 = (7 Q5)?/3¥ s @%. The result for Cs is taken from reference [11]. Apart
from the n term, the result for the QCD corrections K is the same for the ratio
of hadronic to leptonic Z decay widths: Rz = I',/T,. In practice, quark masses
(particularly m; and m,) have a non-negligible effect [12] and must be taken into
account in precision fits to data [13].

Through O(a?) the p dependence is restored by the replacements:

a, — a,(p?)
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Figure 5: The effect of higher order QCD corrections to Rz, as a function of the
renormalization scale u.

ﬂo $

C2 — Cz _Clzlog:ﬁ

C3 — C3+Cl & 210g2i—(clél+02,30)10gi. (30)
4 7 16

2 X
where () and 3, are defined in Section 3. The all-orders prediction is independent of
the renormalization scheme (equivalently, independent of i in the MS convention).
Truncated series such as the one above are dependent on u, but this dependence
becomes weaker the more terms are included in the series. This is illustrated in
Fig.5, which shows Kgcp = 1+ 6 for Rz as a function of u, as the higher order
terms are added in.

7.2 Three Jet Cross Section in ete~ Annihilation

Consider the next-to-leading process ete™ — ¢gg. Define z,, z, and z3 to be the
energy, in the ete~ centre-of-mass frame, of the final state quark, antiquark and
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gluon respectively, normalized to the beam energy, i.e. z; = 2E;/\/3, T z; = 2.
The differential cross section is then

1 d% 2a, z? + 22

odeydz; 37 (1—z1)(1 —23) (31)

For scalar gluons, z? + z3 is replaced by z2%/2.

A three-jet fraction can be defined by requiring that s;; = (1 — 2z)s > ys
(JADE algorithm [14]) and integrating the above differential distribution over the
appropriate region gives

2a,
fy) = ]38 - 6y)log(; _yzy

9 ; Y T
—6y — —y* + 4L - — 2
y= 5y’ + 12(1_y) . (32)

The next-to-leading order corrections to f; have been calculated [15]. Because the
hadronization corrections to f; are small, the three-jet rate provides one of the most
precise measurements of «, at LEP. A typical fit is shown in Fig.6 [13].

8 Heavy Quarkonium Decays

For the decay widths of *S; QQ quarkonium states, if mg 3> A then the short- and

long-distance effects can be factorized, with the former calculable in perturbative
QCD. For the T [16],

- 4r |¢(0))2 16 o,
whpm — TPV g2y 2288
r 9 mi « [ 3w + ]

32(x - 9) [¥(O)I* G

e — 51 mg aal [1 - 7.4? + ]
0 = ) WO oty g2

999 = 1—-49—+ ...
r 81 m} a,[ —_— ]’ (33)

in the MS scheme with g = m;.
The dependence on the wave function can be eliminated by forming ratios:

_ Ieeg 10(7? —9) o(u) may « as(2)
Ri=sgmm = - . 1+ (04~ 12.5log(7))_1r_ T
_TIw 4 a iy as(p?)
~Tes ~ 5 a,(p?) [1 +(-26+ 4-210g(7))-—7r—— + ] . (34)
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Figure 6: QCD fits to the jet rates at LEP as measured by the L3 collaboration,
from reference [13].
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In principle, R, provides a relatively clean measurement of «,. In practice, there
are non-negligible corrections from the photon acceptance and from non-relativistic
effects. A more complete discussion can be found in reference [17].

A Cross-Section Formula
For a general 2 — n scattering process a + b — ¢; + ... + ¢, the cross section is
1 b—cy ...
ab—cy...Cn — d@n M‘a C1...Cn (2
o = [ 4% | , (35)
where (i) F is the fluz factor
F= 2/\§(s, m?, mANz,y,2) = 2* + y* + 2% — 22y — 2yz — 22z, (36)

(i1) d®, is the Lorentz-invariant phase space volume element

B t=n dqu a5(4) i=n
dd, = 1}1 m(zn) §“(pa + pp — gpc.-), (37)

(iii) fg specifies the allowed region of phase space integration, including where ap-
propriate cuts on the final state momenta, and (iv) |7\Tab_'c1'"c"|2 is the spin (and
colour where appropriate) summed/averaged matrix element squared for the process
a+b—oci+...+cn.

