Investigation of α-cluster states in ¹³C via the (⁶Li,d) reaction

M.R.D. Rodrigues^{1,2}, T. Borello-Lewin¹, L.B. Horodynski-Matsushigue¹, A. Cunsolo², F. Cappuzzello², J.L.M. Duarte¹, C.L. Rodrigues¹, G.M. Ukita^{1,3}, M.A. Souza¹ and H. Miyake¹ ¹Institute of Physics, Universidade de São Paulo, São Paulo – SP, Brazil ²Departament of Physics and Astronomy, Università di Catania and I.N.F.N., Laboratori Nazionali del Sud, Catania, Italy ³Faculty of Psychology, Universidade de Santo Amaro, São Paulo – SP, Brazil

Abstract

The ${}^{9}\text{Be}({}^{6}\text{Li},d){}^{13}\text{C}$ reaction was used to investigate possible α -cluster states in ${}^{13}\text{C}$. The reaction was measured at 25.5 MeV incident energy, employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. Ten out of sixteen known levels of ${}^{13}\text{C}$, up to 11 MeV of excitation, were observed and, due to the much improved energy resolution of 50 keV, at least three doublets could be resolved. This work presents a preliminary analysis of five of the most intensely populated states, also in comparison with the results of former transfer studies.

1 Introduction

The systematic study of α -cluster spectroscopic strengths in odd-even light nuclei with $(x\alpha + v)$ structure is the main purpose of the investigation in progress. Experimentally, the α -clustering phenomenon has been mainly studied through the (⁶Li,d) reaction on even-even nuclei [1] and, only a few works focused on odd-A nuclei. Referring to the α -structure of ¹³C, data for the ⁹Be(⁶Li,d)¹³C reaction have been taken in São Paulo, using the Pelletron-Enge-Magnetic-Spectrograph facility, at an incident energy of 25.5 MeV. Calculations of the α -cluster model, which does not consider internal excitations of the constituents of the $\alpha + {}^{9}$ Be system, are under way, aiming at generating alpha wave functions to be used in the DWBA description of the (⁶Li,d) reaction.

The former ${}^{9}\text{Be}({}^{6}\text{Li},d){}^{13}\text{C}$ works, by Gol'dberg *et al.* [2] and Aslanoglou *et al.* [3], presented energy resolutions of 400 keV and 110 keV, respectively. In the present work the resolution of 50 keV achieved contributes to a better understanding of the $\alpha + {}^{9}\text{Be}$ structure in ${}^{13}\text{C}$.

2 Experimental Procedure

The 25.5 MeV ⁶Li beam of the São Paulo Pelletron accelerator was focused on a 131 μ g / cm², clean and uniform target of ⁹Be. The deuterons emerging from the (⁶Li,d) reaction were momentum analysed by the field of the Enge Magnetic Spectrograph and detected in nuclear emulsion plates (Fuji G6B, 50 μ m thick). The plates covered 50 cm along the focal surface and spectra were measured at seven scattering angles, between 3° and 20° in the laboratory frame, spanning up to approximately 11 MeV in ¹³C excitation energies. After processing, the plates were scanned in strips of 200 μ m and an energy resolution of 50 keV was achieved. Fig. 1 displays the deuteron spectrum corresponding to $\theta_{lab} = 8^{\circ}$, showing the number of tracks per strip versus the position along the focal plane. In the figure, the excitation energies of ¹³C in MeV, taken from the systematics of Ajzenberg-Selove [4], associated with the deuteron peaks are indicated. A total of ten states, of the sixteen tabulated [4], was detected and the improvement of experimental conditions allowed for the separation of three doublets, corresponding respectively to the attributed ¹³C excitation energies: 3.685 MeV and 3.854 MeV, 7.492 MeV and 7.547 MeV, and 10.753 MeV and 10.818 MeV.

