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WAKE POTENTIALS OF A RELATIVISTIC CURRENT IN A CAVITY 
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The wake potential of a bunch of charged particles is required for the calculation of energy loss and beam stability 
in high-energy particle accelerators or storage rings. Exact solutions for the wake potential are only known for 
closed cylindrical cavities, and can be obtained either by mode analysis or in the time domain. The equivalence 
of these analytic solutions, as well as the good agreement with numerical methods, shows that there is no "missing 
scalar potential" in the mode analysis, as had been suspected before. The mode analysis can be generalized to 
cavities of arbitrary shape when the resonant frequencies and loss parameters are known for each mode. 

GLOSSARY 

eigenfunctions of the vector potential 
velocity of light 
unit vector in the r, 8, or z direction 
length of the pill-box cavity ("gap" length) 
v=t 
nth root of the Bessel-function lo 
current produced by a line charge density >. 
loss parameter of the mode µ 
half length of parabolic bunch 
radial mode number in a pill-box cavity, n � I 
longitudinal mode number in a pill-box cavity, 
-oo<p<oo 
charge 
time-dependent coefficients of the vector poten­
tial 
time-dependent coefficients of the scalar poten­
tial 
radius of the pill-box cavity 
stored energy in the mode (n, p) 
voltage seen by a particle due to the mode (n, 
p) 
wake potential ( = energy gain in volts) 
wake potential for a point charge (delta function), 
�tep current, Qaussian bunch, _rarabolic bunch, 
arbitrary line-charge density >. 
distance from the bunch centre or reference point 
impedance 
line-charge density of the driving current 
general index for counting resonant modes 
wave number v,,p = w,,plc 
standard deviation of a Gaussian bunch 
eigenfunctions of the scalar potential 
circular resonant frequencies of a pill-box cavity 

able interest for particle accelerators and storage 
rings, as it permits the calculation of the coupling 
impedance-and hence the stability-as well as 
the evaluation of the energy loss of the bunched 
beam. The only geometry which permits exact 
analytic calculations of the wake potential is the 
closed cylindrical cavity, commonly called the 
''the pill box''. Several different approaches to 
calculating the wake potential of a bunch of par­
ticles traversing a pill-box cavity have been pub­
lished in the literature, 1-0 but the equivalence of 
the solutions was not obvious. 

Here we compare the solutions obtained by 
mode analysis and in the time domain with each 
other and also with a recently published numer­
ical method7 solving the problem for general ro­
tational-symmetric cavities. 

In general, we find complete agreement for the 
wake potential of bunches with continuous line­
charge densities, and there is no "missing scalar 
potential" in the mode analysis, as had been as­
sumed before. However, for discontinuous charge 
densities such as delta-function pulses (which can 
be used as the Green's function for arbitrary 
charge densities), agreement is found only if one 
disregards divergent terms which are of no con­
sequence for realistic (continuous) charge dens­
ities. 

1. INTRODUCTION 

Finally, the mode analysis can be generalized 
to arbitrary cavities, for which the wake potential 
is obtained in terms of the loss parameters of 
each of the resonant modes. The resonant fre­
quencies and loss parameters can be obtained 
numerically for certain rotationally symmetric 

The wake potential of a bunch of charged parti­
cles traversing a resonant cavity is of consider-
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cavities with existing computer programs such 
as KN7C8 or SUPERFISH.9 Unfortunately, the 
series for the wake potential converge rather 
slowly for positions inside the bunch-which is 
the case of interest for the coupling impedance­
and there the obtainable accuracy is quite lim­
ited. However, for positions well behind the 
bunch, the series converge faster and thus the 
energy loss can be evaluated more precisely. 

2. PILL-BOX CAVITY 

In this section the wake potential in a pill-box 
cavity will be evaluated using the mode concept 
and the time-domain scheme. Finally these ana­
lytical results will be compared with numerical 
ones. 

2.1. Mode Analysis 
The mode analysis uses the resonant modes of 
a cavity to compute the wake potential. It is as­
sumed first that the contributions of the free 
charges, which cannot be taken into account by 
these modes, vanish. With z0 > 0 as the distance 
between a point charge Q and a test particle be­
hind it, both travelling at the speed of light along 
the axis, the mode concept gives the wake po­
tential as an infinite sum 1 •2 

The kµ are the loss parameters defined by 

k = 
Vµ V� 

µ 4Uµ ' (2) 

U µ is the stored energy in the mode µ and V µ is 
the voltage induced by the point charge. For a 
pill-box cavity these loss parameters can be given 
analytically. 

