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1. Linearized orbit equations

1. Geometry of the equilibrium orbits

In order to develop a theory of orbit stability applicable
to FFAG accelerators generally, it is convenient to charac-
terize a particular accelerator by specifying its equilibrium
orbits. We will therefore assume that a set of closed
equilibrium orbits lying in the median plane is given.
If instead, the magnetic field pattern is specified, the
equilibrium orbits must be found by integrating the
equations of motion.

The geometrical properties of each orbit, and the
relations between orbits, will be periodic in the azimuthal
angle 6 with period 2rn/N. Each orbit is to be specified by
its equivalent radius R defined by

S = 2nR, (1.1

where S is the length of the orbit. In general, R will be

slightly larger than the mean radius </r>,,. We define
an azimuthal coordinate ® by the equation
s= OR, 1.2)

where s is the distance measured along the orbit from some
reference point (say at azimuthal angle ©,). We shall
require that the orbit be perpendicular to the radius from
the center of the machine at the reference point, and that
the reference points lie along a continuous curve. The
parameter © will be equal to the azimuthal angle 6 -9,
plus a small periodic function with period 2r/N.

Each orbit will now be specified by a periodic parameter
(0, R) defined by

(9, R) = R/p(O, R) 1.3)

where ¢ is the radius of curvature. Specification of
(0, R), together with the requirement that the center
of the orbit lie at the origin in the median plane, completely
determines the orbit R, provided the reference point
® = 0 is specified. For our purposes, it will be sufficient
to specify the angle {(R) between the radius from the
origin and the reference curve ® = 0 where it crosses the
orbit R (figure 1). Choice of the parameter w(®, R) is
restricted by the requirement that it be periodic in ® with,
period 2x/N and mean value

2T s
1 1 ds
<u>av=—fud®=—f—=1. (1.4)
2 27 [
0 0

The function w(®, R) is also restricted by the requirement
that at the point ® = 0 the orbit R must be perpendicular
to the radius from the origin. This requirement leads to
a rather complicated analytical restriction on the function p.
It is sufficient if ® = 0 is a point of symmetry of the
orbit, i.e.,

w(-0,R)=u(O,R) 1.5)

We will need also parameters 1 (0, R) and =(©,R)
relating the perpendicular distance dx between two nearby
orbits, and the increment d® in © along an orthogonal
trajectory to the orbits, to the increment dR in the para-
meter R (see figure 1) :

dx =7ndR (1.6)
d ® = ¢dR/R a.mn
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It can be shown that 7, ¢ satisfy the differential equations

0e/00 = un - 1, (1.8)
/0@ = —pe— [R /3R - dO, (1.9)

where the three constants of integration are to be chosen so
that € and 7 are periodic functions of ® (i.e. so that the
right hand members of equations (1.8) and (1.9) have zero
mean values), and so that
[e/Ml p=0=tan ¢ (1.10)
If all equilibrium orbits are geometrically similar,
the parameter w. depends only on ® and not on R. In the
interest of simplicity, we will usually restrict our attention
to machines of this type. If in addition, ¢ is independent
of R, then by equations (1.8)-(1.10), the parameters n and
¢ will be independent of R. In this case, we will say that
the quilibrium orbits scale; the equilibrium orbits scale if
any set of neighboring orbits can be obtained by photo-
graphic enlargement or reduction from a set of orbits in
the neighborhood of any other orbit.

Let us set

w=1+1fg(NO), 111

where f is the flutter factor, and the flutter function g(N ©)
has period 2= in N ©, zero mean, and is normalized so that
its mean square value is !/,. For example,

g(N®) = cos NO. (1.12)
Then an approximate solution of equations (1.8)-(1.9)
which is adequate to exhibit the principal features of FFAG

orbits is
n=1-ftan¢/N : g, (NO), (1.13)

e =tang, (1.14)

where for any function g(£), periodic in £ with zero mean,
we define

2.8 = / g€) dg, (1.15)

where the constant of integration is to be chosen so that
g,(%) has zero mean.

2. Betatron oscillations

If a particle of momentum p moves in an equilibrium
orbit R, then we have by equation (1.3)

pc=eHp = (¢ HR)/y, 2.1
where H is the magnitude of the magnetic field, so that
H(R, ®) = pc/eR 1. (6, R). 2.2)

The magnetic field is thus given in terms of the coordinates
R, O.

