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The Universe may harbor relics of the post-inflationary epoch in the form of a network of self-
ordered scalar fields. Such fossils, while consistent with current cosmological data at trace levels,
may leave too weak an imprint on the cosmic microwave background and the large-scale distribution
of matter to allow for direct detection. The non-Gaussian statistics of the density perturbations
induced by these fields, however, permit a direct means to probe for these relics. Here we calculate
the bispectrum that arises in models of self-ordered scalar fields. We find a compact analytic
expression for the bispectrum, evaluate it numerically, and provide a simple approximation that
may be useful for data analysis. The bispectrum is largest for triangles that are aligned (have
edges k1 ≃ 2k2 ≃ 2k3) as opposed to the local-model bispectrum, which peaks for squeezed triangles
(k1 ≃ k2 ≫ k3), and the equilateral bispectrum, which peaks at k1 ≃ k2 ≃ k3. We estimate that this
non-Gaussianity should be detectable by the Planck satellite if the contribution from self-ordering
scalar fields to primordial perturbations is near the current upper limit.

PACS numbers: 98.80.-k, 98.80.Cq, 11.30.Fs

I. INTRODUCTION

A wealth of precise cosmological data are in good
agreement with the predictions of the simplest single-field
slow-roll (SFSR) inflationary models [1]. Still, no theo-
rist considers these as anything more than toy models.
Realistic models must surely be more complicated, and
they generically predict that there should arise, at some
point, observable phenomena that depart from the pre-
dictions of SFSR inflation. Some possible directions for
physics beyond the SFSR approximation include multi-
field models [2, 3] and inflaton models with non-standard
kinetic terms [4]. There has also been investigation of the
consequences of topological defects [5] produced toward
the end of or after inflation [6].

If inflation was followed by a transition associated
with the breaking of a global O(N) symmetry, then self-
ordering scalar fields (SOSFs) are another possibly ob-
servable early-Universe relic, even if there are no topo-
logical defects (i.e., if N > 4). Here, the alignment
of the scalar field as the Universe expands gives rise
to a scale-invariant spectrum of isocurvature perturba-
tions, without topological defects [7]. Sample variance on
the current data limit these perturbations to contribute
no more than ∼ 10% of large-angle cosmic-microwave-
background (CMB) anisotropy power [9, 10]. SOSF mod-
els are parametrized simply by the number N of scalar
fields and the vacuum expectation value v. The CMB
constraint implies (v/N1/4) . 5 × 1015 GeV, as we ex-
plain below. At this low amplitude, it is unlikely that
any surviving relics leave a distinct imprint on the CMB
power spectrum [11].

In recent years, non-Gaussianity has been developed as
a novel tool to investigate beyond-SFSR physics [12, 13].
SFSR models do not predict that primordial pertur-

bations should be Gaussian, but the departures from
Gaussianity that they predict are unobservably small
[14–16]. Multi-field models [2], such as curvaton mod-
els [3], string-inspired DBI [4, 17] models, and models
with features in the inflaton potential [15, 18] can all
produce larger, and possibly observable, deviations from
non-Gaussianity. For example, the detailed shape (trian-
gle dependence) of the bispectrum may also help distin-
guish these different scenarios. The “local-model” bis-
pectrum, like that which arises in curvaton and multi-
field models, has a very different shape dependence than
“equilateral-model” bispectra, like those in DBI mod-
els. Non-Gaussianity can be sought in the CMB [19],
large-scale structure (LSS) [20], and the abundances and
properties of gravitationally-bound objects [21] or voids
[22]. Biasing may significantly amplify the effects of non-
Gaussianity [23] in the galaxy distribution.

The energy-density perturbations in self-ordering
scalar fields are quadratic in the scalar-field perturba-
tion, which may itself be approximated as a Gaussian
field. The density perturbations induced by SOSFs are
thus expected to be highly non-Gaussian [7, 24, 25], even
in the absence of topological defects. It is thus plausi-
ble that the non-Gaussianity induced by SOSFs might
be detectable, even if they provide only a secondary con-
tribution to primordial perturbations.

In this paper, we perform the first calculation of the
full shape (triangle) dependence of the bispectrum from
SOSFs. We follow the formalism for non-Gaussianity
developed in Ref. [24]. We find considerably simplified
formulas for the bispectrum, evaluate them numerically,
and find a simple approximation to aid in data-analysis
efforts. We estimate the current non-Gaussianity con-
straint to the model parameter space and find it to be
comparable to that from the upper limit to isocurvature
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perturbations from CMB fluctuations.

The plan of this paper is as follows: In Section II, we
define the model, write the scalar-field equations of mo-
tion, show that the dynamics are those of a nonlinear-
sigma model, and introduce the large-N scaling limit for
the nonlinear sigma model. In Section III, we write the
relation between the matter-density perturbation and the
scalar-field perturbation. In Section IV, we derive the
power spectrum for density and curvature perturbations,
discuss the normalization, and derive current constraints
to the v-N parameter space from upper limits to the
SOSF contribution to CMB fluctuations. In Section V,
we discuss the calculation of the bispectrum, the cen-
tral focus of this paper. We present a simplified ver-
sion, our Eq. (26), of the matter-bispectrum expression
in Ref. [24], evaluate it numerically, and provide a sim-
ple analytic approximation for the results. We write the
bispectra for matter and curvature perturbations, define
a non-Gaussianity parameter fσ

nl for the model, and esti-
mate the current constraint to fσ

nl from the CMB. Section
VI presents the matter bispectrum for modes that en-
tered the horizon during radiation domination, those rel-
evant for galaxy surveys. The central results of the paper
are Eq. (33) for the curvature bispectrum; Eq. (32) which
defines fσ

nl in terms of the SOSF model parameters v and
N ; Eq. (28) which approximates the bispectrum func-
tion g3(k1, k2, k3); and Eqs. (34) and (35) which present
the matter bispectrum in a form useful for galaxy sur-
veys. We make concluding remarks in Section VII. An
Appendix contains some calculational details and useful
approximations.

