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Using a modification of the BFKL equation which generates discrete Regge pole solutions,
we obtain a good fit to the low-x deep-inelastic data from HERA as well as an integrated
gluon distribution which is everywhere positive.

In a recent paper [1], we obtained a good fit to the HERA deep-inelastic data at low-x using a
discretized version of the BFKL pomeron [2], which is in line with the Regge picture of diffractive
events (and hence deep-inelastic events at low-x) whereby the amplitude is dominated by an
isolated Regge pole (the “pomeron”).

The purely perturbative BFKL equation predicts a cut rather than a pole. However, in
1986, Lipatov [3] suggested the following modifications to the BFKL equation:

1. Accounting for the running of the coupling as a function of the transverse momentum, k,
of the exchanged gluons, which spans a large range as one moves away from the top or
bottom of the “ladder”.

2. Assuming that the non-perturbative (infrared) sector of QCD imposes a fixed phase, η,
on the oscillatory eigenfunctions of the BFKL kernel at some low value, k0, of gluon
transverse momentum.

This leads to a discrete set of eigenfunctions, fi(k) with discrete eigenvalues, ωi, which can be
interpreted as isolated Regge poles., i.e. the scattering of a gluon with transverse momentum
k off some target with CM energy

√
s, has an amplitude which can be written in the form

A(k, s) =
∑

i

aifi(k)sωi

The eigenfunctions have an oscillating behaviour with a decreasing frequency up to a value of
transverse momentum kcrit, above which they decay exponentially with ln(k)

A very good fit was obtained using only the first four such eigenfunctions. The only unknown
quantity is the proton impact factor Φp(k), which encodes the coupling of the proton to the
gluon-scattering amplitude. Since the eigenfunctions form a complete orthonormal set, this
impact factor can be expanded in the form

Φp(k) =
∑

i

bifi(k),
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where the first four coefficients, bi were fit to data.
Unfortunately, when we tried to reproduce the full impact factor from this fit, we obtained

an un-integrated gluon density g̃(x, k2), which becomes negative over a sufficient range that the
(integrated) gluon density

g(x, Q2) ≡
∫ Q2

g̃(x, k2)dk2,

is also negative.
We therefore sought a solution in which the impact factor has a “sensible” form such as

Φp(k) = Ak2e−bk2

, or
A

(k2 + µ2)α
.

This suggested that taking only the first four eigenfunctions was insufficient. Indeed, if we
take n0 eigenfunctions , where the first eigenvalue is ω1 and the last is ωn0 then we expect an
error of order x(ω1−ωn0 ). This is 30% for x ∼ 10−2 and 17% for x ∼ 10−3.
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Figure 1: The effect on the un-integrated gluon density from increasing the number of eigen-
functions included.

We are now able to construct many more eigenfunctions, but we find that, although the un-
integrated gluon density becomes positive at relatively large k when 30 eigenfunctions are used,
the range of negative values still generates a physically unacceptable negative gluon density
and that a further increase in the number of eigenfunctions taken only marginally improves this
situation, as can be seen in Fig. 1.

We now understand why this is the case. A detailed explanation will appear in a forthcoming
publication [4]. Within the context of a fixed phase for the oscillations at low transverse
momentum, an adjacent eigenfunction has a larger kcrit by approximately one half wavelength,
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Figure 2: Sketch of eigenfunctions numbers 5 and 6.

whereas the frequency of the oscillations in the relevant range of k is almost identical. This is
demonstrated in Fig. 2.

In Fig. 3 we plot the initial frequencies (i.e. the frequencies for k � kcrit) for the first 30
eigenfunctions and note that they accumulate at a value νmax ∼ 0.7. This means that we can
only expect to expand an impact factor as a sum of these eigenfunctions provided the impact
factor has non-negligible support up to a value of transverse momentum kmax where

νmax ln

(
kmax

k0

)
� π.