If we differentiate equation (2.1) with respect to x,
where x is measured perpendicular to the orbit, we have

H 9p/0x + p (8H/3X) = cfe - dp/Ox. 2.3)
The field index is therefore
n = -p/H - dH/ox
= 0p/OX - p - dlnp/ox. 2.4
Making use of equations (1.3), (1.6) and (1.7), we find
n = - 1/qp?[ky 4+ € 0p/0® + R 9u/oR], 2.5)

where k is a parameter which measures the momentum
compaction :

k = R(d In p)/dR - 1. (2.6)

In terms of the mean magnetic field H = pc/eR, we can
write k also as a mean field index :

k = R/H-dH/dR, 2.7

The linearized equations for betatron oscillations about an
equilibrium orbit are

d%x/ds? - (1 —-n)/p? - x = 0, (2.8)
d?z/ds? - (n/e?) z = 0, 2.9

where x and z are the deviations from the equilibrium orbit
in the radial and vertical directions. These become by
equations (1.2) and (1.3),

d2x/d @2 + p2 (1-n) x = 0,
d?z/d@?-u2nz =0,

(2.10)
(2.11)
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The character of the betatron oscillations is therefore
determined by the functions u?(®,R) and

un = — I/q - (kp. + € 8p/0® + ROu/AR). (2.12)
By making use of equations (1.8) and (1.9) we can rewrite
equation (2.12) in the form

p2(l-n) = (k -+ Dy/n — 1/n 8n/2 ©2 (2.13)

If the equilibrium orbits scale, then i, 0 and ¢ are functions
only of ®. Thus p? n will be a function of ® only, and
the betatron oscillations will also scale, provided k is
constant. Accelerators with this property will be referred
to as accelerators which scale. For accelerators which
scale, we have

p = po (R/R) ¥ (2.14)

and

H = H, (R/R)k (©). (2.15)

3. Approximate solution for betatron oscillations

In this section we develop some approximate formulas
which give a useful general picture of the properties of
FFAG accelerators. If the betatron wavelengths are long
on comparison with the sector length (say at least four
sectors), then the smooth approximation equations are
applicable!- ». The “smooth” betatron oscillation equa-
tions become in this case

d2X/d©2 - v2 X = 0, 3.1
d°Z/d@2 - v2Z = 0, (3.2)

where,

v = <pr(l-m)>av + <IN >av,  (3)
v = <pin>av + <[un)i>av. (3.4

The curly brackets {} indicate that only the oscillatory
part of the enclosed function is to be taken; i.e., the mean
value is to be subtracted.

The solutions of equations (3.1), (3.2) are

X = A cos vx® + Bsin vx©, 3.5)
Z = C cos vz® + Dsin vz0. (3.6)

Superposed upon these smooth solutions is a ripple which
has the periodicity of the sectors. It is clear that vx, vz are
the numbers of radial and vertical betatron wavelengths
around the circumference of the accelerator. The approxi-
mate formulas (3.3), (3.4) give vx, vz Within about 109 pro-
vided that vx, vz are both less than N/4.

In order to avoid resonance buildup of betatron oscilla-
tions, it is necessary. to avoid integral and half-integral
values for vz v and also to avoid integral values for

v + vz. This implies that vy, vz, must be the same for
all orbits, or nearly so, and this is the principal limiting
condition on FFAG designs. In accelerators which scale
Vg, vz are necessarily the same for all orbits; this is the
advantage in designs which scale.

The relation between betatron wavelengths and machine
parameters depends upon which term ineq. (2.13) predom-
inates in giving alternating gradient focusing. In a
radial sector FFAG accelerator with { = 0, and with a
large number of sectors (say N > 10) n is very nearly
unity, and the second term in eq. (2.13) is small except
near the edges of the magnets where it gives rise to edge
focusing effects. The edge focusing comes from the term
—q1-e0p/0@ ineq. (2.12). This term has a non-zero mean
value, part of which is included in the p term in eq.(2-13);
thus eq. (3.7) and (3.8) below include most of the mean
focusing effect due to edges in radial sector machines.
We will call the first term in eq. (2.13) the “u term” and the
second, the “n term”. In a spiral sector FFAG accelerator,
the alternating gradient focusing comes predominantly
from the 7 term.

It may be noted that the = term includes the term
(R/7) (3x/2R) which appears when the orbits do not scale.
It is not hard to see that in a conventional AG synchrotron
this is the dominant alternating gradient term.

Let us first consider a radial sector FFAG accelerator
with a large number of sectors, and let us neglect the
yterm. If f/N < 1, then 7 =1 according to eq. (1.13),
let us write p in the form given by eq. (1.11). Then eq.
(3.3), (3.4) yield, if we substitute from eq. (2.13), with
n=1,

k + 1)ef?

vi=k+ 1+ (—iN'z)_" <gt>av, (7
(k- 2

vZ2=—k+?+ '—‘N‘2_‘<812> av, (€X)

where we have neglected a small term involving g2 ——g—2 in
eq. (3.8). The betatron oscillation advances in phase
by an angle

6 = 2nv/N 3.9

per sector. For stability, ¢ must be less than =, and
for the smooth approximation to be valid, o must be less
than about =/2. If we solve eq. (3.7), (3.8) for k, f in terms
of ox, 6z, We obtain

N2
k+1=—(cx-0.2-b),

1
o (3.10)

£ 47 [6x® + 07— Dbl
- 2 <g12>aV]]/“ I ox2-06,2—b I ’

@3.11)
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where

b = 4n?/N?[1 - f? — 4kf?/N? <g,*> av]. (3.12)

The quantity b is negligible for sufficiently large N.