The normalized field components are 

E n P _ jn l ( . r ) (TrPZ) (. ) z ' - J?. 0 ]n J?. cos g exp lWnp l 

Ern ,p =; 11 (jn �) sin (
Tr

:
Z) exp(iwnp l) 

(3) 

Hen ,p = iwnpEol1 ( jn �) COS ( 
Tr

:
Z) exp(iwnp l), 

where g is the "gap" length of a cavity of radius 

R, jn is the nth zero of the Bessel function 10(x) 
and w;,vlc2 = Un 1R) 2 + (Trplg) 2 = v;,P. 

Hence the voltage becomes 
(I? 

Vnv = Jo Ez(r = 0, z, t = z/c) dz 

= iv�vR [1 - ( - l)P exp(ivnpg)] 
]n 

and further 

Vnp Vnp * = 2 (v
}n

Rr 

(4) 

x [1 - (-l)Pcos(vnvg)]. (5) 

The stored energy is given by 

The loss parameters thus are given by 

1 2 knv = ----­TrEog 1 + Oop 

X 
- ( - I)P COS(V11pg) 

j/li 2 Un) 

(6) 

(7) 

where 80v is the Kronecker symbol. The expres­
sion for the point charge wake potential becomes 

- 2Q 
oc + 00 

WAzo) = - L L TrEog 17 = 1 p = - oo 

X 
- ( - l)P COS(Vnpg) 

. 21 2( • ) COS(Vnp Zo). 
]n I ]n 

(8) 

(By counting p from - oo to + oo rather than from 
0 to oo we avoid a special factor for p = 0.) With 
Q = 1 this expression can be used as the Green's 
function for an arbitrary charge distribution A(x). 
The wake potential is then given by 
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2.2. Time-Domain Analysis 
The electric and magnetic fields induced by a 

bunch of charged particles traversing a cavity can 
be derived from the scalar and vector potentials. 
These potentials can be expressed as infinite se­
ries of the products of the eigenmodes of the 
cavity and of time-dependent factors: 10  

<!>(r, t) = L <!>µ(r)rµ(t) 
µ (1 0) 

A(r, t) = L aµ(r)qµ(t). 
µ 

The summation extends in general over modes 
in all three spatial directions (µ = m, n, p ). For 
a beam passing along the axis of a rotationally 
symmetric cavity however, only azimuthally 
symmetric fields are excited, and the summation 
is limited to radial ( I ::s n ::s oo) and axial ( - oo 
< p < oo) mode numbers. 

The eigenmodes are normalized solutions of 
the homogeneous Helmholtz equations 

(11) 

which fulfil the proper boundary conditions at 
the cavity walls (assumed to be perfectly con­
ducting for simplicity), and where Vnp are the res­
onant frequencies ( x 2Tr/c) of the cavity. The 
time-dependent factors then can be determined 
from the equations 

r np(t) 

= EoV�p { p(r - vt)<!>np(r) dV, 

= ..!_ { J(r - vt)·anp(r) dV, 
Eo Jv 

(1 2) 

where p(r) is the charge density, and J(r) = pv 
the current density of the bunch moving with ve­
locity v. For convenience, we will restrict our 
considerations to bunches moving with light ve­
locity along the cavity axis (v = cez). The inte­
gration extends generally over the volume of the 
beam inside the cavity, and reduces to an integral 
over z for a filamentary beam at the axis (after 
replacing the volume density p by the line density 

A). The initial conditions for qnp will be chosen 
such that there are no fields in the cavity before 
the bunch arrives. In order to include bunches 
of any length, we take qnp( - oo) = <inp( - oo) = 
0. 

The electric field can be obtained from the po­
tentials with the relation 

aA E = - V<!> - at , (13) 

and hence the axial component on the axis (r 
= 0) of an azimuthally symmetric field (a/ae 
0) becomes 

- L [
a<1>np rnp(t) 

n,p az 

+ anpzqnp(t)] (14) 

The wake potential at a distance z0 behind the 
bunch center is defined as the integral over E, 
along the z-axis with ct = z + zo or 

{K 
( Z + Zo) W(zo) = Jo E, z, -

c
- dz. (15) 

In the Appendix we derive the wake potential 
from the vector and scalar potentials of a pill-box 
cavity. In this geometry, the eigenmodes and res­
onant frequencies are given by closed analytic 
expressions. For a bunch of the line-charge den­
sity A(z) we obtain, in general, 

X 
P 

=� 00 { fo
 00 dx cos( Vnpx)[2,\(x - z0) 

- ( - )P A(X - Zo + g) 

- ( - )PA(X - Zo - g)] 

JO 'TrpX 
+ dxcos-

-K g 

(16) 

X [A(x - zo) - ( - )PA(x - Zo + g)]} . 

