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2 M ultiParton Scattering Am plitudes via O n-ShellM ethods

1 Introduction

W ith the recent st collisions at the LHC we are entering a new era of discovery
in particle physics. Colliding protons at very high energies m akes the LHC a
fertile environm ent for the production of high-m ultiplicity events. If we are to
take fulladvantage of the discovery potentialat high energy hadron colliders such
as the Tevatron and the LHC , we need to have a precise understanding of the
physics that w ill occur there. T his necessitates com putations of the Standard
M odelbackground, especially of Q CD processes, to at least next—+to—-leading order
(NLO ) in the perturbative series.

H istorically, the bottleneck in NLO com putations has been the oneJloop vir-
tual contributions. O ver the last few years rapid progress has been m ade in the
developm ent of new techniques for these one-loop com putations. T hese advance—
m ents have been m otivated both by a greater desire to understand the structure
of scattering am plitudes as well as the need for in proved e ciency and autom a—
tion In the com putation of one-loop m atrix elem ents. T hese m atrix elem ents are
needed, for exam ple, for the precise com putation of m any background processes
at the LHC (see e.g. (1)). The ability to autom ate and \m assproduce" am pli-
tudes requires approaches that are both num erically stable and straightforward
to In plem ent as an algorithm .

T he standard approach to perform ing this class of com putations has heavily
relied upon Feynm an diagram techniques. There have been m any in pressive
results w ith this approach (see (1) and references therein ; for exam ple, cross sec—
tions for 6point processes that have been com puted via Feynm an diagram m atic
m ethods include (2)). However, Feynm an diagram s su er from two problem s.
For one, there is a factorial grow th in the num ber of temm s as the m ultiplicity of
partons In the process Increases. Furthem ore, each Feynm an diagram is gauge
dependent. T hism eans that there w illbe large cancellations between term s that
com bine to give the gauge=independent am plitudes. It is these two problam s that
m ake autom ated approaches using Feynm an diagram s di cult as the num ber of
partons increases.

C onsequentially, the focus of m uch recent progress has been to side-step these
issues. O n-shell recursion and unitarity m ethods work w ith gauge=independent
am plitudes as buiding blocks instead of Feynm an diagram s. It is these new
technigues that we focus on in this review . An earlier review of these technigues
was presented In (3). However, m any of the details presented there have been
superseded by even m ore e clent technigues which we present in the follow ing.

In general, aswew illexplain in m ore detailbelow ,a one-loop am plitude can be
decom posed into a set of scalar box, triangle, bubble, and tadpole ntegrals, that
is, Integrals w ith four, three, two, or one loop propagators, respectively. T hese
scalar integrals contain all the logarithm ic and polylogarithm ic dependence of the
am plitude and are m ultiplied by rational coe cients. In addition, there are also
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purely rational term s in the am plitude.

T he origihal unitarity approach of (4) applied two-particle cuts in four di-
m ensions and was used to produce many results (5). The tem s containing
(poly )logarithm s and associated constants could allbe com puted via two-particle
cuts. Temm s w ith only a rational dependence on m om entum invariants how ever
could not be com puted in this way and separate techniques were required (5). A
system atic approach for the com putation of these rational term s w ithout the use
of Feynm an diagram s did not appear until a few years ago. T he starting point
for these developm ents were the recursion relations, developed at tree level by
Britto et al. (BCFW ) (6)). An earlier version of a treelevel recursion relation
was the o —shell Berends6 iele recursion (7). The proof of the BCFW on-shell
recursion relations only relies upon the factorization properties of the am plitudes
and on Cauchy’s theorem . They could therefore be adapted to the m ore com pli-
cated problem of com puting the rationalparts of loop am plitudes (8/9)). O n-shell
recursion for the rational parts of loop am plitudes was st used in an analytic
context (9) and then further adapted into a num erical procedure (10)).

At the sam e tin e, In provem ents to the original unitarity approach were also
occurring. Brandhuber et al. used two-particle cutswith M HV wvertices to com -
pute certain sets of onedoop am plitudes (11]). T he application by Britto et al.
of generalized unitarity (5/12) to the com putation of box coe cients highlighted
the bene tsof exam ining not the one-loop integral as a whole, but its Integrand.
The work of O ssola, Papadopouls and Pittau (OPP) (13/14) ollowed in this
vein. Upon separation of the integrand into a standard set of basis temm s, the
problem could be reduced to solving for their coe cients num erically. T he sin ple
analytic extraction of triangl and bubble coe cients was the focus of the work
by one of the authors (15), where the known analytic behavior of the integrand
was used to straightforw ardly extract the bubble and triangle coe cients. A nu-—
m erical adaptation of this procedure suitable for autom ation was then presented
in Ref. (10).

T he Investigation of the onedoop Integral itself has also presented new direc—
tions to explore. Britto et al. (1€]) showed how the integral when written In a
canonical form can be directly integrated. This procedure was developed fur-
ther to produce new results (17) and also to provide a general analytic structure
for the coe clents of oneJoop am plitudes ([18/19). Taking further advantage of
the analytic properties of the tw o-particle cut am plitude, M astrolia (20) applied
Stokes’ theorem and a generalized residue theorem to com pute bubble coe cients
via direct integration.

Extending the fourdim ensional cut techniques to D dim ensions (in din en—
sional reqularization) has also provided a second very fruitfiil approach for the
com putation of the rational term s. In D din ensions the rational term s develop
branch cuts and are so accessible via unitarity cuts. G il et al. (21l) elucidated



4 M ultiParton Scattering Am plitudes via O n-ShellM ethods

the extra structures present In D din ensions beyond those of the original four—
din ensionalO PP integrand. H ence they were able to com pute the rational term s.
Follow ing up on this and an earlier result relating m asses to D -din ensional uni-
tarity (22]), Badger presented an altemative com putational approach where the
(D 4)-din ensional term s are treated as an additionalm ass in the loop (23).
A di erent approach advanced by Papadopoulos et al. (24) involves splitting the
rational com putation into two pieces. O ne part is com puted from the one-loop
Integrand and is an extension to the original O PP approach, while the second
part com es from a reduced form of Feynm an diagram s.

T hese approaches have been in plem ented iIn several autom ated tools for the
com putation of one-loop am plitudes: BlackHat (10l), CutTools/OneLOop (25]26l),
Rocket (27), and others (28). These program s, com bined with tools for the
real em ission part (29/30) have yielded a host of new results at next-to-leading
order (311/32/33/34/35/36).

Below we w ill review them ain ideas of all these developm ents. D ue to Jack of
space, we regret that we can neither present all details nor an exhaustive list of
all results and refer the reader to the cited literatiire and references therein.