II. SCALAR-FIELD DYNAMICS

Self-ordering scalar fields are described by an N -
component scalar field with an O(N) symmetry that is
spontaneously broken to O(N − 1).1 After symmetry
breaking, the scalar field lies in different places in its
SN−1 vacuum manifold in different causally disconnected
regions of the Universe. As the Universe expands and
these previously causally-disconnected regions come into
causal contact, field gradients tend to align the scalar
field. The rate of alignment for these fields is limited only
by causality, and so the fields become aligned within a
few Hubble times after horizon crossing. Still, as the
Universe expands, there are continually new causally-
disconnected regions, on ever larger scales, that enter
the horizon. The result is thus a continual scale-invariant
generation of new scalar-field perturbations. In this Sec-
tion, we describe the scalar-field dynamics; the following
Section then describes how the gradient energy density
in these scalar fields induce perturbations to the matter

1 We assume that the issues about global symmetries raised in
Refs. [26] are somehow solved [27].

density.

The starting point is an N -component scalar field ~Φ =
(φ1, φ2, · · · , φN ), with φa real, with Lagrangian density,

L = −(∇µ
~Φ) · (∇µ~Φ)− λ

4

(

|~Φ|2 − v2
)2

, (1)

where λ is the dimensionless self-coupling of ~Φ, and v
is the magnitude of the vacuum expectation value (vev)
in the true vacuum. At temperatures T ≪ λ1/4v, the
O(N) symmetry of the Lagrangian is spontaneously bro-
ken, and the field is thereafter restricted to the SN−1

vacuum manifold. The dynamics is thus effectively that
of N − 1 massless Nambu-Goldstone modes which we
describe in terms of the N fields φa with the effective
Lagrangian density,

L = −(∇µ
~Φ) · (∇µ~Φ) + Λ(|~Φ|2 − v2), (2)

where Λ is a Lagrange multiplier that enforces the con-

straint |~Φ|2 = v2. The resulting equations of motion are

φa′′(x, η) + 2Hφa′(x, η)

−
[

∇2 +
1

v2
(∇µ

~Φ) · (∇µ~Φ)

]

φa(x, η) = 0,

(3)

where the primes denote derivatives with respect to con-
formal time η, and H = a′/a in terms of the Friedmann-
Robertson-Walker scale factor a(η). Also, ∇2 is here a
spatial Laplacian in comoving coordinates. Eq. (3) repre-
sents the non-linear sigma model (NLSM from now on),
that describes the evolution of the scalar field after spon-
taneous symmetry breaking.
In the large-N limit, the field components become in-

dependent of each other (up to corrections of orderN−1).
We thus replace the bilinear term in the equation of mo-
tion by an ensemble average,

(∇µ
~Φ) · (∇µ~Φ) = N 〈(∇µφ

a)(∇µφa)〉 ≡ T (η) , (4)

where there is no sum on a in the second equality, and
in the last equality we have made the usual ergodic as-
sumption, replacing the ensemble average by a spatial
average.
The only timescale in the problem is that set by the

(comoving) horizon H−1 ∝ η, so by dimensional con-
siderations T ∝ H2, and T (η) = To/η

2, with To > 0.
We then replace the non-linear term in the NLSM equa-
tion of motion, Eq. (3), by this expectation value and in
this way linearize the equations of motion. Introducing
α = d log a/d log η and Fourier transforming the spatial
dependence of the equations,

φa(k, η) =

∫

d3xφa(x, η)e+ik·x , (5)

we obtain

φa ′′

k +
2α

η
φa ′

k +

(

k2 − To

v2η2

)

φa
k = 0 , (6)
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with α = 1 for a radiation-dominated Universe and α = 2
for a matter-dominated Universe. For constant α, the
solution to Eq. (6) that is finite as η → 0, is φa(k, η) =
vǫa(k)f(kη), with f(x) ≡ x1/2−αJν(x), and Jν(x) is a
Bessel function. Here, ǫa(k) is the amplitude of mode k,
and ν is fixed by ν2 = (1/2− α)2 + (To/v

2).
In the large-N limit, the statistical distribution of each

field component approaches a Gaussian distribution with
mean 〈φa(x, η)〉 = 0 and variance

〈

φa(x, η)φb(x, η)
〉

=

(v2/N)δab. The initial field component φa(x, η = 0) takes
on a random value at each point in space. We thus take
the {ǫa(k)} to be Gaussian random variables with mean
〈ǫa(k)〉 = 0 and variance,

〈

ǫa(k)ǫb(k′)
〉

= (2π)3|k|−n δab
AN

δD(k+ k′) , (7)

where δD(k) is the Dirac delta function, and A is a nor-
malization constant to be determined below. The power-
law dependence on k is taken since the initial conditions
are scale-free.
The power-law index n in Eq. (7) is fixed by the con-

dition that
〈

φa(x, η)φb(x, η)
〉

= (v2/N)δab for all η:

〈

φa(x, η)φb(x, η)
〉

= δabv
2

∫

d3k

(2π)3

∫

d3k′

(2π)3

× 〈ǫa(k)ǫa(k′)〉 f(kη)f(k′η)

=
4πv2δab
(2π)3AN

∫

dk k2−n f2(kη).(8)

We see that n = 3 gives a result that is independent of
time, and so we choose n = 3 hereafter.
Just after symmetry breaking, at conformal time η∗,

the field correlation is then

〈

φa(k, η∗)φ
b(k′, η∗)

〉

∝ f2(x∗)
〈

ǫa(k)ǫb(k′)
〉

∝ η3∗|k|1−2α+2ν−3δD(k+ k′) .