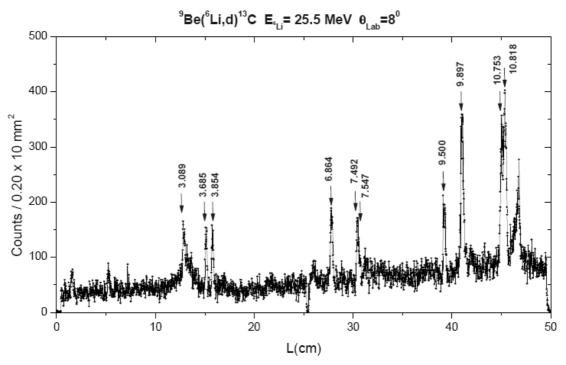
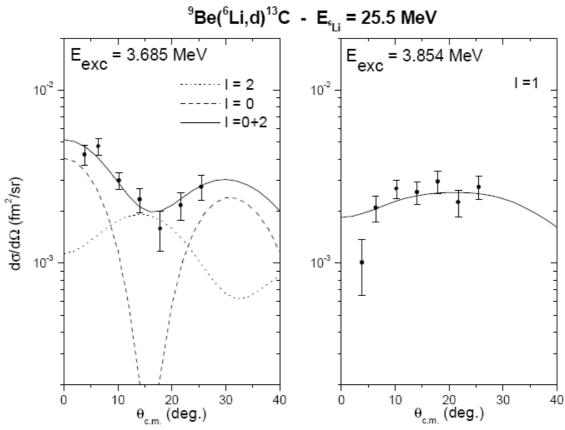



Fig. 1: Position deuteron spectrum. Indicated are the excitation energies from Ref. [4].

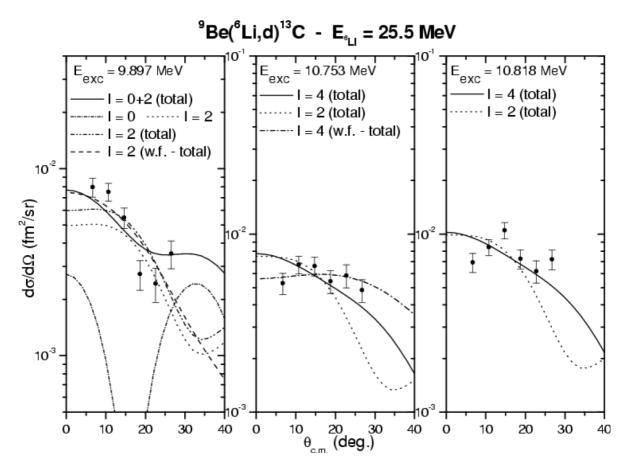
3 Preliminary analysis and Results

To describe the experimental angular distributions, particularly of the more intensely populated states, one step α transfer finite-range DWBA calculations using the code DWUCK 5 have been performed. In this preliminary analysis, the optical model description for the entrance channel (${}^{9}\text{Be} + {}^{6}\text{Li}$) took the global parameter set of Cook [5], with a slight decrease [6] in the geometrical parameters, as indicated by the fit of the elastic scattering angular distribution of ⁶Li in ¹³C, measured with the same incident energy. It is to be remembered that the optical potential for the entrance channel is quite important since it defines the door-way state of the transfer reaction. The exit channel $(d + {}^{13}C)$ optical potential applied was that of Daehnick *et al.* [7] and for the $(\alpha + d)$ description of ⁶Li the Kubo and Hirata [8] binding potential was taken. A Woods-Saxon binding potential for the (α + ⁹Be) system, with reduced radius of 1.25 fm and diffuseness of 0.65 fm was applied, the depth being adjusted to reproduce the binding energy of each ¹³C state. The number of nodes N of the transferred α particle radial wave function and, the orbital angular momentum L, relative to the ⁹Be core, were determined by the oscillatory energy conservation relation $G = 2(N-1) + L = \sum_{i} [2(n_i - 1) + l_i]$, where (n_i, l_i) are the single nucleon shell quantum numbers. In the present work a $(1p)^4$ single particle configuration was assumed for the negative parity states (G=4) and for the positive parity states a $(1p)^{3}(1d)$ structure (G=5) was considered.

The known states [4] at 3.685 MeV (3/2⁻) and at 3.854 MeV (5/2⁺), seen as doublet in former α transfer studies [2,3], are well resolved in the present work. Fig. 2 shows the corresponding experimental angular distributions in comparison with DWBA predictions. The angular distribution associated with the 3/2⁻ state needs an L = 0 + 2 mixture to be reproduced, since, due to the experimentally observed filling of the predicted minimum, a pure L = 0 contribution as indicated by Aslanoglou *et al.* [3] is not sufficient. In the case of the 5/2⁺ state at 3.854 MeV, which could be reached through L = 1 and L = 3 transfers, the L = 1 dominates.

Fig. 2: Experimental angular distributions in comparison with DWBA predictions for the states at 3.685 MeV $(3/2^{-})$ and at 3.854 MeV $(5/2^{+})$.

