ILC-CLIC

Alex Kluge (CERN, Geneva, Switzerland)

alex.kluge@cern.ch

Tracker Read-out at **ILC & CLIC**

A. Kluge

Presented by Alexander Kluge

TWEPP 2009, Sept 21 – 25 , 2009

е

Linac II

LEP			
	centre of mass energy	91GeV -> 200 GeV (Z ₀ ,W)	
	bunch spacing / bunch crossing frequency	22 µs / 45 kHz	
	number of bunches	4	
	length	27 km	
	bunch train repetition frequency	continous	
	beam profile dimensions	200 µm x 3 µm	
	bunch length	0.5 – 4 cm	

LHC		LHC	
		centre of mass energy	14 TeV
CEN	Accelerations Churchet	bunch spacing / bx frequ.	25 ns / 40 MHz
	UK	number of bunches	2808
6	-)	length	27 km
	51	bunch train repetition	continous
	-)./_	luminosity	10 ³⁴ cm ⁻² s ⁻¹
	TE	beam profile dimensions	16.7 x 70.9 µm²
S	3 (-)	bunch length	7.55 cm RMS
187) Lager Hauss Falling 187) Lager Hauss Falling 1871 - Tager Hauss Falling 1871 - Tager Hauss Falling 1872 - Tager Hauss Falling 1974 - Tager Hauss Falling 1975 - Tager Hauss 1975 - Tager H	16	radiation level (tracker) equivalent to 1 MeV neutron flux	10 Mrad/yr, 5*10 ¹⁴ cm ⁻² s ⁻¹
CP: Anton Junit And Banker Dr. Anton Junit Anton All C: Liferer Westerner Liffed ar Design Antilling COM Com Residence Anton	No. 6, Charlos Maria	hit occupancy (CMS pixel)	0.01 hit mm ⁻² bx ⁻¹

ILC - International Linear Collider

	ILC	
ILC	centre of mass energy	0.5 TeV
	bunch spacing / bx frequ.	337 ns / 3 MHz
	number of bunches	2625 -> 0.969 ms
	length	31 km
	bunch train repetition	5 Hz / 200 ms
	duty cycle	0.005
	luminosity	2 * 10 ³⁴ cm ⁻² s ⁻¹
	beam profile dimensions	620 x 5.7 nm ²
	bunch length	300 µm RMS
	radiation level (tracker) equivalent to 1 MeV neutron flux William Morse ILC R&D April 19, 2006	10 MGy/yr, ?*10 ¹⁴ cm ⁻² s ⁻¹
	hit occupancy	0.03 hits mm ⁻² bx ⁻¹

CLIC		
	CLIC	
	centre of mass energy	3 TeV
	bunch spacing / bx frequ.	0.5 ns / 2 GHz
	number of bunches	312 -> 156 ns
	Length (2 LINACs)	48 km
	bunch train repetition	50 Hz / 20 ms
	duty cycle	8 * 10 ⁻⁶
	luminosity	6 * 10 ³⁴ cm ⁻² s ⁻¹
	beam profile dimensions	40 x 1 nm ²
	bunch length	44 µm RMS

ICE SIIICON PIXEI	Detector	moa
SPD Element	Thickness µm %X	0
Al Bus		
Kapton	60	0,02
Al power	100	0,11
Al signals [50%]	17,5	0,02
Glue Epoxy	70	0,02
SMD components	16,4	0,17
	Total	0,34
Other Components		
Pixel chip	150	0,16
Sensor	200	0,21
Bump bonds Sn 60%+Pb 40%	0.18+0.12	0,00
Grounding Foil-Kapton/Al	50+10	0,03
Glue Epoxy/thermal grease	200	0,05
Carbon fiber	200	0,11
	Total	0,56

Examples for corner scenarios as starting point				
 All layers of inner tracker similar one dedicated time stamping layer and all others good in position resolution with reduced timing resolution 				
	Parameter	1)	2)	
	tracking layer: pixel size	30 µm x 30 µm	10 µm x 10 µm	
	tracking layer: time resolution	20-25 ns	≥ 150 ns	
	tracking layer: material budget	≥0.2 % X ₀	0.2 % X ₀	
	time stamping layer: pixel size	-	100 µm x 100 µm	
	time stamping layer: time resolution	-	15 ns	
A. Kluge	time stamping layer: material budget	-	>0.2 % X ₀	

Data rate & Power pulsing

A. Kluge

A. Kluge

ILC physics at 500 GeV

 Higgs physics:

 •Study of light standard-model Higgs boson (< ~225 GeV) properties using ZH radiation and WW fusion process.</td>

 •Precise measurement of Higgs mass (50 MeV) and width (7%)

 •Higgs coupling to gauge bosons and quarks (to ~10% precision)

Top-quark physics: Precision top measurements (at \sqrt{s} =350 GeV) Measurement of top mass (to~150 MeV) and width (5% of predicted 1.4 GeV width)

These precision measurements allow to look for departures of standard model and constrain parameters of new physics models.

Supersymmetry: •Complete study of light sparticles •Discovery of heavy sparticles

A. Kluge

33