For continuous charge distributions, we can 
interchange the order of integration and sum­
mation over p. As shown in the Appendix, the 
wake potential is then given by the much simpler 



146 T. WEILAND AND B. ZOTTER 

expression 

2 00 00 

W(zo) = - - L L 'lTEog 11 = I p = - oo 

- ( -)P cos(v,,pg) 
j/J2(j,,) 

X (
00 

X.(x - Zo) COS(VnpX) dx. (17) 
Jo 

For discontinuous charge distributions, such 
as the step or delta-function pulse, this equation 
yields the expressions which are valid after the 
discontinuity has left the cavity (z0 > g). For z0 
< g, the complete expression Eq. ( 16) contains 
a divergent term which is of no consequence for 
realistic (continuous) distributions, which are al­
ways the ultimate aim of the computations. 

For the step-function pulse, the infinite sums 
in Eq. (17) have been summed analytically3 for 
zo < (4R 2 + g2 )

112 
- g, i.e., before reflections 

from the outer cavity wall arrive at the location 
where the wake potential is evaluated (only for 
Zo > g). If the divergent term in Eq. (16) is ig­
nored,5 it yields the same result also for zo < g 
and it thus appears that Eq. (17) may be used 
even for discontinuous distributions for any value 
of z0• 

Equation ( 17) could be reduced further by ex­
changing the order of integration and summation 
also for the infinite integral. However, this leads 
to expressions restricted to z0 < (4R 2 + g 2 ) 112 

- g discussed above. 
We now apply Eq. (17) to a number of typical 

distributions. 

2.2. I. Delta-function pulse X.(z) Qo(zJ 

WAzo) = 
2Q - --

'lTEog 

x COS(V,,pZo), Zo > 0. 

For zo < .(4R 2 + g 2 ) 112 - g, these sums can 
be evaluated analytically and yield 

Q Wd(Zo) = -2 -
(19) 

'lTEog 

x{�+l[�] �+[�]+2}• 

where the square brackets stand for the integer 
part of the term enclosed. 

2.2.2. Step-function pulse >-..(z) = X.0s( - z) 

where 

s(z) = {:, 

Then for zo > 0: 

W,(zo) = 2>-..o 
'lTEog 

for z < 0 
for z = 0 
for z > 0. 

(20) 

x L I - ( -)P cos(v,,pg) sin(vnpZo) 
n .p j,,2Ji 2(j,,)Vnp 

Restricting zo to be smaller than (4R 2 + g 2) u2 

- g, one obtains 3 

W,(zo) = X.o 
2'lTEo 

and hence the wake potential for an arbitrary 
distribution X.(z) 

W"(zo) = 
1 f '" dt-..(z) --- --

2'lTEo o dz 
(22) 

This expression is valid before the arrival of 
reflections from the cylindrical cavity wall, i.e., 
for a limited range of zo (which is here counted 
from the beginning of the bunch). 

2.2.3. Parabolic bunch (half length L) 

t-..(z) = 
!z ( I - 1:) for I z I < L 

0 for I z I> L. 
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Equation (1 7) yields 

0 Zo < 0 

sin Vnp(Zo + L) 
VnpL 

(23) 

X Zo 
- COS Vnp(Zo + L) -

L 
Zo < 0 

2 [
sin Vnp(Zo + L) L] ---'-"'----'----=-----'- - COS V np VnpL 

X COS VnpZO Zo > L. 

For Zo < L < g < (4R 2 + g2) 112 - g these sums 
yield 

3Qg 
[ 

Wµ(Zo) = 41TEoL3 (zo + L) - 2(zo + g) 

( 
Zo + L) L 2 

- zn2 x In I + -- + --- (24) g 2g 

X In ( I + Zo 
2
! L

) ] . 
The same expression is obtained from Eq. (22), 
which takes the form 

3Q 
iz Wµ(Zo) = - 4 L 3 

(L - z) 1TEo 0 

x In ( I + �) dz 
Zo - Z 

for zo < 2g (z0 counted from the head of the 
bunch). 

