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Abstract
Neutron-induced fission cross-sections of actinides have been recently measured at the neutron
time of flight facility n_TOF at CERN in the frame of a researchproject involving isotopes
relevant for nuclear astrophysics and nuclear technologies. Fission fragments are detected by a
gas counter with good discrimination between nuclear fission products and background events.
Neutron-induced fission cross-sections of233U and243Am were determined relative to235U.
The present paper reports the results obtained at neutron energies between 0.5 and 20 MeV.

1 Introduction
Precise and consistent neutron-induced fission cross-sections of actinides are required for the design of systems based on the
Th/U fuel cycle [1], for ADS [2–4], and Gen-IV nuclear reactors [5]. More accurate fission cross-sections are required -
among other physical parameters - to reach higher fuel burn-up, thus increasing the efficiency of the fuel cycle, and to improve
the safety of future systems, which aim at a higher actinide fraction in the fuel mix.

An extensive measurement campaign for reducing theσ(n,f) uncertainties for major and minor actinide isotopes
has been carried out at the n_TOF neutron time of flight facility. In this contribution we report on the233U and243Am (n,f)
cross-sections from 500 keV up to 20 MeV.
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For 243Am σ(n,f), discrepancies between data from different measurements reach 15% in the fast energy region
of the incident neutron spectrum [19–22]. A working party onInternational Evaluation Co-operation has been established
by the OECD/NEA nuclear science committee [6]. A study to evaluate the impact of neutron cross section uncertainties
on some integral parameters (like criticality) was performed for the core and fuel cycle of generation IV reactors. The most
stringent requirements for the243Am (n,f) cross section were found for Advanced Minor Actinides Burners (ADMAB), where
the reduction of the uncertainty by a factor 5 is requested between 0.490 and 6.07 MeV (Table 1).

Table 1: ADMAB Target Accuracy Results

Isotope Cross Section Energy Range Uncertainty (%)
(MeV) Initial Required

6.07-2.23 11.0 2.3
243Am σfiss 2.23-1.35 6.0 1.9

1.35-0.498 11.0 2.3
a For details see Table 23 in Ref. [6].

The233U (n,f) cross section is crucial for the study of the Th/U fuelcycle, which is of interest due to the abundance
of the232Th seed and for the reduced production of long-lived actinides. The Th-U fuel cycle ends up with a lower production
of MAs with respect to the U-Pu fuel cycle and the produced U represents a useful fuel as well. This cycle is characterized
by its intrinsic proliferation resistance, because the232U produced via233U(n,2n) reactions decays rapidly to strongγ emitters
and makes, therefore, the handling of the fuel containing233U more difficult.

2 The n_TOF Facility
The n_TOF (neutron Time Of Flight) facility [7] is a high fluence spallation neutron source. Neutrons are produced in a thick
lead target (60× 80× 80 cm3) by short proton pulses of 20 GeV/c momentum and 6 ns r.m.s., giving rise to a high neutron flux
(about 300 neutrons are produced per incident proton) in a wide energy range from 1eV to 250 MeV. From the spallation target,
an evacuated neutron beam line leads to the Experimental Area (EAR1) at a distance of 185 m. Along this beam line massive
concrete and iron shieldings as well as a sweeping magnet areused in order to reduce the background due to the intenseγ-flash
and to relativistic charged particles from the spallation source.

The experimental area contains several detectors for capture and fission studies, which are normally performed with
different beam diameters and different beam monitors. For alist of the available detectors see Ref. [8]. Behind the experimental
area, the beam line continues for another 12 m before it ends in a beam-dump to avoid background from backscattered neutrons.

3 The Fast Ionization Chamber
Measurements of neutron-induced fission cross-sections have been carried out using Fast Ionization Chambers (FIC) [10, 11]
built by a collaboration between the Joint Institute of Nuclear Research (JINR, Dubna, Russian Federation), the Institute
of Physics and Power Engineering (IPPE, Obninsk, Russian Federation), INFN, and CERN. Two identical chambers were
designed for samples with high and lowα-activities, respectively, and a third was intended for235U and238U samples to be
used as a flux monitor.

A simplified layout of the FIC is shown in Fig. 1. The basic cellis composed of three aluminum electrodes 12 cm
in diameter. The central electrode is 100µm in thickness and is plated on both sides with the fissile isotope under study. This
central electrode is connected to the bias voltage for defining the electric field of 600 V/cm in the 5 mm wide gas-filled gaps.
The two outer electrodes 15µm in thickness are kept at ground potential. The sample layers are 8 cm in diameter. The whole
detector is 50 cm long and houses up to 17 basic cells perpendicular to the neutron beam. The samples investigated in this work
are listed in Table 2.

