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Abstract. We summarize the construction of the Gribov-Zwanzigeraactind how it leads to a

scenario which explains the confinement of gluons, in theednat the elementary gluon excita-
tions violate positivity. Then we address the question of lome can construct operators within
this picture whose one-loop correlation functions havedbeect analytic properties in order to
correspond to physical excitations. For this we introdinedoncept of-particles.
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The absence of quarks and gluons from the physical specsmawn as confine-
ment. To understand how it works is quite a challenge and bas imvestigated for
decades. As a first step to better comprehend the full theftlyeostrong interaction,
quantum chromodynamics, the case of Yang-Mills theory nmeagirimalyzed.

The action of Yang-Mills theory in Euclidean space is givgn b

1
Som= [ EXFLFA, ®

whereFﬁ‘V is the field strength tensor. This action is invariant undeal SU\N) gauge

transformations. However, in the path integral one aimsigrating only over phys-
ically inequivalent configurations. To achieve this one dixke gauge. In the follow-
ing we will choose the Landau gauge, which amounts to canstine fields to satisfy
duA; = 0. Properly implementing this restriction leads to thedaling additional term

in the action:

Syf = / o (1620, AR — B4 %C). 2)
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b is the Lagrange multiplier field to enforce the gauge fixingdition andc andc
are the Faddeev-Popov ghosts, which are introduced in @odebtain a local action
from the gauge fixing procedure?®® = —g9, D = — (52792 + g fa°°AC 3, ) denotes the
Faddeev-Popov operator. The new act®y + S can be used as long as fluctuations
around the originA = 0, are small, i. e. in perturbation theory. However, in th@no
perturbative regime new physically equivalent configurasi are encountered, the so-
called Gribov copies [1]. This is an intrinsic problem of gautheories and cannot
be circumvented for example by choosing another gauge fi2drdler to remedy this
problem Gribov suggested a further modification of the gdugeg, namely to restrict
the domain of integration in field space to what is nowadalls@#he first Gribov region
Q [1]. It is defined as the set of Landau gauge configurationsvfuch the Faddeev-
Popov operator is positive, i. e.

Q={A AL =0, #%*>0}. 3)

This region is convex, bounded in all directions, contaivesdrigin in field space, and all
gauge orbits pass throughlit |3, 4]. Its boundary, called3hbov horizon, is defined by
the vanishing of the lowest eigenvalue of the Faddeev-Popevator. A restriction to

this region can be implemented via the addition of a noniltaran to the action [5, 6],

the so-called horizon term:

Si= [ d'xhiy / d'x fim [ dYDEFP (DI (@)

Here a new parametq’/rwnh dimension of mass occurs. It is not free, but determimed
the horizon conditiorfh(x)) = dy*(N? — 1) [5], whereN is the number of colors andl
the space-time dlmenS|on The horizon term can be locabyetle introduction of new
fields [5]: (§5P, 93P, wiP, @EP). The former two are a pair of complex bosonic fields and
the latter two a pair of complex fermionic fields. This leadghe Gribov-Zwanziger
action

S6z = Sym+ Syt + Soc (5)
Soc = /d4 c%ab(p . _EC,///awaC—g fabc(dvcsﬁd)(DBeCe)(Pﬁd—i—
29 A9 — B — (N2~ 1)), (6)

The last term is introduced in order to be able to rewrite tlh@zZon condition as
5v2 = 0,wherel” is the vacuum energy.

An important aspect of the Gribov-Zwanziger action is thatfmement is already
manifest at the perturbative level. For this consider teedevel propagator of the gluon:

(A A (k) ) = & (% - %) %, Foo@Nyt ()

Its poles are a2 = +i}?, so they do not correspond to physical excitations. Thissis a
evident as the propagator eql (7) has negative norm cotitii®iand hence violates



positivity [7]. Thus in this scenario gluons are confined bg presence of the Gribov
horizon. The ghost propagator is infrared enhanced duedddnizon condition and
goes like ¥k* [6, |8]. The same qualitative results emerge from the nomdpeative
Dyson-Schwinger and functional renormalization groupagauns [9, 10]. Even taking
explicitly into account the Gribov horizon does not chanigis {11,/ 12]. Furthermore,
at first sight this is in agreement with the Kugo-Ojima conimeat scenario [13, 14].
Taking the Kugo-Ojima confinement condition as constrainttfie Yang-Mills action
indeed leads to a similar term as the horizon term [15]. Itbagointed out though that
a different picture seems to emerge from recent latticeutations [16]: the positivity
violating gluon propagator is infrared suppressed andvamshing at zero momentum,
while the ghost propagator is no longer enhanced in therediidbehaving essentially
ask—l2 for k =~ 0. This behavior has been shown to be accommodated for in ribes
Zwanziger action by taking into account dynamical effeetated to the condensation
of local dimension two operators. This leads to the so calefined Gribov-Zwanziger
model [17].