W e begin with a review of our notation and the general structure of m ulti-
parton scattering am plitudes and explain how to construct such am plitudes re—
cursively at tree level. W e will use the spinor form alism , and those readers
unfam iliar w ith spinor techniques and their application to the calculation of tree-
level and one-loop am plituidesm ay w ish to consult for exam ple R efs. (37/38/39)).
Section [3 discusses the use of (generalized ) unitarity to construct one-loop am pli-
tudes from tree level am plitudes, both the cut and the rationalpart. In Section[4
we explain how to altematively em ploy a recursive approach to obtain the purely
rational non-logarithm ic termm s of am plitudes that cannot be constructed via uni-
tarity In four din ensions. W e conclude w ith a sum m ary and give an outlook on

the expected progress in the near future.

2 Structure of Am plitudes

Below we brie y review our notation, which closely follows Ref. (38) (see also
(37)). W e then discuss the general structure of tree and one-loop am plitudes in
renom alizable gauge theories to set the stage for the subsequent sections which
discuss new m ethods for the com putation of these am plitudes.

2.1 N otation and C olor D ecom position

In the follow ing we w ill consider am plitudes w here all co]oﬂ and coupling infor-
m ation has been stripped o . W e can express any am plitude in term s of som e
basic color (and coupling) factors which are m ultiplied by color-ordered subam —

!¢ olor here and below refers to any group theory factors.
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plitudes, or prim itive am plitudes. T hese prin itive am plitudes, which are de ned
for speci c cyclic orderings of the external partons, carry all the kinem atic in—
form ation but no explicit color indices. The full am plitude is then assem bled
from the prin itive am plitudes by dressing them w ith appropriate color factors.
T here exist di erent, but equivalent, ways of grouping the prin itive am plitudes
together into socalled partial am plitudes, and we refer the reader to the litera-
ture for further inform ation, see (37,38/40//41l) and references therein. In what
follow s below , we w ill discuss the com putation of the prin itive am plitudes, con—
centrating on the description of the evaluation of the kinem atic part. A s shown
recently in R ef. (42), the algorithm s that we w ill present below can be extended
to am plitudes w ith color inform ation.
W e express the prin itive am plitudes In termm s of spinor inner productsH

hjli= hj J'i=u (kj)us (k1) U= bhj" L i= u: kyu (ki);
(1)
whereu (k) is a m assless two-com ponent (W eyl) spinor w ith m om entum k and
positive or negative chirality, respectively, which we also w rite as,

(1) [y ki)l ("1) b ki)l - (2)

M assless fourmm om enta can be reconstructed from the spinors by,
k() _= ¥ = (1) (T1)_: (3)

Spinor products can thusbe used to construct the usualm om entum dot products
via
o 1
hiji[jil= ETr KKy = 2ki k= sij: (4)
Furthem ore, we use the follow ing notation for sum s of cyclically-consecutive
externalm om enta and their Invariant m asses,

K i1 ki + ki+l+ ﬂ' i{'*' kj 7 (5)

Si:::j K Z (6)

. -
1 7

w here all indices are to be understood m od n for n-particle am plitudes.

T he above form alian can be extended to include m assive spinors and vectors,
using the wellknow n decom position of any, not necessarily light-lke, fourwector
k into a sum of two light-ike fourwectors:

K2
q : (7)

k =kl +
2k d

Here g isa xed light-ke fourvector, xing the axis of the spin for spinors, and
k! is the associated projction of the m assive vector k. M assive spinors can be

’Note that we use the sign convention of most of the QCD literature, In the \tw istor"
literature a di erent sign convention for [j1] is used, for exam ple in R efs. [@]).
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constructed via

¥+m fi= kb i+
klg A * klg
! ¥+ goi= kU i+

m i= i
klg A klg

u (k;q)

u, (k;q) B i 9)
and sin ilarly for the conjigate spinors (43). Here, the label  indicates that
the spihors u  are eigenstates of the profgctor (1 & °), with the spin vector
s = k=m m=(k qg)gq. The nom alization is chosen to allow a sm ooth Im it to
the m assless case.

2.2 0On-ShellR ecursions at Tree Level

An e cient recursive technigue for com puting treedevel m ultiparton scattering
am plitudes w as developed m ore than 20 years ago (7) and adapted for num erical
in plan entation In vardous com puter codes (41144 /45). Berends6 ile recursion
connects an aller o —shell currents together to produce am plitudes. M ore recently
it was realized that through the use of com plex kinem atics am plitudes can be
com puted entirely using only sm aller on—shell am plitudes. This leads to m ore
com pact analytic expressions not only at tree level but for rational term s also at
Joop level. Here we brie vy review the on-shell recursion relations for tree level
am plitudes found and proved in Refs. (6). A recursive approach at loop level is
not quite so straghtforward, as we w illdiscuss in Section [4l.

At tree level, the on—shell recursion relations rely on general properties of com —
plex functions aswellas on factorization properties of scattering am plitudes. T he
proof (6) of the tree-level relations em ploys a param eterdependent com plex con—
tinuation \[];1i", or \shift", of two of the extermalm assless spinors, j and 1, in

an n-point process,
[3;14 = Y5l Ty 2Ty 1boitz g (10)

where z is a com plex num ber. T he corresponding m om enta are then continued
n the com plex plane as well, w hereby they rem ain m assless, k? (z)= 0= kf (z),
and overallm om entum conservation ism aintained.

An on-shell am plitide containing the m om enta k4 and k; then also becom es
param eterdependent, A (z). T he physical am plitude is given by A (0). W hen A
is a tree am plitude or nite one-doop am plitude, A (z) is a rational function of z.
At tree level, A (z) only has sin ple poles. T hese poles arise only from the shifted
propagators of the am plitude. For exam ple,

i | i .
CKZ.+zhj Wi 1]

(11)

r:lis

In the vicinity of the location of the pole z.5, the com plex continued am plitude
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is then schem atically given by,

X i
Im A (z)= Al (z A_"z); 12
A8 5 ) . o )Krz:::s+ zhj H pusi i K =) )

whereh = 1 Jabels the helicity of the intermm ediate state, and the labels L and
R denote am plimudes w ith fewer legs, which the propagator eg. (11l) connects.
T he num ber of poles z,5 In the com plex plane is given by the num ber of ways the
set of external legs can be partitioned such that the legs j and 1 always appear
on opposite sides of the z-dependent propagator.
W e can now use Cauchy’s theoram ,
I
1 dz
— —A@2)=20; (13)
2 1¢ =z
w here the contour C istaken around thecircleat in nity,and the integralvanishes
if the com plex continued am plitude A (z) vanishesas z ! 1 . Evaluating the
integralas a sum of residues, we can then solve for the physical am plitude A (0)
to obtain,

X A (z) X X h

A (0) = Zl:igs . = A (z= ZrS)KTARh(Z: Zrs) : (14)

poles ris h r s
T he on-shellam plitudesw ith fewer legs, A and Ay , are evaluated in kinem atics
that have been shifted by eg. (I0) with z = z,5, where eg. (I1l) has a pol,
Kf s,
=T N Homd i o
In the follow ing, such shifted, on-shellm om enta w illbe denoted by k(z = z.4)
kK. A typical contrbution to the sum s in eq. {I4) is ilustrated I Fig.[.