(9)

Since the initial values φa(x, η∗) are uncorrelated on
scales k ≪ η−1

∗
, we set ν = α + 1, so that the initial

field is described by a white-noise power spectrum. This
then fixes (To/v

2) = 3α+ (3/4).
We now return to Eq. (8) to fix the normalization con-

stant A. From

〈

φa(x, η)φb(x, η)
〉

=
v2δab
2π2AN

∫

∞

0

dxx−2αJ2
α+1(x)

=
v2δab
N

, (10)

we find

A =
1

8π2

Γ(α)

Γ(2α+ 3/2)Γ(α+ 1/2)
. (11)

For α = 2 (matter domination), A = 16/2835π3 =
1.82 × 10−4, and for α = 1 (radiation domination),
A = 2/15π3 = 4.3× 10−3.

III. MATTER-DENSITY PERTURBATIONS

Although the scalar field will initially take on differ-
ent values in different causally-disconnected regions, the
curvature perturbation is initially zero. The scalar-field
gradient-energy perturbation that arises as previously
causally-disconnected regions come into causal contact is
then compensated by a perturbation in the matter den-
sity [24, 28].
In this Section, we calculate the time evolution of the

matter perturbation. The action of the scalar field oc-
curs primarily within a few Hubble times after a partic-
ular Fourier mode k enters the horizon. The subsequent
evolution of the mode is then governed by gravitational
infall as if it were a primordial perturbation; i.e., the
perturbation amplitude grows only logarithmically dur-
ing radiation domination, and then grows with the scale
factor during matter domination. Our strategy here will
be to evaluate the matter-perturbation amplitude several
Hubble times after horizon crossing, a calculation that is
relatively straightforward. Strictly speaking, our calcula-
tion applies only to modes that enter the horizon during
matter domination, but we argue below that our ulti-
mate results for the bispectrum should also be roughly
valid for the smaller-scale modes that enter the horizon
during radiation domination, those relevant for galaxy
surveys.
As described in Ref. [24], the scalar-field align-

ment involves density perturbations that then lead to
gravitational-potential perturbations which in turn in-
duce the perturbations to the matter density that are our
ultimate interest. Following Ref. [24], the matter-density
perturbation induced by the scalar field for modes that
enter the horizon during matter domination is

δ(x, η) =
2πG

5
η2

∫

dη′ ∂iT0i(x, η
′) , (12)

where G is Newton’s constant, and

T0i = (∂0φ
a)(∂iφ

a) , (13)

is the 0i-component of the stress-energy tensor of the
multicomponent scalar field. The integral in Eq. (12)
approaches a constant for η ≫ few/k—i.e., within a few
Hubble times after horizon crossing. The subsequent η2

evolution in the prefactor is then simply the δ ∝ a ∝ η2

linear-theory growth of the perturbation amplitude in a
matter-dominated Universe.
Using G = 1/M2

Pl, where MPl = 1.22×1019 GeV is the
Planck mass, and defining

C ≡ 2π

5

(

v

MPl

)2

, (14)

the Fourier transform of the density perturbation is

δ(k, η) = −Cη2
∫

d3q

(2π)3
ǫa(q)ǫa(k− q) |k − q| (k · q)

×
∫

dτ f ′(|k− q|τ)f(qτ) , (15)
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where f ′(y) ≡ df/dy. The crucial qualitative feature is
that δ(k, η) is quadratic in powers of ǫa(k). And since
ǫa(k) is a nearly Gaussian field, the density field δ(x) will
be highly non-Gaussian.

IV. THE POWER SPECTRUM

The power spectrum P σ(k) for matter-density pertur-
bations induced by the scalar field is defined by

〈δ(k)δ(k′)〉 = (2π)3 δD(k+ k′)P σ(k), (16)

where the angle brackets denote an average over all re-
alizations of the random field δ(k). The calculation of
the power spectrum is lengthy but straightforward; de-
tails are provided in the Appendix. The result, given in
Eq. (40), can be re-written,

P σ(k, η) ≡ C2η4

(2π)2A2

k

N

∫

∞

0

dv v3

×
∫ 1

−1

dl I(v, b) l [I(v, b) v l + I(b, v)(1 − v l)] ,

(17)

where b =
√
1 + v2 − 2v l, and

I(a, b) ≡
∫

ds
f(as)f ′(bs)

a3/2b1/2
. (18)

Strictly speaking, the upper limit in this integral is kη.
However, here we will restrict our attention to modes
that have evolved well within the horizon, kη ≫ 1, and
so we take the upper limit of the integral in Eq. (18) to be
infinity. In this case, the integral I(a, b) is antisymmetric
in its arguments, and the power spectrum can be written

P σ(k, η) ≡ C2η4

A2

k

N
g2, (19)

where

g2 ≡
∫

d3v

(2π)3
[I(v, |ẑ − v|)]2 (ẑ ·v) [2(ẑ · v) − 1] , (20)

and ẑ is a unit vector. Details on the evaluation of I
are given in the Appendix. For α = 2 (matter domi-
nation), the integral evaluates to g2 = 3.3 × 10−7 and
for α = 1 (radiation domination) it is g2 = 2.1 × 10−4.
Note that the ratios g2/A

2 that appear in Eq. (19) are
approximately 10 and 11, respectively, for α = 2, 1, im-
plying that the amplitude of the matter perturbation in-
duced by the unwinding of the scalar field is the same, to
O(10%), for modes that enter the horizon during matter
and radiation domination.