2.2.4. Gaussian charge distribution with 
standard deviation a 

Q ( 
z 2 ) 

�(z) = 
a� exp - 2a 2 • 

We find from Eq. (22), after evaluation of the 

integral in Eq. (17), 

W c(zo,) = - 1r�g 
exp ( - ;;

2

2) 

J - ( - )P COS Vnpg 
X L · 2 J 2( · ) n .p ]n I ]n 

{ (
Vnpa izo ) } x Re w -- - --
\/2 a\/2 

(25) 

where w(z) is the complex error function, 12 and 
Re stands for the real part. No closed expression 
is at present known to the authors for this sum, 
but it has been evaluated numerically and is com­
pared with purely numerical results in the next 
section. 

2.3. Comparison of Results Obtained by 
Various Methods 

A comparison between Eqs. (8) and (18) for 
the o-function wake potential shows that the time 
domain and the mode analysis yield the same 
analytical expression. A divergent term occurs 
in Eq. (16) in the time-domain calculations for 
the case when zo < g, but has been eliminated 
in Eq. (17). For realistic, continuous charge dis­
tributions no divergence occurs and both meth­
ods give exactly the same answer for all positions 
Zo, 

Therefore one can conclude that any contri­
butions to the wake potential due to free charges 
are correctly obtained in the mode concept and 
thus there is no missing scalar potential contri­
bution as has been suspected in the past. 1 •2 

A further comparison was made between the 
analytic results derived above and numerical re­
sults of the computer program BCI,7 which 
solves the field equations in the time domain di­
rectly by a mesh method, including the effects 
of free charges. 

Figure I shows the wake potential in a range 
of - 4a s zo s 36a for a Gaussian bunch ( a = 
2.5 cm) which has passed a pill-box cavity (R 
= 5 cm, g = 10 cm). An excellent agreement 
(better than Io- 3) can be found for test particles 
"outside" the bunch (z0 2: 4a) .  Although a rough 
mesh was used in the computer program BCI ( 11 
x 21 points), and only 40 modes in the analytic 
sum, both results can hardly be distinguished in 
the range 4a s zo s 36a . 

"Inside" the bunch ( - 4a < Zo < 4a) the ana-
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lytical and numerical results seem to disagree and 
therefore a second figure is given showing the 
wake potential in more detail and with increasing 
precision in both methods. The analytic results 
(broken lines) approach continuously the numer-

1.0 
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- . 60 

-1.0 
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.60 

• 20 

-. 20 

-. 60 

-1.0 

-Y. 0 -2. 0 
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20. 28. 

� 

2. 0 
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y. 0 

FIGURE I (a) The wake potential of a Gaussian bunch (cr 
= 2.5 cm) due to a pill-box cavity (R = 5 cm, g = 10 cm) 
for -4cr :s zo :s 36cr 
--- mode-analysis results (40 modes) 
- results of BCI (11 x 21 mesh). 
(b) The wake potential of a Gaussian bunch (cr = 2.5 cm) due 
to a pill-box cavity (R = 5 cm. g = 10 cm) for -4cr :s zo 
:s 4cr 
--· mode-analysis results for (a) 10 modes. (b) 40 modes. (c) 
160 modes, (d) 640 modes 
- BCI results for different meshes: (A) 6 x 11, (B) 11 x 21, 
(C) 21 x 41. (D) 41 x 81. 

FIGURE 2 The driving current seen by a particle at z0• 

ical results with an increasing number of terms 
in the sum. The numerical results approach the 
analytical ones from the opposite side with an 
increasing number of mesh points. The final dif­
ference between the most accurate results in Fig. 
I b is less than ± 2.5%. 

The reason for this slow convergence of the 
results inside the bunch is the behaviour of the 
Fourier spectrum of the driving current, which 
is suddenly cut off at zo for a beam moving with 
light velocity (see Fig. 2). Because of causality, 
a particle at z0 can only be influenced by fields 
due to particles in front of itself.) 

Inside the bunch, the driving current for the 
wake potential is a function with a large step, 
which leads to a Fourier transform proportional 
to 1/w over a large range. "Behind" the bunch 
the step is small and the Fourier transform of the 
driving term becomes proportional to exp( - w2rr2/ 

2c 2 ) 

The problem occurs in both methods. In the 
analytical expressions the terms with high fre­
quencies do not decay sufficiently fast. In the 
numerical computations the highest frequency 
which can be included is given by the size of the 
largest mesh step. 7 

3. GENERAL CAVITIES 

From Section 2, we know that the wake potential 
of a pill box is determined by the eigenmodes of 
the cavity and by the loss parameters. 