W e have thus succeeded iIn expressing the n—point am plitude A in tem s of
sum s over on-shell, but com plex continued, am plitudes w ith fewer legs, which
are connected by scalar propagators. T hese recursion relations can be extended
tomassive Q CD and other theordes (46]/47). M oreover, for certain helicity con—

gurations, this recursion relation can be solved explicitly, leading to new all-
m ultiplicity expressions for these am plitudes (48)).
T he basic Ingredients to cbtain such a recursion relation are com plex m om enta

and analysis, which are necessary to m ake 3-point vertices non-vanishing; factor—
izability, which is responsible for the sin ple pole structure; and the vanishing of
the boundary contribution asz ! 1 .Attree levelin QCD ,one can always nd
com plex continuations where this boundary condition vanishes. However, as we
w ill see in Section [4 below , this is not the case at the one-loop level, and a recur-
sive approach becom es considerably m ore com plicated. O ther theories such as a
scalar * theory have non-vanishing z ! 1 behavior already at the tree level,
w hich spoils the recursive approach . Studies of the origin of these boundary term s
and their relation to the Lagrangian can be found in Refs. (49). Furthem ore,
additionalam plitude structures related to on—shell recursion relations and tw istor
space have been uncovered (50).
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2.3 Structure of O ne-L.oop Am plitudes

W e now tum to the discussion of gauge-theory one-loop am plitudes, the m ain
sub Bctofthisreview . From hereon,wew illdenote one-loop am plitudes explicitly
w ith a superscript A 1P, and tree am plitudes w ithout superscript sin ply by A .

U sing reduction techniques (511/52/53) any m point scalar ntegral,m > 4, can
be reduced to scalar integrals w ith at m ost four propagators. T hat is, any one-
loop n-point am plitude A 1P can be decom posed into a basis B 4 of scalar box,
triangle, bubble and tadpole integrals, w ith rational coe cients in four din en-—
sions. In D din ensions, for exam ple when working in din ensional reqularization
whereD = 4 2",then thebasisBp isextended to includea scalar pentagon. T he
coe clents of the D -din ensional basis scalar integrals can be decom posed into
purely fourdim ensional coe cients after expanding in ". Purely rational term s
are generated when term s higher order in " in the coe cients are m ultiplied by
the poles in the integrals,

A TP = : F1? = S + Ry (16)
j2Bp j2Ba4
Tustrative exam ples of integrals of the basis B are shown in Fig.[2.

W e will see in the next two sections how to obtain these coe cients and ra-
tional term s in e clent ways. T he scalar Integrals contain infrared and ultravi-
olet divergences that are requlated via din ensional reqularization, and depend
Jogarithm ically or polylogarithm ically on m om entum =nvariants. The integrals
appearing in eg. (1€) are known and tabulated for exam ple in Refs. (4/54). In
order to com pute one-loop m atrix elem ents the task is therefore reduced to the
determ ination of the coe cients, it is not necessary to perform any integrals.

For am plitudes w ith only m assless particls, the tadpoles vanish. In N = 4
supersym m etric theories, as counting of powers of loop m om enta in one-loop
Integrals reveals, only box integrals contrbute with (D = 4)-din ensional coe —
cients (i.e. free of " term s), and In N = 1 supersym m etry bubble, triangle, and
box integrals contribute, w ith fourdin ensional coe cients ([4). T hat is, theories
w ith unbroken supersym m etries do not contain purely rational tem s that are
not associated w ith any of the Integrals in the basis. O ne-oop supersym m etric
am plitudes can therefore be com pletely reconstructed from unitarity cuts,aswe

w il now discuss.

3 Extraction of Integral C oe cients via U nitarity

The problam of com puting eg. {18) has been reduced to detemm ining the coef-
cients, ¢y, multiplying the known basis integral functions, in the m ost e cient
m anner possible. The nature of eq. (I8) suggests the use of unitarity cuts to
isolate particular integral coe cients. At the m ost basic level a unitary cut ef-
fectively replaces a propagator w ith an on-shell delta function, ie. we \cut" the
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propagator w ith the replacem ent,
1
m

b p? m): (17)

2 2

P + i

In the original unitarity approach (4) only two propagators were cut but m ore
recent developm ents have highlighted the bene ts of applying m ultiple cuts (5,
[12). The application ofm ultiple cuts is known as G eneralized Unitarity and has
becom e the foundation of the m ost recent developm ents in the literature.

O ur starting point is the form ofeq. (I18) decom posed in the B 4 basis, we post—
pone the discussion of the general D -din ensional case using Bp to Section [3.3.
T he purely rational tem s are Independent of any possible cuts in fourdim ensions
and therefore only the rem aining \cut-constructible" pieces are accessble via a
unitarity technique.

W e apply a num ber of cuts to the expression of the one-loop am plitude and
m atch this expression to that of the basis decom position, eg. {I4), w ith the sam e
set of cuts applied. This allow s us to directly relate the cut expression to the
basis integral coe cients. T his procedure is repeated w ith asm any di erent sets
of cuts as is needed to com pute all the basis coe cients. R ather than actually
applying the cuts to the full expression for the one loop am plitude, com puted
for exam ple w ith Feynm an diagram s, we construct the cut expression sin ply by
m ultiplying appropriate on-shell tree am plitudes together. T his allow s us to take
advantage of e cient, com pact form s of tree am plitudes produced via recursion
relations, for exam ple those of Section [2.2].

Below , we describe two unitarity approaches for the extraction of integral co-
e cients. They both utilize know ledge of the integrand, A'(1), of the one-loop
am p]jtude,A%_bOp = 5 dIx, (1), to derive the basis integral coe cients. The rst,
described in Section [3.]], is based upon the exam ination of the behavior of the
loop integrand and the loop m om enta in the com plex plane. The second, de-
scribed in Section [32, known as the O ssola, Papadopoulos and Pittau (OPP)
m ethod, relies upon com puting the coe cients of the general structure of the
loop integrand itself.