A. Normalization of the power spectrum

We now estimate the constraints to the v-N parameter
space from the empirical constraint that the SOSF pro-
vide no more than a fraction pσ ≃ 0.1 to Cl=10 [9], the

CMB temperature power spectrum at multipole moment
l = 10.

On subhorizon scales during matter domination, the
curvature perturbation ζ(x) is related to the gravita-
tional potential Φ(x) by ζ(x) = (5/3)Φ(x). The grav-
itational potential is related to the density perturbation
through the Poisson equation, ∇2Φ = 4πGa2ρ̄δ, where
ρ̄ is the mean density. In Fourier space, the curvature
perturbation ζ(k) is thus related to the matter-density
perturbation δ(k) by

ζ(k) = −5

2

(

aH

k

)2

δ(k) , (21)

where we have used the Friedmann equation H2 =
8πGρ/3, and H = (da/dt)/a is the expansion rate. The
amplitude of the curvature power spectrum due to the
SOSF is therefore,

∆2
Rσ ≡ k3

2π2
Pζ(k) =

k3

2π2

[

5

2

(

aH

k

)2
]2

P (k)

= 8

(

v

MPl

)4
g2

A2N
≃ 80

(

v

MPl

)4
1

N
, (22)

where we have used (aHη) = 2 during matter domina-
tion. The next step is then to determine the relation
between the curvature–power-spectrum amplitude ∆2

Rσ
and the temperature-fluctuation amplitude. This is a
notoriously difficult calculation, but to get an estimate,
we use Fig. 4 in Ref. [29], which shows that the large-
angle temperature fluctuation ∆T in a SOSF model is
Gsw ≃ 10 times greater than it would be in an adiabatic
model with the same matter–power-spectrum normaliza-
tion on large scales.2 Current CMB measurements in-
dicate a curvature power spectrum ∆R ≃ 5 × 10−5, if
primordial perturbations are adiabatic. If the SOSF pro-
vides Gsw times more ∆T for fixed curvature, and if they
make a fractional contribution pσ to the large-angle tem-
perature variance, then ∆2

Rσ = (pσ/G
2
sw)∆

2
R
. We thus

obtain

v

N1/4
=

(

pσA
2∆2

R

8G2
swg2

)1/4

MPl .
MPl

2000
, (23)

where the numerical result is obtained by taking pσ = 0.1
and Gsw = 10. The numerical upper limit in Eq. (23) is
in good agreement with limits obtained from simulations
[31].

2 The factor of 10 is a bit larger than the factor of 6 one might
attribute due to the difference (1/3 versus 2) for the Sachs-Wolfe
amplitude for adiabatic and isocurvature perturbations. The ad-
ditional ∆T may be due in part to the vector and tensor pertur-
bations that are also excited in SOSF models.
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V. THE BISPECTRUM

A. The calculation

The calculation of the bispectrum proceeds analo-
gously. The matter bispectrum B(k1, k2, k3) is defined
by

〈δ(k1)δ(k2)δ(k3)〉 = (2π)3δD(k1 + k2 +k3)B(k1, k2, k3).
(24)

Although the definition of the bispectrum is nominally in
terms of the vector quantities ki, the triangle constraint
k1 + k2 + k3 = 0 imposed by the Dirac delta function,
as well as statistical isotropy, imply that the bispectrum
is most generally a function of the magnitudes ki of the
three sides of the triangle. Again, some details of the
calculation are provided in the Appendix. The result is

B(k1, k2, k3) =
C3η6

A3N2
g3(k1, k2, k3) , (25)

where

g3(k1, k2, k3) ≡
∫

d3v

(2π)3
H(u+ v,v)

×H(v, ẑ− v)H(ẑ − v,u+ v), (26)

with

H(a,b) ≡ I(a, b)(b2 − a2) . (27)

We have chosen ~k1 in Eq. (26) to be in the ẑ direction,
without loss of generality, and we have then defined u ≡
k2/k1. Note that H(~a,~b) = H(a, b) = H(b, a); i.e., it is a
function only of the magnitudes of its arguments, and it is
symmetric in its arguments. Note further that H(a, b) ≤
0, and thus g3(k1, k2, k3) < 0. The function g3(k1, k2, k3)
depends only on the shape of the triangle, not on its
overall size—i.e., g3(k1, k2, k3) = g3(1, k2/k1, k3/k1)—a
consequence of the scale-invariance of SOSFs. We have
checked that Eq. (26) is equivalent to, although far sim-
pler, than Eq. (59) in Ref. [24]. Given the symmetry
of H(a, b) in its arguments, it is simple to check that
g3(w − ẑ − u) = g(u), as it should (given that the three
sides of the triangle should add as ẑ + u + w = 0). If
we set the third side to have length w = k3/k1, then
cos θ ≡ u · ẑ = (w2 − 1 − u2)/(2u). If we choose
k1 ≥ k2 ≥ k3, then cos θ < −(2u)−1.
We have calculated g3(k1, k2, k3) numerically, and the

result is shown in Fig. 1. We note (prefacing the dis-
cussion below) that the quantity, −g3(1, x2, x3), with
x2 = k2/k1 and x3 = k3/k1, that we plot is the
same (up to some normalization factor) as the quantity
F (q, x2, x3)x