Signals produced by fission fragments in the sensitive gas volume are proportional to the specific energy loss of
the fragments, which is a function of their atomic number. Given the 2π geometry of the chamber, the detection efficiency
for fission events is close to 100% for each cell. In order to fulfil the safety regulations at CERN, the FIC is operated in the
ionization regime, without gas flow. The chamber is therefore operated as a sealed detector at a pressure of 720 mbar. Because
of the highα-activity of the samples, a gas mixture of 90% Ar + 10% CF4 was used to ensure fast charge collection (t≤ 50
µs). This was essential for minimizingα pile-up and dead time effects.
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Fig. 1: Schematic layout of four FIC cells

Table 2: Total sample mass

Isotope Mass (mg)
233U 30.84± 0.37
235U 31.80± 0.43

243Am 4.78± 0.06

Table 3: a side by side figure/table demo (Table Cap-
tion No. 2)

4 Data Analysis

4.1 Cross sections
Cross Sections are extracted relative to235 U, which is a standard between 0.15 MeV and 200 MeV. At high energy, signals
are strongly affected by the so-calledγ-flash produced by promptγ-rays and relativistic particles originating from spallation
reactions in the Pb target. In the FIC, the high intensity of theγ-flash causes strong oscillations in the output signal.

The strong fluctuations in the time evolution of the signal amplitude are shown in the left Panel of Fig. 2. The
problem can be solved, up to a given energy, by observing thattwo adjacent electrodes are affected by theγ-flash in the
same way. Therefore, a software compensation technique canbe applied in order to extract the signals of fission fragments.
The technique consists in subtracting the output of two adjacent electrodes [9]. The results of this procedure is illustrated in
the right Panel of Fig. 2. The signals are then subjected to a pulse shape analysis and to an amplitude threshold in order to
discriminate between fission fragments andα particles (Fig. 3). Residual electronic noise is reduced byconsidering the charge-
to-amplitude ratio of the signals. The TOF information was converted to an energy scale by defining the so-called "time zero"
(t0) by means of theγ-flash. Although the samples are separated by 10 mm, a common flight-path was used in the analysis.
The corresponding uncertainty of about 0.3% in neutron energy introduced in this way is negligible in view of the smooth cross
section trend in the MeV region.

Fig. 2: (Left) Recorded raw signals from neighboring electrodes. (Right) Signals after subtraction of cross-talk
andγ-flash.

The neutron-induced fission cross-sections are extracted according to the following expression:

σxxx(n,f) = σ235(n,f) ·
Nxxx

N235

·
m235

mxxx

·
Axxx

A235

. (1)

where
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– σ235(n,f) is the tabulated ENDF/B-VII.0 cross section,

– xxx stands for the investigated isotope, i.e.233U or 243Am,

– Nxxx denotes the number of fission events detected for isotope xxx

– mxxx is the mass (in grams) of isotope xxx,

– Axxx is the atomic number of isotope xxx

Since the investigated isotopes and the235U reference samples are mounted in the same detector, they are exposed to
the same neutron flux.

Fig. 3: Experimental pulse height spectrum for235U.
The vertical line indicates the threshold chosen to dis-
criminate betweenα particles and fission fragments.
The peak at channel 185 is due to saturation effects.
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Fig. 4: Simulation of the energy deposited by fission
fragments in the FIC folded with an energy resolution
of 15% and normalized to the measured pulse height
spectrum. The threshold at channel 35 corresponds to
an energy of about 18 MeV.

4.2 Corrections
The number of detected fission events obtained by Eq. 1 had to be corrected for dead-time and detection efficiency.

The dead time of a counting system can be treated by assuming aparalysable or a non-paralysable response. In the
non-paralysable mode a fixed dead time is assumed for each recorded event. Signal falling in this time window are lost, so that
a correction has to be applied in the extracted cross-section. A non-paralysable model has been used in the present analysis,
with the dead-time (of 300 ns) related to the signal reconstruction routine. For most of the measured isotopes, the dead-time
correction goes from a few percent at low energy, to 20% at higher energy. However, since the count-rate in the various isotopes
is similar, the corrections mostly cancel out in the ratio, with a residual effect of the order of a few percent, with a corresponding
uncertainty less than 1%.

Another correction that needs to be applied in extracting the cross-section is related to the detection efficiency. The
number of particles leaving the sample as well as the spectrum of energy loss in the gas volume, is determined by the sample
thickness, so that differences in the detection efficiency may exist for the different measured isotopes. The effect of fragment
absorption in the sample thickness was estimated by simulating the energy loss of fission fragments in the sample depositand
in the gas with the FLUKA code [13]. The simulated distributions of the energy deposited by the fission fragment in the gas
volume of the chamber were folded with an energy resolution of 15% to match the measured pulse height spectrum as shown
in Fig. 4. In this way, the detection efficiency can be calculated for each isotope, taking into account the threshold applied
on the measured amplidute distribution. For all isotopes here shown, the simulated efficiency is very high, ranging between
95% for 235U and 98% for243Am. Therefore, when extracting the cross-section for the various isotopes relative to235U, a
correction of only a few percent has to be applied. Consequently, the uncertainty related to the detection efficiency is below
1%. Considering all effects and corrections introduced in extracting the cross-sections, the overall systematic uncertainty on the
extracted cross-section for the two isotopes here investigated is slightly higher than 4%, mostly determined by the uncertainty
on the mass of the various deposits (including the235U sample used as reference).