By appropriate choice of ox, 6z, k can be made either
positive or negative, i.e., in a radial sector FFAG synchro-
tron, with N large, the high energy orbits may be either
on the outside or the inside of the donut. The b-term,
which is important when N is small, is positive and there-
fore favors machines with positive k, i.e., with a given N,
/k/ can be larger and f smaller if k>0. For maximum
momentum compaction, i.e., minimum radial aperture, k,
and hence N, should be as large as practicable. If we
define a circumference factor C as the ratio between mean
and minimum radii of curvature of the equilibrium orbit,

then
C = |u|max = |1 + fe(NO)|max. (3.13)

It is desirable to minimize C, since for a given maximum
magnetic field, this yields the smallest accelerator design.
It is clear from eq. (3.11), that for a given form of g, the
minimum circumference factor is obtained by making
oz as small, and ox as large as possible (or vice versa, if
k is to be negative).

Let us assume a rectangular field flutter, with unit

mean square :
[ ] _qr<t<ar, (D)

g@® = (3.14)

q 3
“[2(1-q)] qr <E<2n-gm,  (ID)

g€+ 2m) =g (®).

(3.15)

When £ = N O lies in regions labeled I, we say that @
is in a positive half sector; regions labeled II we call
negative half sectors. We need to calculate

<8:*> av = /o - q(1-q). (3.16)

If now

K = f[<g,*> av]'/? 3.17)

is fixed by eq. (3.11), then by eq. (3.13), the circumference
factor is

i_ V3K
nq w(l Q

whichever is greater. The minimum value of C occurs
when q is chosen so that the two values of the right member
of eq. (3.18) are equal. We then have

C,-qr < NO < qgr, (0}
(3.19)
-C,gqn < NO < 2x-qn, (I)

p=1+ fg(NO) =

The radius of curvature, and consequently also the magnetic
field, is constant in magnitude along the equilibrium orbit
and opposite in sign in the two half sectors. The ratio of
half sector lengths is

T = = — 3.20
q C_1° (3.20)
and the circumference factor is
I'+1 21
C—F_ —[1—2] (3.21)

If we take 6z = /6, 6x = ©/2, b = 0, and use the approxi-
mate formulas (3.10), (3.11), we obtain K = 34/5, I =
1.31, C=17.5, f = 10.5, k = N2?/36. It will be shown in
the next section by a more accurate calculation that the
minimum value of C where N is large is about 5.

In a spiral sector FFAG accelerator, ¢ is near 90° and
the n - term in eq. (2.13) is large. It is then possible to
use a much smaller flutter factor, so that the oscillatory
part of the p - term is small. We will again assume that
@ is given by eq. (2.11) and will use the approximation
(1.13) for . If we expand 1/ in a power series in the
second term of formula (1.13), we may calculate

<pM>av = 1 - (f%an®)/N? <g2>av -... (3.22)
We will neglect the second and higher order terms, and will
neglect also the oscillatory part of w/m. The 7 - term
can be rewritten in the following way :

1/n 8*/0@% = 8/0® (1/q 0/0O) + (1/n /0 O). (3.23)
The first term on the right is large and oscillatory with
zero mean, and the second is smaller but has a positive
mean value. We neglect the oscillatory part of the second
term, and substitute in eq. (3.3) and (3.4), using (2.13) to
obtain

=k+ 1,
=~k + £2/2+42 <(1/1 8/0©)2> ay.

(3.249)
(3.25)

Note that the » — term does not contribute in this approxi-

mation to the radial focusing. If we take v as given by
formula (1.13), we have

1 o = f2 tan ?
; a@) > f2 tan C<(1 _fN—1 tan ¢ gl)2>

1 2f?tan X
= f2tan % [E + ——N2—<g2g12>av + .. ] (3.26)
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We will neglect the second and higher order terms in square
brackets and substitute in eq. (3.24), (3.25), to obtain

f2 tan2l = (vx® + vz2 - 1), 3.27)
where we have also neglected f2. Note that, to this order
of approximation, formulas, (3.24) and (3.27) are independ-
ent of the form of the flutter function g (N®); only the
circumference factor [eq. (3.13)] depends on g(N®).

We can rewrite these formulas in terms of the phase
shifts & per sector :

k —+ 1= (Nz O'xz)/4n'2’
f2 tan 2 = N2?/4n? - (ox? - 6.%) - 1.

