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Gribov horizon and BRST symmetry: a pathway
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Abstract. We summarize the construction of the Gribov-Zwanziger action and how it leads to a
scenario which explains the confinement of gluons, in the sense that the elementary gluon excita-
tions violate positivity. Then we address the question of how one can construct operators within
this picture whose one-loop correlation functions have thecorrect analytic properties in order to
correspond to physical excitations. For this we introduce the concept ofi-particles.
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The absence of quarks and gluons from the physical spectrum is known as confine-
ment. To understand how it works is quite a challenge and has been investigated for
decades. As a first step to better comprehend the full theory of the strong interaction,
quantum chromodynamics, the case of Yang-Mills theory may be analyzed.

The action of Yang-Mills theory in Euclidean space is given by

SYM =
1
4

∫

d4xFa
µνFa

µν , (1)

whereFa
µν is the field strength tensor. This action is invariant under local SU(N) gauge

transformations. However, in the path integral one aims at integrating only over phys-
ically inequivalent configurations. To achieve this one fixes the gauge. In the follow-
ing we will choose the Landau gauge, which amounts to constrain the fields to satisfy
∂µAµ = 0. Properly implementing this restriction leads to the following additional term
in the action:

Sg f =

∫

d4x (iba∂µAa
µ − c̄a

M
abcb). (2)
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b is the Lagrange multiplier field to enforce the gauge fixing condition andc and c̄
are the Faddeev-Popov ghosts, which are introduced in orderto obtain a local action
from the gauge fixing procedure.M ab=−∂µDab

µ =−(δ ab∂ 2+g fabcAc
µ∂µ) denotes the

Faddeev-Popov operator. The new actionSY M+Sg f can be used as long as fluctuations
around the origin,A = 0, are small, i. e. in perturbation theory. However, in the non-
perturbative regime new physically equivalent configurations are encountered, the so-
called Gribov copies [1]. This is an intrinsic problem of gauge theories and cannot
be circumvented for example by choosing another gauge [2]. In order to remedy this
problem Gribov suggested a further modification of the gaugefixing, namely to restrict
the domain of integration in field space to what is nowadays called the first Gribov region
Ω [1]. It is defined as the set of Landau gauge configurations forwhich the Faddeev-
Popov operator is positive, i. e.

Ω = { A; ∂µAa
µ = 0, M

ab> 0 }. (3)

This region is convex, bounded in all directions, contains the origin in field space, and all
gauge orbits pass through it [3, 4]. Its boundary, called theGribov horizon, is defined by
the vanishing of the lowest eigenvalue of the Faddeev-Popovoperator. A restriction to
this region can be implemented via the addition of a non-local term to the action [5, 6],
the so-called horizon term:

Sh =
∫

d4xh(x) =
∫

d4x lim
γ(x)→γ

∫

d4yDac
µ (x)γ2(x)(M−1)ad(x,y)Ddc

µ γ2(y). (4)

Here a new parameterγ with dimension of mass occurs. It is not free, but determinedby
the horizon condition〈h(x)〉= dγ4(N2−1) [5], whereN is the number of colors andd
the space-time dimension. The horizon term can be localizedby the introduction of new
fields [5]: (ϕ̄ab

µ ,ϕab
µ ,ωab

µ , ω̄ab
µ ). The former two are a pair of complex bosonic fields and

the latter two a pair of complex fermionic fields. This leads to the Gribov-Zwanziger
action

SGZ = SYM+Sg f +Sloc (5)

Sloc =
∫

d4x
(

ϕ̄ac
µ M

abϕbc
µ − ω̄ac

µ M
abωbc

µ −g fabc(∂νω̄ad
µ )(Dbe

ν ce)ϕcd
µ +

+ γ2g fabcAabc
µ (ϕbc

µ − ϕ̄bc
µ )−d(N2−1)γ4

)

. (6)

The last term is introduced in order to be able to rewrite the horizon condition as
δΓ
δγ2 = 0,whereΓ is the vacuum energy.

An important aspect of the Gribov-Zwanziger action is that confinement is already
manifest at the perturbative level. For this consider the tree-level propagator of the gluon:

〈

Aa
µ(k)A

b
ν(−k)

〉

= δ ab
(

δµν −
kµkν

k2

)

k2

k4+ γ̂4 , γ̂4 = 2g2Nγ4. (7)

Its poles are atk2 =±iγ̂2, so they do not correspond to physical excitations. This is also
evident as the propagator eq. (7) has negative norm contributions and hence violates



positivity [7]. Thus in this scenario gluons are confined by the presence of the Gribov
horizon. The ghost propagator is infrared enhanced due to the horizon condition and
goes like 1/k4 [6, 8]. The same qualitative results emerge from the non-perturbative
Dyson-Schwinger and functional renormalization group equations [9, 10]. Even taking
explicitly into account the Gribov horizon does not change this [11, 12]. Furthermore,
at first sight this is in agreement with the Kugo-Ojima confinement scenario [13, 14].
Taking the Kugo-Ojima confinement condition as constraint for the Yang-Mills action
indeed leads to a similar term as the horizon term [15]. It must be pointed out though that
a different picture seems to emerge from recent lattice calculations [16]: the positivity
violating gluon propagator is infrared suppressed and non-vanishing at zero momentum,
while the ghost propagator is no longer enhanced in the infrared, behaving essentially
as 1

k2 for k ≈ 0. This behavior has been shown to be accommodated for in the Gribov-
Zwanziger action by taking into account dynamical effects related to the condensation
of local dimension two operators. This leads to the so calledRefined Gribov-Zwanziger
model [17].