B Parton Scattering Amplitudes

The following scattering amplitudes squared have been summed and averaged over
final and initial state spins and colours. Not included are the overall coupling
constants, g2, gfeg and eg according to the number of strong and electromagnetic
vertices.

q¢ — qq' i
9 ¢

99 — 49 fl-(32+"2+82+’:2)—— 8
9 12 u? 27 ut

_ ' 412 4+ y?

97 — 4'7 9 5

97— 4 L T
g\~ ¢ s2 27 st

338



qq — g9
99 — 99
99 — 99
99 — 99
93— g
a9 — 74
qq — vY
93 — QQ
99 — QQ

12 9 us
9 ut us st
5( _?_tT_F)
812 + u?
9 ut
182+ ¢2
3 —st
2u? 442
3 ut
4 (M? — )2+ (M? —u)? +2M2%s
9 s?
1/(M? —t)(M? —u) — 2M?*(M? +t)
5( (M? — t)2

(M? —t)(M? — u) — 2M*(M? + u)
+ (M? — u)? )

(M2 —t)(M?—u) 1 M?*(s—4M?)
+3 52 T 24 (ME = 0)(M7 = )

S/(M? —t)(M? —u)+ M?*(u—1t)
_g( s(M? —1t)

(M? —t)(M? —u) + M?(t — u)
+ O ) ) (38)

339



References

[1] Review of Particle Properties, Phys. Lett. 239B (1990) 1.
[2] W.J. Marciano, Phys. Rev. D29 (1984) 580.

[3] J. Kwiecinski, A.D. Martin, R.G. Roberts and W.J. Stirling, Phys. Rev. D42
(1990) 3645.

[4] G. Altarelli and G. Parisi, Nucl. Phys. B126 (1977) 298.
(5] BCDMS collaboration: A.C. Benvenuti et al., Phys. Lett. 237B (1990) 592.

[6] G. Altarelli, R.K. Ellis and G. Martinelli, Nucl. Phys. B143 (1978) 521; B146
(1978) 544(e); B147 (1979) 461.
J. Kubar-Andre and F.E. Paige, Phys. Rev. D19 (1979) 221;
J. Kubar-Andre, M. Le Bellac, J.L.. Meunier and G. Plaut, Nucl. Phys. B175
(1980) 251.

[7] R. Hamberg, T. Matsuura and W.L. van Neerven, Nucl. Phys. 359 (1991)
343.

[8] P. Nason, S. Dawson and R.K. Ellis, Nucl. Phys. B303 (1988) 607.
W. Beenakker et al., Phys. Rev. D40 (1989) 54.

[9] A. Djouadi, M. Spira and P.M. Zerwas, Phys. Lett. 264B (1991) 440.

[10] S.D. Ellis, Z. Kunszt and D.E. Soper, Phys. Rev. Lett. 64 (1990) 2121;
University of Washington preprint UW-PT-91-13 (1991).

[11] M. A. Samuel and L.R. Surguladze, Phys. Rev. Lett. 66 (1991) 560; 66 (1991)
2416(e).
S.G. Gorishny, A.L. Kataev and S.A. Larin, Phys. Lett. 259B (1991) 144.

[12] B.A. Kniehl and J.H. Kuhn, Nucl. Phys. B329 (1990) 547.

[13] T. Hebbeker, Plenary talk presented at the International Lepton-Photon Sym-

posium and Europhysics Conference on High Energy Physics, Aachen preprint
PITHA 91/17 (1991).

[14] JADE collaboration: S. Bethke et al., Phys. Lett. 213B (1988) 235.
[15] G. Kramer and B. Lampe, Fortschr. Phys. 37 (1989) 161.

[16] S.J. Brodsky, G.P. Lepage and P. Mackenzie, Phys. Rev. D28 (1983) 228.
W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Phys. Rev D18 (1978)
3998.

[17] K. Kwong et al., Phys. Rev, D37 (1988) 3210.

340