(3.28)
(3.29)

The reference curve ® = 0, satisfies, in polar coordinates
1, 6, the equation
1/r dr/d6 = cot &. (3.30)
The radial separation between ridges (points of maximum
magnetic field), in units of r is therefore
A = Ar/r = 2n/N tan ¢, (3.31)
Thus for a given choice of ox, oz, and N the ratio f/x is
fixed. The maximum allowable gap between the poles
of the magnet is proportional to ; if the field flutter is
to be obtained by shaping the poles, without extra forward
windings, it can be shown that for f/x fixed the maximum
gap is about !/, A r and is obtained for f =*/,. Under these

conditions, the field flutter will necessarily be very nearly
sinusoidal,

g (§) = cos &, (3.33)
and hence the circumference factor will be

C=1+f=125

cos U+

M. = (—(KC)V2 sin ¢+ cos ¢x

b= Z KO, 4=

We thus obtain ( xz)
Xy
with

M — M. M, — (08 ¥+ coshd— - sin g, sinhg.,

(KC)~"2sin ¢+)’ M. — (cosh Yo

(KC)''2 (cos Y+ sinh - + sin ¢ cosh ¢-),

If we take, as above, o; = 7/6, ox = w/2, with f =1/,,
we obtain k + 1 = N#/16, % = 5.95 N* [1-14.4N-2]12,
tan £ = 1.05 N [1-14.4N-2]"1/2,

4. Linear stability for radial sectors

In order to get more accurate relations between the
parameters, we return to the betatron oscillation equations
(2.10), (2.11). Making use of eq. (2.12), (1.13) and (1.14),
with ¢ = 0, we rewrite eq. (2.10), (2.11) for the case of a
rectangular field flutter of the form (3.19) :

d2x/d®? £ kCx = 0, “@.n
d?z/d@? F kCz = 0, “4.2)

where the upper signs apply in positive half sectors, and
the lower in negative half-sectors. The term ¢ dp/0® in
eq. (2.12) gives rise to terms in eq. (2.10), (2.11) which repre-
sent the focusing which occurs at the sector edges, which
we will here neglect. These approximations are valid
only when N > f, and we have accordingly also neglected 1
in comparison with n. When N is small, edge effects
and higher order terms in n must be taken into account.
The oscillatory terms in # will give rise to effects resulting
from the fact that neighboring equilibrium orbits are not
everywhere equidistant. For small N, edge effects turn
out to increase the vertical focusing and decrease the
radial focusing, so that considerably smaller values of the
flutter factor f may be used if k > 0, without losing vertical
stability.

Let N®, = - qr, N®, = qm, NO, = (2-q)=. Then the
solutions of eq. (4.1) within the positive and negative
halfsectors separately yield the following matrix relations
between x and x’ = dx/d® at the points 0, ©,;, 0,:

(2’)2 M*CE’)’ (:) = M—(:}), (4.3)

where

(KC)~% sinh {_
(KC)% sinhy_ cosh - ) (4.4)
2n(1-q)
— KO* @.5)
Xo
= M (Xlo), (4'6)

(KC)~'» (cos Y+ sinh $_ ~ sin $;+ cosh q»_)) @7
cos Y4 cosh Y- + sin ¢ sinh - ’
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We can now calculate
cos 6x = % Trace (M) = cos 4+ cosh ¢— 4.8)
and in the same way,
COSs 6z = COS Y- — cosh 5. 4.9)
In terms of the local field index
n = k/C, (4.10)

within the magnets (we take n as positive here), and the
ratio I' of sector lengths [eq. (3.20)], we may rewrite
¢+ and ¢_:

__21': T
TNT-1

1,

2 1
1
NT-1'"

G+ n’%, ¢

4.11)

Formulas (4.5), (4.8), (4.9) and (4.11) have been written
for k > 0. However they may also be used for k < 0,
in which case it is convenient to regard C as negative.

The smallest circumference factor is obtained by choosing
ox as large as possible and o, as small as possible (or vice
versa). If we choose ox = 3n/4, 6, = wn/6, we calculate

from eq. (4.8), (4.9), ¢+ = 1.32, ¢ = 1.93. From eq.
(4.11), (3.21) we have
I' = {y/p- = 1.46,C = 5.35 4.12)

The theoretical minimum value of C is 4.45 for ox = =,
oz = 0. In order to keep the amplitude of betatron oscil-
lations within reasonable bounds, the above choices of
ox, Oz run about as close to the stability limits as it is
safe to go. (For the choice ox = ©/2, 6, = =/6, these
more exact formulas give I' = 1.29, C = 7.9, which may
be compared with the approximate values 1.31, 7.5 obtained
in the preceding section.)