2
2x

2
3 plotted in Figs. 1 and 2 in Ref. [32] which

show, respectively, the bispectra for the local-model and
equilateral model. Those figures show that the local-
model bispectrum peaks sharply for “squeezed” triangles
(k1 ≃ k2 ≫ k3) and that the equilateral-model bispec-
trum peaks at equilateral triangles (k1 ≃ k2 ≃ k3). Our

FIG. 1: The function −g3(k1, k2, k3), taking k1 = 1, for modes
that enter the horizon during matter domination. The figure
looks virtually identical for modes that enter the horizon dur-
ing radiation domination.

Fig. 1 shows that the SOSF bispectrum is, however, quite
different. It is nonzero for equilateral triangles, goes to
zero in the squeezed limit, and it peaks for “aligned”
triangles, k1 ≃ 2k2 ≃ 2k3.
To aid in data-analysis efforts, we have found that the

following approximation reproduces the numerical results
for g3(k1, k2, k3) to within a few percent:

g3(k1, k2, k3) = − A3

143

(

262− 127
k2
k1

)

×
[

947
k3
k1

− 1770

(

k3
k1

)2

+ 893

(

k3
k1

)3
]

,

(28)

where we take k1 ≥ k2 ≥ k3 in this expression.

B. Curvature Bispectrum

To compare with results for other models, and for com-
parison with CMB constraints, we next calulate the cur-
vature bispectrum F (k1, k2, k3), defined by

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δD(k1 +k2+k3)F (k1, k2, k3).
(29)

Using the relations above, we can write C2 =
(π2/50)(A2N∆2

Rσ/g2) and then find,

F σ(k1, k2, k3) = −2
√
2π3∆3

Rσ

g
3/2
2 N1/2

g3(k1, k2, k3)

k21k
2
2k

2
3

. (30)

A few observations: (1) It is only the amplitude, not the
shape, that depends on the symmetry-breaking scale v.
(2) The bispectrum decreases, for fixed ∆Rσ, as N−1/2

with increasing N , again reflecting that the model should
become increasingly Gaussian with more fields, a conse-
quence of the central-limit theorem. (3) The scaling with
∆R is ∝ ∆3

R
, as opposed to the ∆4

R
scaling of the local-

model bispectrum. In words, the non-Gaussianity is of
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order unity, a consequence of the fact that the density
perturbation is the square of a Gaussian random field
[cf., Eq. (12)], rather than something very small, as in
inflationary models.
We now put the curvature bispectrum in a slightly

more familiar form by defining a non-Gaussianity pa-
rameter fσ

nl for the model. To do so, we recall that the
local-model prediction for the curvature bispectrum is,

F local(k1, k2, k3) = 2
3

5
(2π2)2∆4

R
f local
nl

×
[

1

k31k
3
2

+
1

k32k
3
3

+
1

k31k
3
3

]

, (31)

where f local
nl is the local-model non-Gaussianity parame-

ter, defined by writing the curvature as ζ(x) = ζg(x) +
(3/5)f local

nl

[

(ζg)
2(x) −

〈

(ζg)
2(x)

〉]

in terms of a Gaussian
field ζg(x).
We now define the non-Gaussianity parameter fσ

nl for
SOSFs by equating the local-model and SOSF bispectra
for equilateral triangles; i.e., equating Eqs. (31) and (30),
we define,

fσ
nl ≡ − 5 p

3/2
σ g3(1, 1, 1)

18
√
2π N1/2g

3/2
2 ∆RG3

sw

≃ 40G−3
sw

( pσ
0.1

)3/2
(

N

5

)−1/2

≃ 3G−3
sw

(

v

5× 1015GeV

)6 (
N

5

)−2

. (32)

With this fσ
nl, the curvature bispectrum can then be writ-

ten

F (k1, k2, k3) =
18

5
(2π2)2∆4

R

fσ
nl

k21k
2
2k

2
3

g3(k1, k2, k3)

g3(1, 1, 1)
. (33)

Similarly, the gravitational-potential bispectrum can be
obtained by multiplying this expression by 5/3 and then
replacing ∆2

R
by ∆2

Φ = (3/5)2∆2
R
. Note that fσ

nl is mani-
festly positive, unlike fnl for the local or equilateral mod-
els, which may take on either sign.