3.1 G eneralized U nitarity in Four D im ensions

In generalwewant to isolate as few basis integralcoe cientsaspossiblew ith each
cut that we consider. Tt is easy to see that a quadruple cut can be used to isolate,
on the basis side, a single box coe cient. T here are not enough propagators in
the bubble and triangle integrals to accom m odate so m any cuts. T he set of cuts
w e require to com pute allbox coe cients corresponds sin ply to all possible boxes

that could be present.
3.1.1 Boxes A very straightforward way to extract a speci cbox coe cient

from a quadruple cut expression was proposed by Britto et al. in (12)). The
mom entum circulating inside a loop w ithout cuts is o —hell and can therefore
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be param etrized In term s of four free com ponents. A pplying a cut to one of the
propagators in the expression of the one-loop am plitude reduces the num ber of
free com ponents in this loop m om entum by one. Second, third and fourth cuts
w ill then reduce the num ber of free com ponents to zero. The loop m om entum
for the box is then com pletely frozen by the four delta-function constraints. T he
desired scalar box coe cilent can now be read o from the resulting rational

expression,
z a4 d@ ;1 X aa .
@ F @+ i)G+ i@+ i)E+ 1)y, vy 2.,

(18)

T he coe cient is a product of four tree am plitudes that sit at the four comers

of the cut box as ilustrated in Fig.[d. The momenta owing into the trees

satisfy the four cut constraints. In general there are two possible solutions to the

constraints param eterizing the box. For exam ple w ith at least one m assless leg
(leg 1) we have (10/53),

hl JoHsH, J i
2l HWoW g1

Inserting each solution into the product of four trees at each comer and then

sum m Ing the two results gives the com plete box coe cient,

1 X

2

a=

(19)

do = da s da=A1(L)A2(l)A3(LIA4(): (20)
Further discussion on the use of both solutions and altemative approaches can
be found in (56)).

3.1.2 Triangles To compute triangl coe cients, we rst apply a triple
cut to our one-loop am plitude. Unlke the box case, this cut isolates not jist a
single triangle but also any boxes which also contain the sam e triple cut. Fur-
them ore we are left w ith a loop Integral w ith a single free com ponent. O ur cut
expression therefore still depends upon the loop Integration. To extract the tri-
angle coe cient isolated by the triple cut therefore requires two steps. First, we
m ust rem ove the boxes polliting the triple cut expression. Then we m ust relte
the triangle integral, which depends upon the rem aining free loop-param eter, to
the scalar triangle basis integral.

Aswas rst proposed in (18), both issues can be solved sin ultaneously by
exam ining the analytic behavior of the triple cut expression in the free param eter
tofthe loop m om entum . W e choose the follow Ing speci ¢ param etrization of the
loop m om entum ,

. St 1 .
1=k} +K} +5}K[' JOKS ie K] ® i (21)

Them asslessm om enta K i[; are given by

K, +51K, |

i _ 0 K,+S2K, |
K]_ - 2 S1S, ’

i _
Ky = 2 815, '
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P—

= K1 k) ; = detK ; K)= K1 k) KXKZ;
_ S2(s81 ) . 0_ Si(S» ) .
T (8182 ' T (S182 ) ' (22)

with S;= K 2.

By de nition, any box temm s containing our chosen triple cut w illalso contain
an additional propagator, 1=(1 K 4)?. Iserting the param etrization for 1 of
eg. (21l) into this additional propagator leads to the developm ent of two poles,
t ,In the propagator (1 K4 )2 / (1=t)(t t )(t t ).W ecan take advantage of
the occurrence of these poles to separate the box tem s from the triangle pieces.

T he num erators of these box poles are given by an e ective quadruple cut gen—
erated by the extra pole along w ith the original triplecut. A swe have seen above,
the quadruple cut of a box actually corresponds to one of the two contributions in
the construction ofa box coe cient. T herefore each box term can bew ritten asa

P
sum of two residue tem s, di=( ;(t t)),with d; the residue corresponding

=
to the box coe cient of the pole t; and ; a constant factor depending upon the
box in question.

Analytically, in order to rem ove these box termm s we sin ply expand the para—
m etrized triple cut Integrand expression around t! 1 . The box term s behave
asl=t! 0 In thislim it and thusdrop out. Taking a param eter to in nity num er-
ically is problem atic, so instead we use a di erent approach In the com puter code
BlackHat (I10). Considering t as a com plex param eter, the box tem s appear as
poles In the com plex plane of t, w hereas the triangle coe cient is at the origin
of the t plane. To rem ove the box term s we sin ply system atically \clean" the
com plex plane by subtracting allbox pole term s from our triple cut expression.
A nalcom plication to both num erical and analytic approaches is the presence
of the 1=t factor in the box propagator. To account for thiswe add back the sum
of allbox termm s evaluated at t= 0 , ie. add (d d;, )=( ;(t t, )) for each
box term . An altemative approach to this last step and further discussion on
the analytic properties of the threem ass triangle can be found in (15) and (57).
In addition, the application of on-shell recursion to the com putation of certain
triangle coe cients can be ound I ([58)).

A fter the elin ination of box term swe are left with a nite power serdes In t,

X d; w oA
C() Ai1®MA(DA3(L) — 0 = c; dtt; (23)

it )

i= j= n

w here the ¢ are rational coe cients. The upper and lower lim its n of the sum

is determ ined by the theory in question, for exam ple n = 3 for renom alizable
theories. To relate this sum of term s to the scalar triangle integralwe rst note
that, for this particular param etrization, the integrals over any %ower of t n
eq. (23) vanish as proved in (19). Then the only rem aining temm , ¢y dt, is in the
form of a rationalcoe cientm ultiplying a scalar triangle integral. In an analytic

form alism the seriesexpansion around t! 1 willautom atically isolate thistem .
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So we can directly relate this sole rem aining termm  to the desired coe cient of the

basis triangle integralw e have isolated w ith our triple cut. Num erically, our nal
step is to note that, since the power series In t term inates at a nite power, n,
the fiull contour integral is equivalent to a discrete Fourdier profction (10) w ith
2n + 1 evaluation points. T he triangle coe cient is therefore given by,

xo
1 c toe2 ij=(n+1) (24)
2n+ 1

j= n

Q =

T he arbitrary com plex num berty isthe radiusofthe num erical Fourier pro fction,
as illustrated in Fig.[d. For technical details we refer to Ref. (10)).

3.1.3 Bubbles The com putation ofbubble coe cients proceeds along sim —
ilar lines as above. A two-particle cut isolates a single bubble coe cient, butw ill
also capture triangles and boxes which share the sam e cut. Again we use the
di ering analytic properties of the tem s w ith additional propagators to separate
the triangle and box tem s from the bubble coe cient.

A s before, we start from a specially chosen param etrization of the loop m o—
mentum . A two-particle cut leaves two free param eters,y and z. W e then choose
to param etrize the two-particle cut, bubble, loop-m om enta as,

1 z o y@ o y)

1
]i(y;Z)ZEKiJ"(y =) Kl +5mlj j 1+ Th j Kli:

(25)

Here ,an arbitrary m asslessm om entum , is used to de ne them asslessm om en—
tum Ky = K , w ith ifs nom alization chosen so thatK ; = K=2.

