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Using a modification of the BFKL equation which generates discrete Regge pole solutions,
we obtain a good fit to the low-x deep-inelastic data from HERA as well as an integrated
gluon distribution which is everywhere positive.

In a recent paper [1], we obtained a good fit to the HERA deep-inelastic data at low-z using a
discretized version of the BEKL pomeron [2], which is in line with the Regge picture of diffractive
events (and hence deep-inelastic events at low-z) whereby the amplitude is dominated by an
isolated Regge pole (the “pomeron”).

The purely perturbative BFKL equation predicts a cut rather than a pole. However, in
1986, Lipatov [3] suggested the following modifications to the BFKL equation:

1. Accounting for the running of the coupling as a function of the transverse momentum, k,
of the exchanged gluons, which spans a large range as one moves away from the top or
bottom of the “ladder”.

2. Assuming that the non-perturbative (infrared) sector of QCD imposes a fixed phase, 7,
on the oscillatory eigenfunctions of the BFKL kernel at some low value, kg, of gluon
transverse momentum.

This leads to a discrete set of eigenfunctions, f;(k) with discrete eigenvalues, w;, which can be
interpreted as isolated Regge poles., i.e. the scattering of a gluon with transverse momentum
k off some target with CM energy +/s, has an amplitude which can be written in the form

Alk,s) = Z a; fi(k)s*

The eigenfunctions have an oscillating behaviour with a decreasing frequency up to a value of
transverse momentum k.,.;;, above which they decay exponentially with In(k)

A very good fit was obtained using only the first four such eigenfunctions. The only unknown
quantity is the proton impact factor ®,(k), which encodes the coupling of the proton to the
gluon-scattering amplitude. Since the eigenfunctions form a complete orthonormal set, this
impact factor can be expanded in the form

(k) = Zbifi(k)v
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where the first four coefficients, b; were fit to data.

Unfortunately, when we tried to reproduce the full impact factor from this fit, we obtained
an un-integrated gluon density g(z, k?), which becomes negative over a sufficient range that the
(integrated) gluon density

2

9(0,Q?) = / 3z, k2)dk?,

is also negative.
We therefore sought a solution in which the impact factor has a “sensible” form such as

A

_ 2 ,—bk?
@p(}f) = Ak“e 5 or m

This suggested that taking only the first four eigenfunctions was insufficient. Indeed, if we
take ng eigenfunctions , where the first eigenvalue is w; and the last is w,, then we expect an
error of order z(“1=“no) . This is 30% for  ~ 1072 and 17% for 2 ~ 1073,
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Figure 1: The effect on the un-integrated gluon density from increasing the number of eigen-
functions included.

We are now able to construct many more eigenfunctions, but we find that, although the un-
integrated gluon density becomes positive at relatively large k when 30 eigenfunctions are used,
the range of negative values still generates a physically unacceptable negative gluon density
and that a further increase in the number of eigenfunctions taken only marginally improves this
situation, as can be seen in Fig. 1.

We now understand why this is the case. A detailed explanation will appear in a forthcoming
publication [4]. Within the context of a fixed phase for the oscillations at low transverse
momentum, an adjacent eigenfunction has a larger k..;; by approximately one half wavelength,
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Figure 2: Sketch of eigenfunctions numbers 5 and 6.

whereas the frequency of the oscillations in the relevant range of k is almost identical. This is
demonstrated in Fig. 2.

In Fig. 3 we plot the initial frequencies (i.e. the frequencies for k < k¢p;¢) for the first 30
eigenfunctions and note that they accumulate at a value v,,q,; ~ 0.7. This means that we can
only expect to expand an impact factor as a sum of these eigenfunctions provided the impact
factor has non-negligible support up to a value of transverse momentum k.., where

v In Fmaa >
max .
ko

The minimum value of kg that can be taken without encountering serious perturbative insta-
bilities is kg ~ 0.3 GeV, which leads to a k4, far larger than the expected value for a proton
impact factor which should be O(Agcp).

Put another way, this means that an impact factor with support for £ < Agcp is not
compatible with a fixed phase at kg ~ 0.3 GeV. This in turn implies that the second assumption
of [3] needs to be revisited.

At leading order, we can write the BFKL equation with running coupling in the form

as(;fz) fl(k)

/ Kok, K) (K )d2K' =

In the infrared limit, as @ increases, the RHS goes to zero and it was therefore argued in
Ref. [3] that the infrared limit of the eigenfunctions, f;(k), would be independent of w and
hence possess a universal phase.
In practice, however, with an infrared cutoff kg ~ 0.3 GeV, the ratio w;/as(k?) is not
negligibly small and so we might expect the infrared phase, 7, to have a dependence on w.
Within perturbation theory (recalling that the eigenvalues w can be expanded in powers of
Q, starting at first order), such a dependence is expected to be analytic, so that one would
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Figure 3: The oscillation frequencies for gluon transverse momentum k < k¢ for the first 30
eigenfunctions.

expect an improved fit (with small w) with a phase n(w) of the form
nw) = m+nw

Unfortunately, we were neither able to obtain a satisfactory fit using this ansatz for 7, nor to
rectify the problem of a negative gluon density. The best fit has a x?/DoF of 3.0.

However, since we are probing the non-perturbative behaviour of QCD, we are entitled to
drop the requirement that 77 should be an analytic function of w and try, for example, an w
dependence of the form

n(w) = no+n'vw.
We found that this can generate a gluon distribution which is positive everywhere, as shown
in Fig. 4, and produce a fit to HERA data with a x2?/DoF of 1.1.

In Fig. 5 we show the best fits for the linear (dotted line) and non-linear (solid line) fits to
the Zeus low-x data, using an impact factor of the form

D,(k) = Ak tF

The three free parameters used (apart from the overall normalization - which serves as a fourth
parameter) are

| | Linear | Non-linear |

b[GeV~—2] 2.0 2.0
o —074r | —0.74n
n 2.8m l.4m
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Figure 4: The left-hand graph shows the un-integrated gluon density with a fixed infrared phase
and with a non-linear w-dependent phase. The right-hand graph shows the un-integrated (solid
line) with the non-linear w-dependent infrared phase, and the corresponding (integrated) gluon

density (dotted line).
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Figure 5: Fit to Zeus [5] low-z data with linear w-dependence (dotted line) and non-linear

w-dependence (solid line)
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We therefore have a low-z gluon density which is everywhere positive, fits the HERA data,
and is consistent with the modified BFKL equation provided one allows a non-analytic depen-
dence of the infrared phase, 7, on the eigenvalue, w, thereby reflecting the non-perturbative
nature of the infrared effects.

This gluon density can now be tested by applying it to the prediction of cross-sections (such
as jet production) at LHC which are dominated by the low-z gluon distribution.
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