C. Estimate of CMB Constraints

As indicated in the Introduction, the bispectrum can
be probed with the CMB, large-scale structure, and the
abundances of objects. The strongest current constraints
to the local-model bispectrum come from the CMB [33],
followed closely by galaxy-clustering constraints. Given
that SOSFs produce a larger temperature-fluctuation
amplitude for a given density-perturbation amplitude, we
surmise that the CMB will provide stronger constraints
to SOSF non-Gaussianity than galaxy clustering. We
thus now estimate a constraint to fσ

nl from the CMB.
Before doing so, we first caution that Eq. (33) is de-

rived for the curvature perturbation only for modes once
they are well within the horizon. It is thus not, strictly

speaking, appropriate for CMB modes l . 100. Still, the
shape dependence of the bispectrum, and its amplitude
relative to the curvature-perturbation amplitude, arises
primarily from the quadratic dependence of the density
perturbation on the scalar-field perturbation as encoded
in Eq. (15). The shape dependence of the bispectrum we
calculate should thus be at least roughly correct even for
l . 100.
CMB constraints to fnl are typically applied assum-

ing that the density perturbations are adiabatic, which
implies a certain relation, (∆T/T ) ≃ −ζ/5, for the large-
angle temperature fluctuation. In our case, though, there
is roughly Gsw ≃ 10 times more ∆T for a given ζ than
in adiabatic models. If so, and if all of these tempera-
ture fluctuations are due to scalar perturbations (rather
than vector and/or tensor modes), then the implied CMB
bispectrum should be roughly G3

sw times larger. Simu-
lations show, though, that only a fraction fs ≃ 0.5 of
the SOSF temperature-fluctuation power is due to scalar
modes, the rest coming from vector and tensor perturba-
tions [29, 30]. The implied CMB bispectrum should thus

scale with f
3/2
s . Combining these scalings with fσ

nl ∝ G−3
sw

[see Eq. (32)], the Gsw dependence of the CMB bispec-
trum drops out. We can therefore apply CMB constraints
to fσ

nl by identifying the fnl constraints obtained from

the CMB for adiabatic perturbations with G3
swf

3/2
s fσ

nl.
And one final caveat: We disregard the differences in the
temperature power spectra from SOSFs and adiabatic
perturbations.
Keeping these multiple caveats in mind, we proceed

with our very rough estimate by noting that the WMAP-

7 95% C.L. limit to f equil
nl , the non-Gaussianity parameter

for the equilateral model, is−211 < f equil
nl < 266 [34]; this

bispectrum is maximized for equilateral triangles. On
the other hand, the SOSF bispectrum is maximized for
aligned triangles and is zero for squeezed triangles. We

thus conclude that the constraint to G3
swf

3/2
s fσ

nl will be

stronger than that to f equil
nl , but it is not clear—given the

different weightings to squeezed and aligned triangles—
how it will compare with that to f local

nl . Applying these
rough arguments to Eq. (32), with fs ≃ 0.5, then we
estimate a non-Gaussianity parameter in excess of the
predicted threshold fnl ∼ 7 for detection by Planck [35].
For now, however, we simply estimate conservatively that

|G3
swf

3/2
s fσ

nl| . 200.

VI. THE BISPECTRUM FOR GALAXY

SURVEYS

We have carried out our calculations in the regime
where analytic progress is most easily made—i.e., modes
that have entered the horizon during matter domination
and only after those modes have evolved well within the
horizon. Strictly speaking, therefore, our calculations ap-
ply only to galaxy surveys on very large scales—those
generally larger than extant surveys cover—and possibly
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to mid-scale regimes in the CMB.
Still, our results for the bispectrum can be easily

adapted to obtain roughly the bispectrum for smaller-
scale modes, those that enter the horizon during radia-
tion domination and those relevant for galaxy surveys.
The calculation for the evolution of these modes is al-
tered by three effects: (1) The index ν = 1 + α for the
Bessel functions in the scalar-field dynamics (Section II)
is different. However, we have shown that this has no
more than an O(10%) effect on the power-spectrum and
bispectrum. This is simply because the correlations be-
tween different Fourier modes of the scalar-field energy
density are imprinted, through Eq. (15), by the depen-
dence of those Fourier modes on the scalar-field perturba-
tions. This is the same for modes that enter the horizon
during matter and radiation domination. The other two
effects are (2) a slightly different amplitude for the matter
perturbation, relative to the scalar-field energy-density
perturbation, for modes that enter the horizon during
radiation domination [Eq. (32) for RD in Ref. [24], as op-
posed to Eq. (29) in the same reference, our Eq. (12), for
MD]; and (3) the usual linear-theory growth of primordial
isocurvature perturbations through radiation domination
and the transition to matter domination. These latter
two effects amount to a calculation of the transfer func-
tion T (k) for the matter power spectrum in SOSF mod-
els, which can be accomplished either with simulations
[cf., Ref. [29, 31]] or approximately with standard linear-

theory calculations with primordial isocurvature fluctu-
ations. Again, however, although the calculation of the
evolution of the amplitudes of the small-scale density-
perturbation Fourier modes will be far more complicated
than the larger-scale modes we have focused upon, the
correlations between those modes will be, at the O(10%)
level, the same as those we have calculated for larger-
scale modes.

More precisely, all we need to do is replace the density
fields δ(k) in Sections IV and VA by δ(k)T (k), where
T (k) is the SOSF transfer function. The matter power
spectrum P σ(k) due to SOSFs is then obtained from that
in Eq. (19) by multiplying by |T (k)|2, and the matter
bispectrum is obtained by multiplying that in Eq. (25) by
T (k1)T (k2)T (k3). We can then write the normalization
constant (Cη2/A)3 in Eq. (25) in terms of the (processed)
matter power spectra using Eq. (19) to obtain the matter
bispectrum,

B(k1, k2, k3) =
g3(k1, k2, k3)

g
3/2
2 N1/2

[

P σ(k1)P
σ(k2)P

σ(k3)

k1k2k3

]1/2

.