T he triangle and box temm s sharing the two-particle cut will contain at least
one additional propagator 1=(1 K ,)?. T he param etrization of eq. (23) w ill then
Introduce poles In y or z. The residue of the poles in term s of y is given by,
e ectively, a triple cut expression, which is a com bination of the pole and the
origihal twoparticle cut. Contained inside this expression are a single triangle,
isolated by the e ective triple cut, and possibly box term s w ith the sam e cut.

U nfortunately, them ore com plicated structure of them om entum param etriza—
tion and the bubble integrand m eans that a sin ple extension of the triangle
procedure is not so straightforward . T his is because for the param etrization (29)

the integrals over positive pow ers of y are non-zero, and given by,
7 7

n 1
dyy :n+1

dy : (26)

T he integrals over pow ers of z still vanish. W e m ust therefore alter our approach
for extracting the bubble coe cient. A s before, we discard any tem s in the ex-—
pansion around z ! 1 thatdepend upon z,butwem ust retain the coe cientsof
allpowersofy (which are allguaranteed to be positive due to our param etrization

choice). For a renom alizable theory the m axinum power is y°. W e can relate
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;c{hese temm s to the scalar integralusing eq. (26), which is independent of y and z,
dydz. The sum of the resulting term s form s only part of the bubble coe cient.

T he source of the ram aining contrbution is the triangle expression from the
residues of the poles In z. This e ective triple cut does not vanish in the double
expansion In y and z. Therefore, we obtain an additional contribution which
needs to be subtracted from the part of the bubble coe cient com puted in the
previous paragraph. Further details on this subtraction temrm can be found in
Ref. (15).

To num erically extract the bubble coe cientwemust rst\clean" the com plex
plane of all pole term s. Com puting the residues of each pole involves sin ply
com puting the triple cut at the location of each pole. O nce all pole term s have
been rem oved w e are free to extract the bubble coe cient from the rem aining non-
pole tem s using a double discrete Fourder pro fction, in both y and z. Instead
of naively evaluating at asm any points as there are coe cients in y and z we use
the nature of our param etrization to reduce the num ber of points at which we
need to evaluate z by one. The coe cient in a renom alizable theory is given by

" #
p= — B y=0;z= e 9° + 3B y= 2=3;z= tye? 90 : (27)
B (y;z) denotes the two-particle cut from which triangles and boxes have been
subtracted that share thiscut. T hem oregeneralcase isgiven in (10]). A ltemative
approaches to the com putation of the bubble coe cients have been proposed in
the literature, such as M astrolia’s use of Stokes T heorem (20)).

314 M assive particles The expressions we have given above are for
am plitudes w ith purely m assless particles. The addition of m assive particles
w hich do not circulate in the loop is straightforw ardly accom m odated w ithin the
above, w ith no changes. Including m assive particles inside the circulating loop
requires further exposition. T wo changes are required, rstly the loop m om entum
param etrization needs to be extended to include m assive particles. Secondly we
m ust also com pute the coe cients of tadpole integrals in addition to the bubbles,
triangles and boxes. A detailed discussion of the extension of the procedure to the
com putation of m assive particles as well as the com putation of the tadpole term s
them selves is given In (59). In addition there is the problem of the w ave-function
renom alization w ith m assive particles, which has been addressed in R ef. (60).

3.2 Extraction of IntegralC oe cients at the Integrand Level

So far we have described m ethods which used analytic 1im its or a com bination of
the subtraction of poles on the com plex plane and discrete Fourder pro fctions.
An altemative approach developed by O ssola, Papadopoulos and P ittau (OPP)
uses the know ledge of the general structure of the integrand A'(1) instead. T he
integrand is built up from a standard set of termm s. T hese tem s either vanish
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upon integration or correspond to one of the scalar integral basis functions of
eq. {I8). Computing the scalar basis integral coe cients then reduces to the
problem of nding the coe cients of the O PP decom position of the integrand.

In four dim ensions, the integrand can be w ritten as,

Q) = X di; 1451, (D) N X Ci iy (D
1 hi<i<i<i nPuPeDyDy i< i< i nPuD Dy
X Lo (D) X ay (L
n blllz( ) n ll( ); (28)
DDy i

1 i1<i n 1 44 n

w ith the propagatorD ;= (I K;)? m f, w here the m ass of the cut propagator
with momentum 1 hasmassm ;. From now on we inclide m assive particles in
the discussion. T he form of the num erators in eg. (28) depend upon the basiswe
choose for the loop mom enta. W e wish to choose thism om entum basis so that
each scalar integral basis coe cient of B 4, corresponds to a single term in the
Integrand decom position and the Integrals over the ram aining structures vanish.
In the form originally presented by OPP (13),a m om entum param etrization for
the box, triangle and bubble very sin ilar to egs. {19), (21) and (28) was used.
An alternative m om entum param etrization, presented by E 1lis et al. (61), is
related to the van N eerven-Vermm aseren basis (52). T he generic form ofam om en—

tum In this basis is
(29)

T his is a decom position Into to two sets of basis vectors. T he vectors V5 span the
physical space de ned by the external legs K ; and the vectors n; span the space
transverse to this physical space. Fora box Dt = 1 and Dp = 3, for a triangle
Dr =2and Dp = 2 and fora bubble Dt = 3 and Dp = 1. The basis vectors
are chosen such thatn; = ij,n; K= 0andn; y= 0.Thevj'sarechosen
such that any cut legs are on-shell.

T he num erators of the propagator tem s are then arranged in the follow ing
way (61)),

diy 151, (D) = C%j2131-4+cill21314t1, (30)
Chpu@ = dupt Gt iyt Gy ) (31)
+t(Ch g+ Gyt MQBQ)
by, = dy+cdit+ G+ ait+cy € 8) (32)
S, (G B+ MQQQ LQQ@ oty
a; () = ci1+ t1+cft2+ Lt ilq; (33)

for the tadpole, bubble, triangle and box, 1 = 1;2;3;4 respectively. Here the
ty= (n; 1) depend on the speci ¢ param etrization of the loop m om entum , w hich
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ischosen di erently forboxes, triangles, bubblesand tadpoles. T he coe cientswe
wish to com pute are the & term s which correspond to the scalar basis integral
coe cients. W e will not discuss the com putation of the tadpole temm s here,
m ethods to com pute these can be found in (13,/19,/59/60,/61). The rem aining
coe cientsmultiply t ; temm s (or com binations of such tem s), w hich vanish upon
integration over 1. A s in section [31], the choice of the representation for the loop
m om entum is crucial in this approach.