The experimental angular distributions and DWBA predictions for the most intensely populated states, the doublet at 10.8 MeV, now resolved, and the state $3/2^-$ at 9.897 MeV, are presented in Fig. 3. The DWBA analysis for the states $7/2^-$ at 10.753 MeV and $(5/2^-)$ at 10.818 MeV assumed both bound by 100 keV, although they are unbound. An almost pure L = 2 transfer can describe the experimental angular distribution of the $3/2^-$ state, even if an admixture of L=0, as also tried by Aslanoglou *et al.* [3], could improve the fit somewhat. As was the case also for several other experimental angular distributions, the analysis of the previous work [3] was unable to reproduce their data, the structure of the data distribution being, at least, out of phase with the prediction. The integrated experimental angular distribution associated with the states $7/2^-$ and $(5/2^-)$ in the former work [3] was fitted by a pure L = 2 transfer. In the present work, for both transitions, a pure L = 4 transfer is indicated instead.


According to Millener *et al.* [9], who performed a detailed investigation of electron inelastic scattering on ¹³C, and in agreement with ¹³C shell model calculations [10], the three states, $3/2^-$, $7/2^-$ and $(5/2^-)$, under analysis present predominantly a $(1s)^4(1p)^7(2s1d)^2$ configuration, involving, therefore, components above the p shell. For the three states mentioned, the angular distributions and DWBA fits, considering the $(1p)^2(2s1d)^2$ single particle configuration and G = 6 for the transferred alpha, would only result in lower spectroscopic intensities, without any pronounced difference in shape of the predicted angular distributions.

The experimental angular distributions of the states $3/2^-$ (9.897 MeV) and $7/2^-$ (10.753 MeV) were also compared in Fig. 3 with the DWBA predictions using the form factor described by the radial wave functions taken from Souza and Miyake calculations [11]. The local cluster-core potential for the $\alpha + {}^{9}$ Be system uses the nuclear term based on the form proposed by Buck, Merchant and Perez [12],

adding Coulomb and spin-orbit terms. A good agreement with the data was obtained specially for the $7/2^{-}$ state, which is associated in the calculation with an L = 4 angular momentum.

Intense resonances [4] in the neutron elastic scattering on ¹²C can be associated with the states in ¹³C which are excited in the α transfer, at 10.753 MeV and 10.818 MeV, slightly above the ⁹Be + α threshold, possibly with astrophysical implications.

The results here presented are still preliminary, in the short term the α + ⁹Be wave functions calculated [11] will be used in the DWBA descriptions to extract the α spectroscopic strengths of the most intensely excited states. Next, the influence on the DWBA predictions of the full complex remnant term [13] inclusion in the residual interaction will be investigated.

Fig. 3: Experimental angular distributions in comparison with DWBA predictions for the most intensely populated states. The results using the wave functions (w.f.) from Ref. [11] for the states 9.897 MeV and 10.753 MeV are also indicated.

Acknowledgments

This work was partially supported by the brazilian funding agencies FAPESP and CAPES.

References

[1] H.W. Fulbright et al., Nucl. Phys. A284, 329 (1977).

- [2] V.Z. Gol'dberg *et al.*, Izv. Akad. Nauk SSSR, Ser. Fiz. 35, 1663 (1971); Bull. Acad. Sci. USSR, Phys. Ser. 35, 1514 (1972).
- [3] X. Aslanoglou et al., Phys. Rev. C 40, 73 (1989).
- [4] F. Ajzenberg-Selove, Nucl. Phys. A523, 1 (1991).
- [5] J. Cook, Nucl. Phys. A388, 153 (1982).
- [6] M.R.D. Rodrigues *et al.*, Proceedings of the XXX Reunião de Trabalho sobre Física Nuclear no Brasil, 40 (2007).
- [7] W.W. Daehnick, J.D. Childs and Z. Vrcelj, Phys. Rev. C 21, 2253 (1980).
- [8] K.I. Kubo and M. Hirata, Nucl. Phys. A187, 186 (1972).
- [9] D. J. Millener et al., Phys. Rev. C 39, 14 (1989).
- [10] J. F. Dubach, Los Alamos Scientific Laboratory Report 2A 8303-C1980, p. 72.
- [11] M.A. Souza and H. Miyake, Proceedings of the XXX Reunião de Trabalho sobre Física Nuclear no Brasil, 46 (2007).
- [12] B. Buck, A.C. Merchant and S.M. Perez, Phys. Rev. C 51, 559 (1995).
- [13] N. Keeley, K.W. Kemper, Dao T. Khoa, Nucl. Phys. A726, 159 (2003).