5. Linear stability for spiral sectors

For spiral sector aceelerators, the circumference factor
is close to unity, and minimizing C is no longer a major
consideration. The ridge separation X is, however,
rather small, and if the gap between magnet poles is to be
kept as large as possible, it appears that the field flutter
in the median plane must be at least approximately sinusoi-

f2/w2

”n k l—l—_——
v —I-[ + QNZ—(k-I— D w

ﬂ_[k_l_ﬂwz_
Y NSkt D W

f
+ —cos N6 + %

f
4+ —cosNO + %

dal. We will therefore assume a field in the median plane
of the form.

Bz = By (r/re)¥[1 — f sin (1/w - In (r/ry) - NO)l, (5.1)

where r, 0 are polar coordinates in the median plane. The
argument of the sine function is made logarithmic rather
than linear in r in order to make the magnetic field (and
hence the particle orbits) scale. The constant w is related
to the spiral angle and the ridge separation (eq. 3.31) by

1/w = N tan { = 2r/\. (5.2)

The linearized equations for the betatron oscillations in
the field (5.1) can be obtained from the general analysis
of the first two sections, but it is perhaps more illuminating
to derive them directly.

If one undertakes to write the linear terms in the differ-
ential equations characterizing the departure of the particle
from a reference circle of radius r; = p/eBy(ro/r,)¥ one
obtains substantially the following, where x = (r - r,)/r,
and y = z/r,.

x"4+[1 +k+ f/w-cos NO] x = fsinN6 (5.3)
y" [k + f/w - cos N8l y = 0. (5.9)

These equations suggest alternate gradient focusing of the
type characterized by the Mathieu differential equation,
but the presence of the forcing term on the right hand side
of the equation for the x-motion indicates that a forced
oscillation will be expected and will be given approximately
by

f
— ———— sin N6. 5.5
X Nz—(k+1)smN (5.5)

Because of the presence of this forced motion one realizes
that not only will the nonlinear terms in the differential
equations be large but that a noticeable influence upon the
betatron oscillation wavelength can result.

It is appropriate, therefore, to perform an expansion
about a more suitable reference curve by writing

vV =X sin N6 (5.6)

f
TNE-(k+ 1)

In this way one obtains equations of which the most signifi-
cant terms appear below :

2 2 N
ﬁz_f(%Jr_l) cos ZNG:IV -0 .7
£2/w?
W os2NO |y =0 5.8
N-k+D ]y -8)
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Fig. 2.

Each of these equations is of the form
d2z/dr? + [A + Bcos2t+ Ccos4 ] z= 0.

Tables of the characteristic exponent (s/r) of the extended
Mathieu equation (5.9) have been computed on the
ILLIAC, using a variational method®. Values of A are
tabulated for a range of values of s, B, C covering the signifi-
cant portion of the first stability region. Results for the
Mathieu equation (C = 0) are included. So far as we are
aware there are at present no published tables of charac-
teristic exponents for the Mathieu equation within the
stability region.

In fig. 2 we plot a stability diagram for a spiral sector
FFAG accelerator with k > 1 computed from the above
formulas and the tabulated solutions. If k > 1, the co-
efficients A, B, C, depend only on k/N? and f/w N2 We
accordingly plot curves of constant 6x and oz vs k/N? and
f/WN2, If we take oz = /6, ox = m/2, with f=1/,
we obtain k = .057N2, f/WN2 = .25, A = 6.3N"2, which
may be compared with the approximate values k =
062 N2, f/WN2 = 265, » = 5.95 N2 obtained in Section 3.

II. Non-linear effects in FFAG orbits

6. General description of non-linear effects

The preceding analysis of betatron oscillations has been
based on an expansion of the equations of motion in
powers of the displacement from the equilibrium orbit,
keeping only the linear terms. The small amplitude
betatron oscillations in x and z are then found to satisfy
linear differential equations with coefficients periodic in the
independent variable ©.

In a perfectly constructed accelerator, the only periodicity
would be that associated with the N identical sectors
around the machine, and the period of the coefficients
would be 27/N. In an actual accelerator, there will be
imperfections, so that the coefficients will be strictly
periodic with the period 2= in ©, and approximately
periodic with period 2=/N. Associated with the period
2x/N is the requirement that ox and o, must not be integral
or half integral multiples of 2w; in practice it appears
that o should be less than = since otherwise the tolerances
on magnet construction and alignment become very severe.
Associated with the period 2m is the requirement that
vx and vz must not be integral or half-integral if imper-
fection resonances are to be avoided, and, in addition, if
imperfections can couple the x - and z - motions, vx -+
v, must not be an integer.