Gauge symmetry, once fixed, is replaced by another, veryuusgmmetry called
BRST symmetry. It can be used to prove the renormalizabditghe action and to
define the physical subspace of the theory. Neverthelestjcteng the domain of
integration in field space even further, as realized by th#dwrZwanziger action,
eq. (), leads to a BRST symmetry which is softly broken. 8itie breaking is soft,
the action remains multiplicative renormalizable [8, 18],1but the issue of how to
define the physical subspace remains to be clarified. How#\verpossible to rewrite
the broken symmetry into an exact non-local symmetry of thibdv-Zwanziger action
[20]. Also the meaning of the Kugo-Ojima criterion becomésaure by the lack of
BRST invariance [15, 17].

Finding physical operators. The physical observable quantities of Yang-Mills the-
ory are not gluons but glueballs. They should be describeghloge invariant operators
whose correlation functions exhibit good analyticity pedges in the complex cut Eu-
clideank?-plane: i.e. poles and cuts located on the negative realasxigell as a spec-
tral representation with positive spectral density. Theest candidate is the operator
O(x) = Fuzv(x). In [5] the analytic properties of its correlation functiosere investigated
at one-loop order, using the Gribov-Zwanziger action. Trarpsing outcome was that
the correlation function contains physical and unphyspzats. In the present context
we use the word physical for an operator with a cut on the mege¢al axis and a posi-
tive spectral function. The unphysical case correspondsit® starting somewhere else
in the complex plane.

In order to get rid of the unphysical part one can try to defahma operatoiO(x)
appropriately. For this it turns out to be useful to diagareathe conventional Gribov-
Zwanziger action, eql{6), and construct operators fromébalting fields|[21]. We will
restrict ourselves to the quadratic part and perform altwations at leading order in
perturbation theory. For the diagonalization of the Lagian we first split the fieldg
and¢ into real and imaginary parts:

g — \% (UR+ivE),  FRP= %2 (UgP—ivg®). (8)



In the resulting action we observe that the gluon field mixely avith the adjoint part
of V2, given byV,f = § fP™V/"". Hence we decompose thiefield as

1
N

1

b__ b b b __ fabpy/Pp b
vab— L fabogpmn/mn (v; e pfpmrv,gnn) _fnpLsh  (9)

A complete diagonalization is achieved by introducing te&iBA 3 andng:

Aﬁ:%o\ﬁﬁ—nﬂ), VL?:J%(Aﬁ—nﬁ). (10)

Finally the quadratic part of the action is then
1 . 1 .
Suad _ /d“x (E)‘ﬁ (—02 + |\/2Ngy2> Ad+ Enﬁ (—02 — |\/2Ngy2> n;’j‘)
1 1
+ / d*x (ESﬁb(—ﬁz)Sﬂb-i- SUR(-0%)UE° - cr)gc///abwgC) , (11)
where the Landau conditiaf),A;; = 0 was used. The propagators of the new fields are

5ab k, k
AHRASK) = oz (G — 5.

52b Kuky
ME0MK) = o (B = 5" ). 12)

na and}\f,‘ are calledi-particles, as their poles are at the unphysical valtgg. One
slt:ould remember that the gluon propagatorlelq. (7) could beewas

k, k k2 K ky\ 1 1 1
b Y b Y
& (5‘”_?) k4+94:5a (5“V_7)§<k2—i92+k2+i92>' (13)

This corresponds to the propagation of two unphysical glagiwith poles atti 2 which
can be identified with thefields.
With these new fields one can easily construct a physicabbgeintroducing

)‘Ev = 0pAd — av)\ﬁ, ’73\; =dung — av’?f} (14)

as the-field strengths, two simple examples are

2
o§1r>’ (x) = ()\ﬁv(x)nﬂv(x)) , Og\,;(x) = Euvpo ()\I"j‘v(x)ngo(x)) . (15)
The correlation function of the first in four dimensionsl|id]2

0D (o (—k)) = 12N2 1) [ dr— VT2 AP 27 ) (16)

An )2;,2 T+ k2 32t

The employed Kallén-Lehmann representation nicely exhthie cut from—2y2 to —oo
and the spectral density is positive.



Conclusions. The Gribov-Zwanziger action is obtained by an improved gafixy
ing. The resulting tree-level gluon propagator describm#ioed gluons and the ghost
propagator is infrared enhanced. For the construction @fratprs corresponding to
physical excitations of the theory we introduced the usefuicept ofi-particles. How-
ever, although the operators analyzed possess only cuig t#le negative real axis and
positive spectral functions, they constitute just a firsaistep towards a description of
glueballs as some challenges have yet to be faced like thérival extension of these
operators to the quantum level, a necessary step in ordertorm higher loops calcu-
lations. Due to the soft breaking of the BRST symmetry, tloiprequires special care
as one learns from the renormalization of the operEﬁgFﬁv [22], where both BRST
exact and BRST non-invariant quantities are needed in daepnstruct a quantum
operator invariant under the renormalization group eaunesti
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