Trying to solve for the entire set of coe cients at once is clearly not the optim al
approach. U sing unitarity cuts we can isolate ndividual tem s of the Integrand.
T he application of all possible cuts allow s us to system atically solve for all of the
coe cients sequentially. Isolating a single box term d j 3,1,1, W ith a quadruple cut
works In the sam e way as In section [3.]. Again we have two solutions for the
com pltely frozen box loop m om entum . For the m om entum basis corregponding
to the integrand decom position eg. (30) these are

q
1 = v+v,+ vy m% (V1+V2+V3)2nl: (34)

A s above, the box coe cients in the O PP basis are given by products of four tree
am plitudes,

1 X
Gowsy = 5 Gai da=A1(RA (LA LAIL); (35)
e
1
wpky - 5 @ d)
Here, cgli2i3i4 is the desired scalar box integral coe cient, d o (cf. eg. (20)). The

other coe cient is neaded for the com putation of the triangle coe cients.

For the com putation of the triangle coe cients we apply a triple cut to isolate
the particular triangle we are interested In. M uch like before thism eans that we
also have box termm s polluting the result. To solve this problem we subtract the
com plete box contribution from the Integrand. So in order to nd the triangle
coe cients c we do not evaluate A1 (DA, (1A 3 (1), but instead,

i dpis
X odssas (1
A1 DAz (DAD) G, (36)

. D,

ig
at di erent choices for the Joop m om entum of the triangle. T his is in contrast to
the procedure of the previous section. T here we subtracted the residue of the box
pole from the triangle rather than the entire contrdbution of the box (20) from
the integrand as above. T he triangle m om entum param etrization corresponding
to the integrand structure eq. (31l) contains one free param eter which we lbel ,

d
l=wv+v,+ m3 2 (n+wn)?n + n,: (37)

There are seven unknown coe cients in eg. ([Z1l), so we need to evaluate this

at seven, in principle arbitrary, values of to detem ine all coe cients. For
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Increased num erical stability, how ever, they can be chosen to lie on a circle as in
the previous section. T he resulting set of linear equations can then be solved to
nd the full set of coe cients, which is needed in the com putation of the bubble

coe cient.

Fially, in order to com pute the bubbles we apply a double cut, which again
isolates a single bubble but also any triangle and box coe cients that share the
sam e cut. Again we sin ply subtract the unwanted tem s from the integrand to

rem ove them . To nd the coe cientsb};1i2

X ooy (D) 1% dygiy (@
A1(DAL (D) —D( ) oY 7;?134_( ); (38)
13 .i3i4 13 1

we evaluate

i3
at di erent values of the loop m om entum of the bubble. Here the bubble loop
m om entum corresponding to the param etrization eg. (32) is,

2 2 2 2 .
L =v,+ mg 0 5 vin;+ 1n,+ 2ns; (39)

w ith two free param eters, 1 and ;. Solving for the nine coe cients in eg. ([32)
requires nine linear equations. T hese can be generated by choosing nine di erent
valuesof 1via the choice of the tw o free param eters. T he fullset of nine coe cients
isonly required ifwe w ish to com pute the tadpole coe cients, which only appear
if m assive particles are present in the loop. Further details can be found in
Refs. (60/)61]).

3.3 RationalTerm s from D -D Im ensional G eneralized U nitarity

W e have so far restricted ourselves to working w ith cut legs in four din ensions,
keeping the rational temm s out of reach. C onsidering cuts in D dim ensions allow s
us to use the By integralbasis of eg. {16)), bringing the com putation of all term s
w ithin our grasp. This is related to van Neerven’s In portant observation that
digpersion relations for Feynm an integrals converge in dim ensional requlariza-
tion (62). T here arem ultiple di erent approaches to go beyond fur-din ensional
cuts as already proposed in Refs. (22). The additionalD 4 com ponents can
be related to m assive term s in four din ensions (22)). In a related approach the
D 4 com ponents can be converted to an additional integral which can be used
to com pute the fill am plitude (63)).

A lematively, we can directly extend the approaches of either Section [3.1] or
Section 32, as we will now describe, starting with the generalization of Sec—
tion [3.2.

3.3.1 D-Dimensional Unitarity at the Integrand Level OPP have
suggested a two-step com putational procedure. Here, theD 4 temm s in the nu-
m erator of the Integrand are com puted using a separate set of Feynm an diagram s.
T he corresponding Feynm an rules have been derived for QCD and electrow eak
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theordes in a serdes of papers (24//64). TheD 4 contrdbutions from the denom i~
nator of the integrand are found by com puting coe cients of an extended O PP
basis structure for the integrand (13/24)).

A direct extension of the O PP approach to D dim ensionswas derived by G iele
et al (21)). T his approach com bines trees In higher din ensions w ith an extended
Integrand basis for the one-oop integrand, taking into account the additional
structure in higher din ensions. Again as in Section the choice of the loop
mom entum determ ines the form of the integrand structures. The form of the
higher din ensional loop m om enta can be decom posed into a fourdim ensional
part_land an orthogonal (D 4)dmensionalpart I, 1 = 1 + T . Theon-=shell
constraint then m eans that 1* = _12 + P and so the murdin ensional com ponent
e ectively becomesmassive with mass P = 2,where ? is the \scalk" of the
higherdin ensional subspace.

Since the extermalm om enta ram ain In fourdim ensions,we nd that therearea
Iim ited num ber of additional integrand structuires that can be present because the
externalm om enta are orthogonalto theD 4 additional transverse din ensions.
T he num erator structures can only depend upon the higherdin ensional term s
through even powersof . Sin ilarly, there can be atm ost one additional cut leg,
since 2 is xed by the fth constraint. Therefore we m ust include a pentagon
in the integrand basis and so for a renomm alizable theory the extended integrand
structures are given by,

X &4 i iz igis (1) X Ay 154, (1)
Eall) = D.D.D:iDsDs D;D:DiD;
1 ij<ip<izg<ig<is n BT RT BT LTI 1 i)<ip<izg<iy n  HTRT BT U
X &g (1 X L (L X ay (1
+ 111213( ) + 51112( ) + 11( ): (40)
1 i< in< i3 2 DaDDs i< dp nPaDs 4 n -~ n
H ere the num erator coe cients are given by,
0
i 1 i34g1s 1 = Ciy ipiziads 7 (41)
= 2 3 4 4 .
Gonnn (D = dipnuD+ “(Epny + B uui)t “Chuii
= 2 8 9 10
eil SERE] (l) = Cil ipis (l) + tl Cil iris + t2 Cil iris + Cil ipis 7
= 2 10
By, () = by, D+ ‘o i
a, (1) = a; (D:

where again = ny 1L
T he attentive reader m ay be worried about how this basis can be used if we
have a fractional num ber of additionaldin ensions, for exam plewhen D = 4 2".
Thisproblem can be sidestepped by noting that the dependence of the am plitudes
upon the (D 4)-din ensional subspace is linear. So the fractional din ensional
structure of the am plitude can be reconstructed by evaluating the am plitude at
1 loop _ 1 loop

two di erent integer din ensions. UsjngAD = A, + (D 4)2—\% Toop the

f1ll D -din ensional am plitude can then be reconstructed (21). T his allow s us to
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freely choose the exact form of the reqularization schem e. T he Integer din ension
chosen when evaluating the trees that enter the calculations is arbitrary up to the
constraint that the dim ension has to be an even num ber if ferm ions are present
in the loop.