The study of the effects of non-linear terms in the
equations of motion has not advanced nearly as far as the
study of the linearized equations. Approximate analytic
methods of treating non-linear equations with periodic
coefficients have been developed by J. Moser ¥ and P. A.
Sturrock®. Their results can be summarized as follows.
If the coefficients in the equations have period 2= in O,
and if vy, vz are the numbers of betatron oscillations in one
period 2w, then imperfection resonances can occur when

nx vx + Nz vz = any integer, for 6.1
Nx, Nz = 0, 1, 2, ......
Let
nx + nz = q. (6.2)

Then if ¢ = 1 or q = 2, the motion is unstable even in
linear approximation (this is the rule stated in the preceding
paragraph). If q = 3, then in general, the effects of quad-
ratic terms in the differential equations are such as to
make the motion unstable even at very small amplitudes.
If q = 4, then the effects of cubic terms may be to render
the motion unstable, depending on the form of the cubic
(and linear) terms. If q > 4, then, in general, the motion
is stable for sufficiently small amplitudes of betatron oscil-
lation. Inany case, if @ = 4, and if the equations of motion
are non-linear, then there will be in general a limiting ampli-
tude of betatron oscillations beyond which the oscillations
are unstable in the sense that they leave the donut. Numer-
ical studies carried out on the ILLIAC at the University
of Illinois seem to confirm these conclusions.

If we apply the above criteria to the sector periodicity
2n/N, then we must replace vx, vz in eq. (6.1) by ox/2™,
6z/2m, the number of betatron oscillations per sector.
We then conclude that values of 6x or oz near 2n/3 are to
be avoided as well as values such that ox + 26z or 6z +
2 oy is nearly 2m. We call these resonances with the period-
icity of the structure itself ‘“sector resonances”. We
have indeed found in numerical studies that the limiting
amplitude for betatron oscillations in spiral sector machines
become very small when o approaches 2x/3.
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It should be pointed out that non-linear terms in the
equations for the radial sector accelerator are not very
large, being not greater in order of magnitude than non-
linear terms which arise in some conventional alternating
gradient accelerators which have been contemplated.
However, the non-linear terms which arise when the sectors
spiral are much larger and play a very important role in
determining the character of the betatron oscillations.
Numerical studies indicate that although the motion in
spiral sector synchrotrons exhibits marked non-linear
effects, the amplitude limits are large enough to accom-
modate reasonable betatron oscillations provided o is not
close to 2n/3. (Say ox < .6m).

7. Characteristics of particle motion in spiral sector
Structures

The digital computer studies have been carried out
with the aid of the Electronic Digital Computer of the
Graduate College of the University of Illinois (ILLIAC).
A large fraction of the computations pertained to structures
for which the parameters fell in the range suitable for the
spiral-sector model, which is under development at the
University of Illinois, but the majority of the orbit charac-
teristics revealed in this way appear to be common to
large-scale spiral-sector machines, including cyclotrons
of the type currently being studied by groups in other
laboratories.

The computational studies for spiral-sector machines
have so far involved integration of differential equations
describing the particle-trajectories, although attention
is being directed towards the formulation of transformations
(suitable for rapid computation of particle-motion through
successive sectors) akin to those employed earlier as part
of an analogous study of non-linear alternate-gradient
structures similar in form to the Courant-Livingston-
Snyder design.

The differential equations have involved (i) a set of
exact equations covering motion in the median plane and
(ii) a set of approximate, but Hamiltonian, equations de-
scribing both radial and exial motion in a magnetic field
of the form necessarily associated with that prescribed
in the median plane. The present programs have confined
attention to fields with a sinusoidal dependence upon
azimuth angle, but active programming has been begun
on others free of this restriction. The utility of structures
possessing poles which do not lead to pure sinusoidal
fields is under study. The analytic work for a two-part
computational program has been completed, involving (i)
solution of the magnetostatic problem in the space between
such poles, employing only two position variables

- 1 [ln(lw+x) —NO] andn = V1T+ WNE y

~2n 2nw 1+ x

when use is made of the scaling property of the structure,
and (ii) solving the differential equations for trajectories

in this field, which will, in effect, be stored in the computer
memory.

The results of computations pertaining to motion with
one degree of freedom are appropriately and conveniently
represented by means of phase plots, depicting on invariant
curves the position and associated momentum of a particle
as it progresses through successive “ sectors > (periods of
the structure) from one homologous point to another.
Such studies provide information concerning the location
of “fixed-points”, corresponding to an equilibrium orbit;
the phase-change of the betatron oscillation per sector
(0); the displacement associated with trajectory directions
different from that of the equilibrium orbit; and the extent
of the region within which stable motion is possible. The
characteristics of small-amplitude motion found in this
way agree well, for sinusoidal fields, with the predictions
of the analytic theory. At large amplitudes, unstable
fixed-points—representing unstable equilibrium orbits—
make their appearance. These fixed-points are usually
3 or 4 in number, corresponding to an unstable periodic
solution 3 or 4 sectors in wavelength, although other cases
have also been observed.