We assume that the same representation can 
be used for a general cavity. The impedance of 
such a cavity can be represented by an LC net­
work as shown in Fig. 3, which is the sum over 
all single resonators 

Z(w) = L 
iwL111 (26) 

m=I 
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ID --- ----
m 

I z ( w) 

FIGURE 3 An LC network representing the cavity .  

It may be rewritten by changing the summation 
index to µ, running over all single poles 

Z(w) = L - ikµ . 
µ W - W µ 

(27) 

The relations between the cavity parameters wµ, 
kµ and the network parameters Iµ, Cµ are chosen 
as 

The Fourier transform of the bunch current, 
which is cut off at zo, is given by (see Fig . 2) 

}1-..(w, Zo) = J "' }1-..(t)eiwt dt. (29) 
- zulc 

Hence we get for the wake potential (see Fig . 3) 

1 J °" 
W1-..(zo) = 271' _ 

00 
}1-..(w. zo)Z(w) 

(30) 

x exp ( - iw �) dw . 

If }1-..(w, z0) has no poles in the complex w-plane, 
which is always true for bunches of a finite length 
and for non-periodic bunches, we can evaluate 
this integral by the residue method. Then 

W1-..(zo) = - ; 11-.. (wµ, zo)kµ exp ( - iwµ �) . 

(3 1 )  

The same result can be obtained by replacing the 
impedance [Eq. (27)) by 

Z(w) = - 271' L kµo(w - wµ), (32) 
µ 

which is much easier to handle. 

To find the wake potential at a position zo be­
hind a reference point for an arbitrary bunch 
shape and for an arbitrary cavity, one thus only 
needs the resonant frequencies wµ , the loss pa­
rameters kµ, �nd the Fourier transforms of the 
bunch (which is cut off at z0 ) evaluated at the 
resonant frequencies . 

For realistic cavities only a limited number of 
resonant frequencies and loss parameters can be 
obtained by numerical methods . For zo inside the 
bunch, a wake-potential computation becomes 
very difficult because of the slow convergence 
of the sum in Eq . (3 I) . However, the series con­
verge much faster for positions (z0 ) well behind 
the bunch and permit a more accurate calculation 
of the wake potential by this method. 

4. CONCLUSIONS 
It has been shown that for a pill-box cavity the 
time-domain calculation and the mode analysis 
yield the same analytical expression for the wake 
potential of realistic bunch shapes . 

Extrapolating this result to arbitrary cavities 
yields an expression for the wake potential as a 
sum over loss parameters and Fourier trans­
forms. This sum converges very slowly for po­
sitions inside the bunch, making it difficult to 
obtain a precise value for the coupling imped­
ance. However, a good approximation to the 
wake potential can be obtained after the bunch 
has passed the cavity , and hence the total energy 
loss of the bunch passing the cavity can be cal­
culated more accurate( y .  

APPENDIX 

WAKE POTENTIAL IN A PILL-BOX 
CAVITY 

( 1 )  Normalized eigenmodes in a cavity: gap 
length g, radius R, a/ae = 0: 

rh ( ) ✓2 lo(Jn r!R) . 71'PZ 
'¥ r = - sm -np 71'g Rl 1 Un) g 

I C 8np(r) = , r--V 71'g Rwnplt (Jn) 

X 

7Tp J (}nr) . 71'PZ - 1 - sm - er 
g R g 

]n J (}nr) 71'PZ R o R cos g ez 

where I ::;; n < oo, - oo < p < oo .  