The nalstep is to relate the new integrand structures of . (41]), proportional
to powers of , to their contribution in eq. {I6). A sbefore, temm s proportional to
t; term s w ill vanish and so we are left w ith term s proportionalonly to . Scalar
Integrals multiplied by powers of can be related to scalar integrals in higher
din ensions. From eq. {41]) we have the ©llow ing di erent integrals,

Z 2
le— _ D 4ID+2 D|! 40
] ] ] ] - 2 i dpiziy ¢
DyDi,DyDy,
7
P ’ _ D 4D 2) 5y, ppa 1
D.D.D. 4 hiisd 6
DiyDi,Dyi;Dy,
VA
b 2 D 4) p.oppa 1
DyDyDy 2 ThEL T3
1 1 13
Z 2 2 2
(D 4) pam Y+ ms 1
a1 = Pt Rk Sg i (42)
DDy 2 2 6

where S ;, is them ass of the bubble labelled by i; and iy . Exam ining the lm its
of these ntegrals as we retum to four din ensions, we see that the Integrals are

nite and correspond to purely rational num bers. Each new integrand factor
therefore contributes to the rational tem .

C om puting the one-loop am plitude isnow very sin ilar to the cut-com putation
procedure of Section [37. Starting with the pentagon we nd that the loop
mom enta will be com pletely frozen by the four cuts on the fourdin ensional
com ponent of Iy and the constraint on 2= P from the fth propagator 1+
T Ks)?=m?. The resulting expression is then inserted into the penta-cut so
that we nd the pentagon coe cient using,

I = A1 (DAL, DMA5 (DAL (DA (1): (43)

L3115

The trees must be evaluated, as described above, at two di erent integer di-

m ension choices for the intermal loop m om entum . T he pentagon coe cient is

proportionalto D 4 and so will vanish in the fourdin ensional lin it. W e need

it only for subtraction when com puting the box term s aswe w illnow explain.
The box is com puted as before but w ith the pentagon subtracted,

A (DA (DA (DAL D) (44)

is D i
W ith three additional coe cients to be determ ined, com pared to the fourdin en—
sionalcase, we need three additionalevaluation points in order to generate enough
equations to solve for all coe cients. A 1l coe cients are required for the com —

putation of the triangle term s. C om puting the triangle and bubble contributions



M ultiParton Scattering Am plitudes via O n-ShellM ethods 19

to the rational term s follow s In a sim ilar vein as for the boxes and we direct the
reader to R ef. (21]) for furtherdetails on the com putation ofallsuch contributions.

3.3.2 Four-dimensional Generalized Unitarity with a D 4-D imen-
sional M ass The di ering dependence of the rational tem s of eg. (41l) on

2 suggests that we could use the analytic structure of the ntegrand to com pute
the rational temm s at the integral level. T his approach of Badger (23) is sin ilar
in spirit to the extraction of the cut-coe cients described in Section [3.l. Here
the loop m om entum is m assive and four-din ensional rather than m assless and
D -din ensional.

To com pute the rational contribution of the box, we start from the quadruple
cut expression of a box. Now each cut kg has an additionalmass “. This cut
isolates a single box coe cient and also any pentagon term sw hich share the sam e
cut. Schem atically we have,

X 0
AL PR AC AU DAL )=+ T+t %:(45)

2
i

w here isthe pole In 2 for the pentagon i, ; is a constant factor depending
on the pentagon in question. T he additional propagator of the pentagon term s
show s up as a 1=( 2 f)ﬁctor.Wewishtoseparatethesetemsaswe]las
the other tem s in the powers series in  ? from each other. Here we only want
the coe cient r 5 of #,which is the term that contributes to the purely rational
part, cf. eq. (42). So sin ply expanding A1 (1 *)A2(1( “)A3 (A *)AL A %)= *
around the lin it ? ! 1 willgive us the coe cient directly.

M oving on, perform ing a triple cut isoltes a single triangle as well as boxes
and pentagons. These cbjcts contain poles .n both 2 and the unconstrained
com ponent of the loop m om enta, t. W e are only interested in the coe cient of

2 and so serdes expanding around both t! 1 and 2! 1 isolates this shgle
term . For the bubbles a sin ilar procedure applies now In three param eters, a
com plete description is given in (23]).

A sin Section[Bdltaking an in nite lin it num erically isdi culttodo. Sin ilar to
the num erical approach to the com putation of the cutcontaining term s described
in Sect.[3.]l, we can adapt Badger’s m ethod. This is the approach in plem ented
w ithin BlackHat (10)). Starting from eq. (49) we \clean" the com plex plane by
subtracting all pentagons at their poles. W e then perform a discrete Fourder pro—
Fction in  to extract the rational contribution r3. For the rational contribution
of a triangle we consider the triple cut expression and then clean the com plex
plane by subtracting all term s w ith an additional propagator. Each such term
hasa pole In tand its num erator is a quadruple cut. H ere w e are subtracting the
quadruple cut residue of the add itional propagator and not the integrand box and
pentagon tem s, aswe would in the O PP approaches. W e sidestep therefore any
loss of num erical stability that would arise from cancellations between these box

and pentagon termm s since these pieces are never separated out In the quadruple
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cut. T he com putation of the rational contribution from the two-particle cut ofa
bubble follow s along a sin ilar line.

4 On-ShellR ecursion at O ne Loop

A s above, an alterative approach to obtain the fiill am plitude is to use four—
din ensional unitarity m ethods for the cut—constructible term s and to use recur—
sion relations for the purely rational rem ainder. T he recursive approach devel-
oped in Refs. (8/9) has already been reviewed extensively n (3). W hile this
approach is very useful for analytical calculations and even allow s to obtain
closed-form alkm ultplicity results (69), it is not straightforward to cast into
a form suitable for num erical in plem entation. This is due to the rem oval of
gourious singularities via the introduction of overlhp term s, which is di cult to
perform in an autom ated fashion. T he approach has subsequently been m odi-
ed to allow e cient num erical in plem entation into the autom ated C + + lbrary
BlackHat (10). W e willdiscuss here thism odi ed approach, for am plitudes w ith
m assless particles in the loop.
W e begin by dividing the am plitude into cut-constructdble and rational temm s,
as in eg. (I8). The rational tem s are de ned by setting all scalar integrals to

Zero,

alToor = S + Ry (46)

Ch E=%1P; rRnL ALP® 0y : (47)
In the follow Ing we assum e that the cutcontaining tem s have been com puted
via the generalized unitarity m ethods described in the previous section.