The minimum value of k0 that can be taken without encountering serious perturbative insta-
bilities is k0 ∼ 0.3GeV, which leads to a kmax far larger than the expected value for a proton
impact factor which should be O(ΛQCD).

Put another way, this means that an impact factor with support for k ≤ ΛQCD is not
compatible with a fixed phase at k0 ∼ 0.3GeV. This in turn implies that the second assumption
of [3] needs to be revisited.

At leading order, we can write the BFKL equation with running coupling in the form
∫

K0(k,k′)fi(k
′)d2k′ =

ωi

αs(k2)
fi(k).

In the infrared limit, as αs increases, the RHS goes to zero and it was therefore argued in
Ref. [3] that the infrared limit of the eigenfunctions, fi(k), would be independent of ω and
hence possess a universal phase.

In practice, however, with an infrared cutoff k0 ∼ 0.3GeV, the ratio ωi/αs(k
2) is not

negligibly small and so we might expect the infrared phase, η, to have a dependence on ω.
Within perturbation theory (recalling that the eigenvalues ω can be expanded in powers of

αs starting at first order), such a dependence is expected to be analytic, so that one would
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Figure 3: The oscillation frequencies for gluon transverse momentum k � kcrit for the first 30
eigenfunctions.

expect an improved fit (with small ω) with a phase η(ω) of the form

η(ω) = η0 + η′ω

Unfortunately, we were neither able to obtain a satisfactory fit using this ansatz for η, nor to
rectify the problem of a negative gluon density. The best fit has a χ2/DoF of 3.0.

However, since we are probing the non-perturbative behaviour of QCD, we are entitled to
drop the requirement that η should be an analytic function of ω and try, for example, an ω
dependence of the form

η(ω) = η0 + η′√ω .

We found that this can generate a gluon distribution which is positive everywhere, as shown
in Fig. 4, and produce a fit to HERA data with a χ2/DoF of 1.1.

In Fig. 5 we show the best fits for the linear (dotted line) and non-linear (solid line) fits to
the Zeus low-x data, using an impact factor of the form

Φp(k) = Ak2e−bk2

The three free parameters used (apart from the overall normalization - which serves as a fourth
parameter) are

Linear Non-linear

b [GeV−2] 2.0 2.0
η0 −0.74π −0.74π
η′ 2.8π 1.4π
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x = 10-2
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Figure 4: The left-hand graph shows the un-integrated gluon density with a fixed infrared phase
and with a non-linear ω-dependent phase. The right-hand graph shows the un-integrated (solid
line) with the non-linear ω-dependent infrared phase, and the corresponding (integrated) gluon
density (dotted line).
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Figure 5: Fit to Zeus [5] low-x data with linear ω-dependence (dotted line) and non-linear
ω-dependence (solid line)
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We therefore have a low-x gluon density which is everywhere positive, fits the HERA data,
and is consistent with the modified BFKL equation provided one allows a non-analytic depen-
dence of the infrared phase, η, on the eigenvalue, ω, thereby reflecting the non-perturbative
nature of the infrared effects.

This gluon density can now be tested by applying it to the prediction of cross-sections (such
as jet production) at LHC which are dominated by the low-x gluon distribution.

References

[1] J. Ellis, H. Kowalski, and D.A. Ross Phys. Lett. B668 51 (2008).

[2] Y.Y. Balitski and L.N. Lipatov, Sov. J. Nucl. Phys.28 82 (1978);
V.S. Fadin, E.A. Kuraev, and L.N. Lipatov, Sov. Phys. JETP 44 443 (1976)

[3] L.N. Lipatov, Sov. Phys. JETP 63 904 (1986)

[4] J. Ellis, H. Kowalski, L.N. Lipatov, D.A. Ross and G. Watt, in preparation.

[5] J. Breitweg et. al (Zeus collaboration), Phys. Lett. B487 53 (2000);
S. Chekanov et. al. (Zeus collaboration), Eur. Phys. J. C21 443 (2001)

D A ROSS, J ELLIS, H KOWALSKI, L LIPATOV, AND G WATT

146