Associated with the unstable fixed-points one finds a
separatrix, constituting an effective stability limit, which
in the majority of cases the ILLIAC results depict as a
sharp boundary and outside of which it is frequently
possible to draw the initial portions of what appear to be
invariant curves for unstable motion. Fig. 3 shows a
number of invariant curves, on a phase plot of this nature,
for parameters not far from those which would be suitable
for a model. In this case the phase change per sector is
close to ox = .571x for small-amplitude motion; ox does not
change greatly with increasing amplitude and it is note-
worthy that ultimately 7 unstable fixed-points (ox =
4r/7 = 5714~ make their appearance. In this example
a rather large permissible amplitude of stable motion is
found (IA r| approximately 0.08 or 0.09 times the radius,
at N6 = 0, mod 2w). The existence of this relatively
large region of stability is connected with the fact that

N ~t

"s" Denotes Stabie Fixed Point
o Approx. Location of Unstable Fixed
Points.

.08

X—

Fig. 3.
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ox, differs materially from the value 2x/3, for which a
prominent non-linear sector-resonance makes its presence
felt.

When axial motion is also permitted, there is in general
coupling between this motion and that occurring in the
radial direction. For small-amplitude oscillations about
the equilibrium orbit, however, the motion is virtually
decoupled. Limits of axial stability can be readily exam-
ined for special cases such as that in which the radial
motion is introduced with initial conditions characteristic
of the stable equilibrium orbit. For the structure with the
parameters to which fig. 3 pertains, one finds in this way
an axial amplitude limit of slightly over 0.014r—this limit
applies to locations such that N0 = 0 (mod 2n), near the
center of an axially defocusing region, and has associated
with it amplitude limits which become almost twice as
large at intermediate points.

V4
NN\
N

Fig. 4.

Similarly constructed phase plots for other values of
machine parameters are shown in fig. 4 and the following
figures. We are indebted to N. Vogt-Nilsen for supplying
these plots from his studies of orbit stability.

Coupled axial and radial motion is more difficult to
study systematically. By examining the behavior of the
axial motion for various amplitudes of radial oscillation,
however, some progress has already been made in the
examination of the importance of various resonances
involving the two frequencies which characterize the small-
amplitude motion.

When the machine as-a-whole is considered, as it must
because the presence of unavoidable misalignments makes
the basic period strictly not one sector but one complete
revolution, numerous additional resonances become
possible. The effect of some of these has been examined
with the ILLIAC, and further active investigation of this
question is planned.

Fig. 5.

8. Application of Walkinshaw’s equation to the 2oy =
Gx Fesonance

A method of analysis which appears to account for
the behavior of the axial motion, in the presence of appre-
ciable radial oscillation, has been developed by Walkin-
shaw®. The differential equation characterizing the axial
motion is trated as linear, but contains a coefficient which
involves the radial motion. As is well-known, the forced
radial motion enhances the A-G focusing which appears
in the axial equation—now, however, the additional effect
of the free radial betatron oscillations is also included in the
axial equation. The super-position of the comparatively-
long-wavelength radial oscillations on the forced motion
in effect modulates the smooth-approximation coefficient
in the axial equation, to yield a Mathieu equation with a
coefficient having the period of the radial motion. Under
“resonant” conditions, which will be seen to include the
case of interest here, this equation may have unstable
solutions and, in such cases, the characteristic exponent
of the solution appears to compare reasonably in magnitude
with the lapserate characterizing the exponential growth
of the ILLIAC solutions of the “Feckless Five” equations.
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Walkinshaw’s analysis pertains to differential equations
which, in the MURA notation (f. ex., LIL(IMURA).- 5),
are taken to be of the form

x" 4+ (k + 1) x = - fsin (x/w - N6), 8.1)
v" 4+ [k - (f/w) cos (x/w -NO) y = 0 8.2)

(cf. LJL MURA Notes 6-22 Oct. 1955, Sect. 6, for y/w
< 1). A solution for the radial motion, representing a free
oscillation of amplitude A superposed on the forced motion,
is taken of the form

x = A cos (vx0 + ¢) - (f/Q2) sinfQd0, 8.3)
where

Qo N + A (vx/W) sin (vx0 + €) and vx = (k + )% (8.4)
This solution is substituted into the axial equation to

yield, after some approximation (and a shift of the origin
of 6 which we introduce for convenience),

= cos vXO)]y = 0.