Gauge symmetry, once fixed, is replaced by another, very useful symmetry called
BRST symmetry. It can be used to prove the renormalizabilityof the action and to
define the physical subspace of the theory. Nevertheless, restricting the domain of
integration in field space even further, as realized by the Gribov-Zwanziger action,
eq. (5), leads to a BRST symmetry which is softly broken. Since the breaking is soft,
the action remains multiplicative renormalizable [8, 18, 19], but the issue of how to
define the physical subspace remains to be clarified. However, it is possible to rewrite
the broken symmetry into an exact non-local symmetry of the Gribov-Zwanziger action
[20]. Also the meaning of the Kugo-Ojima criterion becomes obscure by the lack of
BRST invariance [15, 17].

Finding physical operators. The physical observable quantities of Yang-Mills the-
ory are not gluons but glueballs. They should be described bygauge invariant operators
whose correlation functions exhibit good analyticity properties in the complex cut Eu-
clideank2-plane: i.e. poles and cuts located on the negative real axisas well as a spec-
tral representation with positive spectral density. The simplest candidate is the operator
O(x) = F2

µν(x). In [5] the analytic properties of its correlation functionwere investigated
at one-loop order, using the Gribov-Zwanziger action. The promising outcome was that
the correlation function contains physical and unphysicalparts. In the present context
we use the word physical for an operator with a cut on the negative real axis and a posi-
tive spectral function. The unphysical case corresponds tocuts starting somewhere else
in the complex plane.

In order to get rid of the unphysical part one can try to deformthe operatorO(x)
appropriately. For this it turns out to be useful to diagonalize the conventional Gribov-
Zwanziger action, eq. (6), and construct operators from theresulting fields [21]. We will
restrict ourselves to the quadratic part and perform all calculations at leading order in
perturbation theory. For the diagonalization of the Lagrangian we first split the fieldsϕ
andϕ̄ into real and imaginary parts:

ϕab
µ =

1√
2

(

Uab
µ + iV ab

µ

)

, ϕ̄ab
µ =

1√
2

(

Uab
µ − iV ab

µ

)

. (8)



In the resulting action we observe that the gluon field mixes only with the adjoint part
of Vab

µ , given byV p
µ = 1

N f pmnVmn
µ . Hence we decompose theV-field as

Vab
µ =

1
N

f abpf pmnVmn
µ +

(

Vab
µ − 1

N
f abpf pmnVmn

µ

)

= f abpV p
µ +Sab

µ . (9)

A complete diagonalization is achieved by introducing the fieldsλ a
µ andηa

µ :

Aa
µ =

1√
2

(

λ a
µ +ηa

µ

)

, Va
µ =

1√
2N

(

λ a
µ −ηa

µ

)

. (10)

Finally the quadratic part of the action is then

Squad
GZ =

∫

d4x

(

1
2

λ a
µ

(

−∂ 2+ i
√

2Ngγ2
)

λ a
µ +

1
2

ηa
µ

(

−∂ 2− i
√

2Ngγ2
)

ηa
µ

)

+
∫

d4x

(

1
2

Sab
µ (−∂ 2)Sab

µ +
1
2
Uab

µ (−∂ 2)Uab
µ − ω̄ac

µ M
abωbc

µ

)

, (11)

where the Landau condition∂µAµ = 0 was used. The propagators of the new fields are

〈λ a
µ(k)λ

b
ν (−k)〉= δ ab

k2+ iγ̂2

(

δµν −
kµkν

k2

)

,

〈ηa
µ(k)η

b
ν(−k)〉= δ ab

k2− iγ̂2

(

δµν −
kµkν

k2

)

. (12)

ηa
µ andλ a

µ are calledi-particles, as their poles are at the unphysical values±iγ̂2. One
should remember that the gluon propagator eq. (7) could be written as

δ ab
(

δµν −
kµkν

k2

)

k2

k4+ γ̂4 = δ ab
(

δµν −
kµkν

k2

)

1
2

(

1
k2− iγ̂2 +

1
k2+ iγ̂2

)

. (13)

This corresponds to the propagation of two unphysical particles with poles at±iγ̂2 which
can be identified with thei-fields.

With these new fields one can easily construct a physical operator. Introducing

λ a
µν = ∂µ λ a

ν −∂ν λ a
µ , ηa

µν = ∂µηa
ν −∂ν ηa

µ (14)

as thei-field strengths, two simple examples are

O(1)
λη(x) =

(

λ a
µν(x)η

a
µν(x)

)

, O(2)
λη(x) = εµνρσ

(

λ a
µν(x)η

a
ρσ(x)

)

. (15)

The correlation function of the first in four dimensions is [21]

〈O(1)
λη(k)O

(1)
λη(−k)〉= 12(N2−1)

∫ ∞

2γ̂2
dτ

1
τ +k2

√

τ2−4γ̂4(2γ̂4+ τ2)

32π2τ
. (16)

The employed Källén-Lehmann representation nicely exhibits the cut from−2γ̂2 to−∞
and the spectral density is positive.



Conclusions. The Gribov-Zwanziger action is obtained by an improved gauge fix-
ing. The resulting tree-level gluon propagator describes confined gluons and the ghost
propagator is infrared enhanced. For the construction of operators corresponding to
physical excitations of the theory we introduced the usefulconcept ofi-particles. How-
ever, although the operators analyzed possess only cuts along the negative real axis and
positive spectral functions, they constitute just a first small step towards a description of
glueballs as some challenges have yet to be faced like the non-trivial extension of these
operators to the quantum level, a necessary step in order to perform higher loops calcu-
lations. Due to the soft breaking of the BRST symmetry, this point requires special care
as one learns from the renormalization of the operatorFa

µνFa
µν [22], where both BRST

exact and BRST non-invariant quantities are needed in orderto construct a quantum
operator invariant under the renormalization group equations.
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