(34)
valid for galaxy-survey scales. Here P σ(k) is the pro-

cessed power spectrum due to SOSFs; i.e., it includes the
transfer function. Using Eq. (32), this can be re-written
in terms of fσ

nl as,

B(k1, k2, k3) =
18

√
2πfσ

nl∆RG3
sw

5p
3/2
σ

g3(k1, k2, k3)

g3(1, 1, 1)

[

P σ(k1)P
σ(k2)P

σ(k3)

k1k2k3

]1/2

≃ 25 fσ
nl

(

Gsw

10

)3
( pσ
0.1

)−3/2 g3(k1, k2, k3)

g3(1, 1, 1)

[

P σ(k1)P
σ(k2)P

σ(k3)

k1k2k3

]1/2

. (35)

We leave further evaluation of this bispectrum, as well as
assessment of current constraints, for future work.

VII. DISCUSSION

If some post-inflationary physics involves the sponta-
neous breaking of an exact O(N) symmetry with N > 4,
then the ordering of these scalar fields may provide a sec-
ondary contribution to primordial perturbations. Cur-
rent constraints allow up to ∼ 10% of the power in pri-
mordial perturbations to be due to SOSFs. SOSF models
are appealing from the theoretical perspective because
they are simple, well-defined, and parametrized only by
the symmetry-breaking scale v and number N of fields.

In this paper we have calculated the matter and cur-
vature bispectra induced by the ordering of such scalar
fields. Given that the density perturbation is quadratic

in the scalar-field perturbation, SOSF density perturba-
tions are expected to be highly non-Gaussian, and if so,
measurements of non-Gaussianity may provide the means
to test these models.

Here we have calculated analytically the bispectrum
due to SOSFs and presented results in a way that
should be easily accessible to those doing measurements
with the CMB and large-scale structure. We find that
the triangle-shape dependence of the bispectrum peaks
for aligned triangles, unlike the local-model bispectrum,
which is largest for squeezed triangles, and the equilat-
eral bispectrum, which is largest for equilateral trian-
gles. We have estimated a current upper limit to the
non-Gaussianity parameter fσ

nl for the model and find
that the implied constraints to the v-N SOSF parameter
space are competitive with those from the upper limit to
CMB temperature fluctuations.

Finally, we have already argued above, in Section VC,
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that the correlation of modes will be similar for the large-
scale modes as they enter the horizon, those relevant for
large-angle CMB fluctuations. We therefore believe that
rough constraints to the model can be derived from CMB
measurements by assuming that the curvature bispec-
trum we calculate is the primordial one.
Clearly, there is room for further numerical work to

test our assumptions and to make our predictions more
precise. In the meantime, though, we believe that our an-
alytic approximation captures the essential physics and
that our bispectrum can be used in the meantime as a
“working-horse” model to derive constraints, from non-
Gaussianity measurements, to this interesting class of
models for secondary contributions to primordial pertur-
bations.
Finally, we note that the model makes a number of

other predictions. Given that density perturbations are
actively generated as new modes come within the hori-
zon, vector and tensor modes will be excited, and these
may give rise to interesting polarization signals [36] in
the CMB and perhaps excite B modes [37] in the CMB
that might be distinguished from those due to inflation
[38]. There will also be a scale-invariant spectrum of pri-
mordial gravitational waves produced [39] that can be

sought in gravitational-wave observatories.
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Appendix: Calculational Details

A. The Power Spectrum

From Eq. (15), the two-point correlator in Eq. (16) is
expressed in terms of the correlator of four ǫa(k)’s. Since
ǫa(k)’s are gaussian distributed, we find via the Wick
theorem,

〈δ(k)δ(k′)〉 = C2η4
∫

d3q d3q′

(2π)6
〈

ǫa(q)ǫa(k− q)ǫb(q′)ǫb(k′ − q′)
〉

× |k− q||k′ − q′|(k · q) (k′ · q′)

∫

dτ f ′(|k− q|τ)f(qτ)
∫

dξ f ′(|k′ − q′|ξ)f(q′ξ)

= C2η4
∫

d3q d3q′

(2π)6
[

〈ǫa(q)ǫa(k− q)〉
〈

ǫb(q′)ǫb(k′ − q′)
〉

+
〈

ǫa(q)ǫb(q′)
〉 〈

ǫa(k− q)ǫb(k′ − q′)
〉

+
〈

ǫa(q)ǫb(k′ − q′)
〉 〈

ǫa(k− q)ǫb(q′)
〉]

× |k− q||k′ − q′| (k · q) (k′ · q′)

∫

dτ f(qτ)f ′(|k− q|τ)
∫

dξ f(q′ξ)f ′(|k′ − q′|ξ) .

(36)

Using Eq. (7), we find

(k · q)(k′ · q′) 〈ǫa(q)ǫa(k− q)〉
〈

ǫb(q′)ǫb(k′ − q′)
〉

= (k · q)(k′ · q′)
∑

a,b

(2π)6

A2N2q3q′3
δaaδbbδD(k)δD(k′) = 0, (37)

(k · q)(k′ · q′)
〈

ǫa(q)ǫb(q′)
〉 〈

ǫa(k− q)ǫb(k′ − q′)
〉

=
(2π)6

NA2q3|k− q|3 (k · q)2 δD(q+ q′)δD(k+ k′) , (38)

and

(k · q)(k′ · q′)
〈

ǫa(q)ǫb(k′ − q′)
〉 〈

ǫa(k− q)ǫb(q′)
〉

=
(2π)6

NA2q3|k− q|3 (k · q) (k · (k− q)) δD(q′ − q+ k)δD(k+ k′) . (39)
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Substituting these expressions into Eq. (36), we obtain