5 Results
Although the energy range covered by the present measurements extends to 200 MeV, fission cross sections are reported here
only up to 20 MeV. Results obtained at higher energies are at present largely affected by theγ flash and, therefore, still
preliminary.
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5.1 233U
The results of the present measurements are shown in Fig. 5 compared to experimental data by Tovessonet al.[14], Shcherbakov
et al. [15], Lisowskiet al. [16], Fursovet al. [17], and Grosjeanet al. [18]. In general, fairly good agreement is found with the
data of Lisowskiet al. [16] and Tovessonet al. [14], whereas the values of Fursovet al. are slightly lower. Below 10 MeV, the
n_TOF results are also in good agreement with the ENDF/B-VII.0 evaluation (see Fig. 6), although below 1 MeV the evaluated
cross-sections are systematically lower than the n_TOF results, by approximatelly 5%.

Fig. 5: Comparison among present results for233U and previous data.

Fig. 6: Comparison between present results and the ENDF/B-VII.0 evaluation.
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The comparison with previous experiments and evaluations is summarized in Table 3, which lists the ratio of the n_TOF
results over previous data, integrated in the indicated energy region.

Table 3: Difference between present results for233U and previous data.

Author/library Range of integration Difference
(MeV) (%)

Fursovet al. [17] 0.3 - 7.4 +2.4
Shcherbakovet al. [15] 0.577 - 20.0 +0.9
Lisowski et al. [16] 0.583 - 20.0 +1.2
Tovessonet al. [14] 1.0 - 7.5 -2.1
CENBGa 0.950 - 6.49 -0.7
ENDF/B-VI.8 0.3 - 20.0 +5.6
JEFF 3.1 0.3 - 20.0 +3.5
ENDF/B-VII.0 0.3 - 30.0 +4.8
JENDL 0.3 - 20.0 +3.5
a Centre d’Etudes Nucleaires de Bordeaux Gradignan

5.2 243Am
A comparison between the present measurement and the results of Aicheet al. [19], Laptevet al. [20], Seegeret al. [21], and
Fursovet al.[22] is shown in Fig 7. The present results from n_TOF confirm that the data of Laptevet al. are systematically too
high. A good agreement is observed between n_TOF data and other previous measurements. A reasonable agreement is also
observed between the present results and the ENDF/B-VII.0 compilation below 10 MeV (Fig 8). A summary of the comparison
between n_TOF cross-sections and previous data and evaluation can be found in Table 4.

Fig. 7: Comparison between present results for243Am and previous data.
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Fig. 8: Comparison between present results for243Am and the ENDF/B-VII.0 evaluation.

Table 4: Difference between present results for243Am and previous data.

Author/library Range of integration Difference
(MeV) (%)

Seegeret al. [21] 0.3 - 2.97 -5.9
Aicheet al. [19] 1.34 - 7.35 -2.4
Fursovet al. [22] 0.3- 7.4 +6.3
Laptevet al. [20] 0.577 - 20.0 -14.5
ENDF/B-VII.0 0.3 - 30.0 -0.5
JEFF 3.1 0.3 - 20.0 +6.1
BROND2.2 0.3 - 30.0 +4.9
JENDL-AC-2008 0.3 - 20.0 +7.3

5.3 Conclusions
Taking advantage of the high instantaneous flux and the high energy resolution of the CERN n_TOF facility, neutron-induced
fission cross-sections of233U and243Am have been measured in the energy range between 0.5 MeV and 20 MeV relative to
235U as a standard, using a Fast Ionization Chamber. To minimizesystematic errors, all samples were mounted in the same
chamber and measured simultaneously. Corrections for dead-time and detection efficiency have been included in the analysis,
in order to extract cross-section with a high accuracy. The overall uncertainty in the present results is 4% in the whole enery
region here reported. A comparison with previous data and evaluations for233U shows differences of the less than 10%. Some
revision of the current databases, in particular below 1 MeV, is needed to account for the new results. For243Am, the n_TOF
data confirm the results of Fursov and agree reasonably well with the current evaluation, while confirming that recent data
from Laptev were overstimating the cross-section by as muchas 15%. The results here presented are important to resolve
discrepancies in previous data, thus providing a reliable basis for future evaluations to be used for the design and safeoperation
of advanced nuclear system.
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