8.5)

y”+[ k + 2N2(1+

It is noted that, when A = 0, this equation reduces to that
given by the smooth approximation—we accordingly

write
2AF v
y" + [vyz + o cos vxe] y=0, (86

to obtain an equation of the Mathieu type with a coefficient
of period 2n/vx in 0. By the transformation vx0 = 2 t,
we have the standard form

A
cos 2 t] y=20
8.7)

deyjde + [(2 vylvs)? + 3N3

with a coefficient of period = in the independent variable t.
A solution of the Mathieu equation

d2?y/dt® + [a 4+ bcos 2t]y = O, (8.8)

for b small but not zero, will exhibit instability when the
coefficient a is equal or close to the square of an integer.
In the present application stop-bands may thus be expected
at operating points such that 2 vy/vx = m, the broad band
of instability at 2 vy/vx = | (or z oy/ox = 1) being of chief
interest in connection with the work presented here.
It appears, moreover, possible to employ the Mathieu
equation to account semi-quantitatively for (i) the range
of b, and hence of the amplitude of free radial oscillation,
which may be permitted when the oscillation frequencies
depart by a specified amount from the resonant condition,

and (i) the lapse rate found to characterize the growth
of the axial motion when the radial oscillations exceed
this limit.

The numerical application of the Mathieu equation to
specific problems of stability or instability may be accom-
plished by reference to ILLIAC solutions for the stability
boundaries or for the characteristic exponent charac-
terizing the solution.

(i) A useful estimate of the expected restrictions on the
radial motion may be obtained, however, by appeal to the
fact that near a = 1, b = 0 the stability boundaries can
be represented rather well by the condition

[o] =2]a-1] (8.9)

We find in this way the following estimate for the limiting
amplitude :

3N3
v = @
w3N3
=T

2

| 29 - ve | (for =X -1 < D).
Vx

(8.10)

1t may be noted that this result, although expressed in
terms of vx and vy, concerns an inherent sector resonance
which arises when 2 oy/ox = 1. This resonance is par-
ticularly interesting in that it does not appear to fall under
the general criteria outlined in Section 6.

(i) An estimate of the lapse rate characterizing unstable
solutions near a = 1, b = 0 may, moreover, be made by
taking

when

wo=— \/bz 4(a - 1)® nepers for At=7  (|b] > 2Ja-1|)

T Vx
TN 4/b? —4(a - 1)% nepers per sector

/4 8F%A \? 2 nepers per
N l/(w3 N3) - 4[(2 v - vxz] IV sector

0.68 4f2A \ 2 2 decades per
= V( 3N3) - [(2 vy)* = vx2:| [v<? sector (8.11)

A convenient alternative form for this last result is

2n F?
b RNt /AT A% nepers/sector

2.73 F?
w3 N

V/A? - A2 decades/sector. (8.12)
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Results obtained with the ILLIAC, for 5-sector machines
with model-like parameters such that 0.57 < o6xy < 0.67
and 0.2n < oy, < 0.4w, appear fairly close to these esti-
mates. In all the ILLIAC runs the radial amplitudes
were measured, however, near the center of a focusing
region, at N6 = 0 (Mod. 2x), where the amplitudes of
the non-sinusoidal A-G oscillations can exceed those
corresponding to the smooth approximation representation
of the motion. By way of example we present here the
results for an accelerator for which

k = 0.6436 1/w = 20.82 =1/, N=35:

In this case the oscillation frequencies are such that

oxg = 0.5388% |

o | o= 1347
oye = 0.2855% |

| vyo = 0.714

and the limiting amplitude for x appeared to be some
0.0075 units to the left of the stable fixed point (N0 = 0,
mod. 2x). For these machine parameters the equation
for A, yields

500
A, = ——— 1.347[(1.06)* - 1
! (20.82)31 [(1.06)* - 1]

= 0.0092, the observed limiting amplitude at

N6 = 0 (mod 2x) thus being within 20%; of this estimate.
With respect to the lapse rate, we continue this example

by consideration of the case A = 0.0225. Then 4/A% - A2
= 0.02035, and one expects

~0.171 (20.82)°

0.02035
625 ( )

w
= 0.050 decades/sector,

in close agreement with the value 0.055 decades/sector
found from the 1ILLIAC work. (For this case the coeffi-
cients in the Mathieu equation are a = 1.12, b = 0.604,
for which an independent extrapolation of coarse tables
extending to a << 1 suggests p = 0.107 nepers/sector =
0.046 decades/sector.) In fig. 7, we plot the amplitude
of radial motion for which the vertical motion becomes
unstable (represented by the lengths of the rods) at various
points in the ox, oz — plane.

Growth of the axial motion, similar in appearance to
that reported here, has also been observed in the neigh-
borhood of the 2o6x + 2oy = 2r and ox + 20y = 2n
resonances. It appears that these sum resonances may be
connected with the presence of terms in the y-equation
which involve u2y cos N6 and uy sin N6, where u represents
the radial oscillation about the scalloped equilibrium
orbit.
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