P σ(k) =
C2η4

A2N

∫

d3q

(2π)3

[

(
∫

dτ
f(qτ)f ′(|k− q|τ)
q3/2|k− q|1/2

)2

(k · q)2+

+

(
∫

dτ
f(qτ)f ′(|k− q|τ)
q3/2|k− q|1/2

)(
∫

dξ
f(|k− q|ξ)f ′(qξ)

|k− q|3/2q1/2
)

(k · q) (k · (k− q))

]

=
C2η4

A2

k

N

∫

d3v

(2π)3
I(v, |k̂ − v|)

[

(k̂ · v)2 I(v, |k̂− v|) + (k̂ · v)(1 − k̂ · v)I(|k̂ − v|, v)
]

, (40)

where I(a, b) is defined in Eq. (18). From here we can then introduce g2 in Section IV.

B. The Bispectrum

The bispectrum is obtained by starting with,

〈δ(k1)δ(k2)δ(k3)〉 = −C3η6
∫

d3q1 d
3q2d

3q3
(2π)9

〈

ǫa(q1)ǫ
a(k1 − q1)ǫ

b(q2)ǫ
b(k2 − q2)ǫ

c(q3)ǫ
c(k3 − q3)

〉

× |k1 − q1||k2 − q2||k3 − q3|(k1 · q1) (k2 · q2)(k3 · q3)

×
∫

dτ1 f(q1τ1)f
′(|k1 − q1|τ1)

∫

dτ2 f(q2τ2)f
′(|k2 − q2|τ2)

∫

dτ3 f(q3τ3)f
′(|k3 − q3|τ3) .

(41)

The expectation value of the product of six ǫa(k)’s can be expanded with Wick contractions and, after some algebra,
and using Eq. (7), we find

〈δ(k1)δ(k2)δ(k3)〉 = −(2π)3δD(k1 + k2 + k3)
C3η6

A3N2

∫

d3v

(2π)3
(k̂ · v) I(v, b)

×
{

[

(u · v) I(v, b2)− (u · b2) I(b2, v)
] [

((k̂+ u) · b) I(b, b2) + ((k̂ + u) · b2) I(b2, b)
]

+
[

(u · b I(b, b12)− (u · b12) I(b12, b)
] [

((k̂ + u) · v) I(v, b12) + ((k̂+ u) · b12) I(b12, v)
]

}

,

(42)

where k ≡ |k1|, k̂ ≡ k1/k, u ≡ k2/k, and we have defined b ≡ k̂− v,b2 ≡ u+ v,b12 ≡ k̂+ u− v. Defining g3 as in

Eq. (25) and performing a change of variables v → (k̂− v) in the second term of the above integral, we then find

g3(k1, k2, k3) =

∫

d3v

(2π)3
[

(k̂ · v)I(v, b) + (k̂ · b)I(b, v)
][

(u · v)I(v, b2)− (u · b2)I(b2, v)
]

×
[

b · (k̂ + u)I(b, b2) + b2 · (k̂+ u)I(b2, b)
]

.

(43)

If the upper limit of the integral defining I(a, b) is much greater than one (as expected for sub-horizon modes), such
that I(a, b) = I(b, a), we then obtain

g3 =

∫

d3v

(2π)3
I(v, b) I(v, b2) I(b, b2) (k̂ · (v − b)) (u · (v + b2)) ((k̂+ u) · (b− b2)) . (44)

Finally, simple algebraic re-arrangements in Eq. (44) then results in the far simpler expression, in Eq. (26) for g3,

g3 =

∫

d3v

(2π)3
H(u+ v,v)H(v, k̂ − v)H(k̂ − v,u+ v), (45)

with H(a, b) ≡ (b2 − a2)I(a, b) ≤ 0. This expression is indeed equivalent to Eq. (59) in Ref. [24], although it is
written in a much more compact and simpler way. Note that it is smaller by a factor (2π)3 than that of Ref. [24], as
a consequence of different conventions.

C. Some Integrals and approximations

Once modes are well inside the horizon, the upper limit
for the integral in Eq. (18) is large, and the integral can

then be approximated by

I(a, b) ≡
∫ ∞

0

ds
f(as)f ′(bs)

a3/2b1/2
, (46)
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where f(x) = x1/2−αJ1+α, and α = 2 for matter domi-
nation. The integral can be performed analytically; the
result is

I(a, b) =











1
b3F (a2/b2), for a < b,

− 1
a3F (b2/a2), for a > b,

(47)

where

F (x) ≡ 3
√
π

4n

[

x 2F1

(

5
2 ,

5
2 − n;n+ 2;x

)

Γ(n+ 2)Γ
(

n− 3
2

)

− 2F1

(

5
2 ,

3
2 − n;n+ 1;x

)

Γ(n+ 1)Γ
(

n− 1
2

)

]

, (48)

2F1(w, x; y; z) is the hypergeometric function, and n =
1+α is the order of the Bessel function. While straight-
forward to evaluate numerically, this exact solution may
be computationally expensive to evaluate repeatedly. We
therefore use for our numerical work the approximation,

I(a, b) ≃











−1
96b3

(b/a)κ−1
(b/a)κ+1 , if a < b,

1
96a3

(a/b)κ−1
(a/b)κ+1 , if b < a,

(49)

which provides good agreement with the exact results
with κ = 2.5.
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