(A l) 
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The resonant frequencies are given by 

(2) Time-dependent factors for a bunch : line den­
sity A(z) , moving along the z-axis with light ve­
locity v = c. 

c 2 

J
u 

rnp (t) = --2 A.(Z - ct)<l>np (Z ,  r = 0) dz EoWnp o 

(A3) 

X a,,pz (z , r = 0) dz = F(t) 

with the initial conditions q,,P ( - oo ) = cinp ( - oo )  
= 0. The general solution for qnp thus is 

l f' qnp (t) = - F(T) sin Wnp ( t - T) dT (A4a) 
Wnp - oo 

and for its derivative (which we need for the cal­
culation of the electric field rather than q,,v) 

qnp ( t) = f� oo F(T) COS Wnp (t - T) dT . (A4b) 

With the eigenmodes of a pill-box cavity [Eq. 
(A l )] we thus obtain 

r np (t) = 

Ju TIPZ x X.(z - ct) sin - dz ,  
() g 

and after some transformation : 1 1  

. 
( ) 

1 C 
q,,p t = ' ;-- . J ( . ) V Trg EoWnp}n I ./n 

X { Vnp L
"" 

[Mu - ct) 

- ( - )PX.(u - ct + g) ] 

(AS) 

. d TIP x sm (Vnp U) u - g (A6) 

{ u TrpU } x Jo Mu - ct) sin g du . 

(3) The longitudinal component of the electric 
field: in Eq. (14) the contributions from the scalar 

potential [Eq. (AS)] and from the second integral 
in the term of the vector-potential [Eq. (A6)] can­
cel, and we get simply 

) _ 
_c_· _ � cos (Trpz/g) Ez(Z , t - - R � J 2 ( . ) 

· TrEog n ,p Wnp I }n 

x L
"° 

[X.(u - ct) - ( - )P A(u - ct + g) ]  (A7) 

X sin(Vnp U) du . 

For a delta-function pulse , A(z) = QS(z) ,  this 
yields 

E-( ) = - Q c  � COS(Trpz/g) ,_ z, t R 2 � 2 ( . TrEog n ,p W,,pJI  ]n ) 

{
sin w,,p t 0 < ct < g 

X 
sin Wnp t  - ( - )P Sin Wnp ( t - g/c) 

(A8) 

ct > g 

while for a Gaussian distribution A.(z) = [QI 
cr(2Tr) 1 12] exp( - z 2/2cr2) one finds 

Q � COS(Trpz/g) 
Ez (z , t) = - 2 � 2 2TrEogR n ,p VnpJI (},,) 

[ ( 
c 2 t2

) x exp - 2cr2 

{ (Vnp CT ct ) } x Im w V2 - i er V2 

- ( - )P exp ( - -"(g_-_c_·t)_2) 
2cr 2 

(A9) 

I { (
Vnp CT _ . �) }] X m W , r- + t  , r- , 
v 2  cr v 2  

where Im w(z) is the imaginary part of the com­
plex error function w. 
(4) The wake potential at position Zo behind the 
center of the bunch : this is found by using Eqs. 
( 1 5 ) and (A7) 

C l 
W(zo) = - R2 L J 2( . )-TrEog 11 ,p Wnp I }n 

JR TIPZ x dz cos -o g (A I O) 

x J "" 
du sin(v,,pu)[Mu - z + zo) 

() 

- ( - )P X.(u - z - zo + g)]. 
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B y  i nterchanging the order of integration , 1 1  one 
obtains  Eq. ( 1 6) .  

Equatlon ( 1 6) can b e  transformed to 

1 l 
W(zo) = - -- 2: . 21 2 ( . ) 'lTEog 11 = I }111 I }m 

x 
P 

�
"' 

{ f>"' dx X.(x - z0 )[2 cos( v,,Px) 

- ( - )P COS Vnp (X + g) - ( - )P  

X cos  Vnp (X - g)] + ( - )P  f O dx 
- K (A l I )  

X COS(VnpX)[A.(x + g - Zo) 

- A.( - X - g - Zo)] 

Jo 'lTpX 
+ dx cos - [X.(x - zo) 

- K  g 

- ( - )" X.(x + g - Zo)] } . 

We now interchange the summation over p with 
the integration in the last two integral s .  For I z I 
:s; g we have 

2: ( - )" cos(v,,,, z) 
/J 

°" ( )" 'lTPZ L., - cos -
" g 

°" 'lTPZ 
L., cos -

/J 

(A l 2) 

(A l 3 ) 

(A l 4) 

The first of these expressions can be obtained 
by taking the derivative with respect to z of Eq.  
(3 . 1 4) in  Ref. 5 ,  whi le  the other two sums are 
found in most books on Fourier series .  With these 
expressions , the sums over p of all four terms in 
the last  two integrals of Eq.  (A . t i ) cancel , and 
we obtain Eq .  ( 1 7) of the main text by combining 
the cosines in the first integral with the identity 

2 cos a - ( - )P  cos(a + [3) - ( - )P cos(a - [3) 

where a 
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