T he basic idea is to com plex continue R and use C auchy’s theorem to recon-—
struct the rational term from its poles in the com plex plane, sin iarly to the
treeJevel approach introduced in Section [22. W e add this rational term to the
previously-com puted cut term s C to obtain the full physical am plitude at z = 0.
However, two of the basic pram ises of the derivation in Section [2.2 do not hold
in general at one loop: For one, we cannot always nd shifts (IQ) such that the
am plitude vanishesas z ! 1 . And for another, the division of the am plitude
nto cut and rational parts Introduces the presence of spurious, unphysical poles
in the com plex plane when considering the rational part separately. T hat is, the
rational part has the follow Ing form upon com plex continuation,

Ro(z)=REL (z)+ R3(z)+ R2%°%; (48)

whereR | denotes the contribution from physical poles, which are as at the tree
level sin ple poles, w hereas the spurious poles can be sin ple or double poles, and
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the contrdbutions R ;*°* display polynom ialgrow th in z:

X A
R} (z) = ; (49)

Rp(z) = * i

R “r9eZ

Here, A ;B ;C;and D are functions of the externalm om enta. W e postpone the
casewhereR £ (z) has a m ore com plicated structure to Section [42.
T he physical contribution is recursively com puted as In the tree level case,

X RP(Z) X X h i h(zzz ) 50)

Here, we have expressed the rational term asa sum of products of rational term s
from lowerpoint am plitudes (de ned according to eq. (47)) w ith Jow erpoint tree
am plitudes. The last temm with F corresponds to a one-loop correction to the
propagator. Eq. (80) is illustrated in Fig.[H.

T he full am plitude is found by com bining all rational and cut contributions,

X RP
AP (0)= C,(0) Res “(Z)+Rf;<0)+ R Broez . (51)

poles

W e willnow show how to obtain the last two contributions, starting w ith the
spurious pole contribution.

4.1 Spurious Poles

T he division into cut and rational parts Introduces spurious singularities in each
of these termm s which however cancel in the full am plitude. T hese spurious sin—
gularities are already present in real kinem atics. Cauchy’s theoram regquires us
to sum over all poles, whether physical or unphysical. In Ref. (9) this problem

was rem edied by adding additional rational term s to the cut part. T hese rational
term s are constructed such that the cut and the rationalparts individually do not
contain spurious singularities upon continuation into the com plex plane. How -
ever, these extra rational tem s then contribute additional temm s to the residues
at the physical poles in eg. (50) which have to be subtracted from the rational
part R In the recursive construction by so-called overlap term s In order to avoid
double counting (9). This approach leads to com pact expressions in analytical
calculations but is not particularly am enable to num erical in plem entation.
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An altemative way of dealing w ith the spurious singularities is to m ake use of
the fact that we know that they cancel in the full am plitude. In other words, we
can extract the spurious residues from the known cut parts,

X R S5 (z X Ch(z
R3(0)= Res rl()=+ Res n(); (52)
7

n Z 7z z=7z Z
spur poles spur poles

where C, (z) is the com plex continued cut part. T he spuriouspolesin C, (z) com e
from the vanishing of com plex continued G ram determ inants, (z), associated
w ith bubble, triangle, and box integrals. Since the spurious poles cancel betw een
the rational and the cut parts, the spurious contribution to the residues from the
cut part can only be rational. To com pute the residue we therefore series expand
the logarithm s and polylogarithm s around the location of the vanishing G ram
determ inants and obtain a series of rational functions. T he spurious contribution
is thus given by evaluating

2 3
X x &7%z) 1P (2) X -
R5(0)= Res4 ’ ’ mat 5 Res rl(Z); (53)

zZ=z X Z 2=z Z
m(z )=0 J m(z )=0

where the subscript \rat" indicates that we take the rational part of the series
expansion of the integrals around the spurious poles. W e have Introduced the
abbreviation E | for these rationaltem s. T he spuriouspolesz are located where
the shifted G ram detemm inants vanish, , (z )= 0,wihm = 2;3;4 for bubble,
triangle, and box integrals, respectively. N ote that poles in G ram detemm inants
of box Integrals will in general also appear in the daughter triangle and bubble
jntegra];a. Singularities in triangle integrals will feed down into the daughter
bubble coe cients, but not a ect the parent box integrals.

T he expansion of an integral around the location where its G ram determm nant
vanishes can be obtained (66) by using the \din ension-shifting relation" (53)
iteratively, 0 1

1,%
10 =28 oI} i+ (G 1 D)oIf R (54)
=1
where I? | [i]denotes the Iow er-point integral obtained from I% by rem oving the
ith propagator. T he coe cients c ; and ¢y are given by
X3 X3
G = Y ' o= G i (55)
k=1 k=1
where Y ! denotes the inverse of the m odi ed Cayley m atrix. These m odi ed
Cayley m atrices are listed for exam ple in (54). A s indicated, the coe clent ¢ ¢ is
proportional to the G ram determ inant. W e obtain the series expansion of IJD n

3By daughter integrals we m ean integrals that can be found from the parent integral by

collapsing one or m ore of the loop propagators.
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term s of its G ram detemm inant,

1P = Ty K ; (56)

k=0

w ith rational coe cients r that are found by using eg. (54) iteratively. The
explicit expression for the rational expansion of the threem ass triangle is listed
in Ref. (10)). Sim ilar expansions for the ram aining integrals can be obtained as
described above and w ill be listed in a forthcom ing publication (C F . Berger et
al., in preparation).

Num erically, we can evaluate eq. (53) by using a discrete Fourder sum , w hich
here only approxin ates the contour integral. W e evaluate the quantity given in
the square bracket of (53)), E  (z)=z, atm points equally spaced around a circle
of radius  in the z plane, centered on the pole Iocation z ,

1xX X 2i jem Bp (@ + &)
el e — : (57)
m 1 z + etIm

R (0)

Thesum over runsover alllocationsof spuriouspoleswhereG ram determ inants
vanish. For technical details of the num erical In plem entation we refer the reader
to Ref. (10).

4.2 Contribution from In nity

T he rem aining rational contribution R ;*°? is the boundary contrdbution in the
contour Integralas z ! 1 . Although it is generically possible to nd com -
plex continuations that have vanishing boundary contributions, these shifts have
in general additional contributions that cannot be constructed recursively as in
eg. (50), that is, we have instead,

- X R} (z)
+ RE nonstd ; RE recursive Res n .
z= 2z

poles

RE (0) =R E recursive

(58)
z

These hon-standard’ contributions (labeled by the superscript \nonstd") arise
in con gurations where two extermal m om enta w ith the sam e helicity are on
one side of the partition and all other legs are on the other side. The com plex
factorization properties of these con gurations are not yet fully understood. T he
sum over poles 1n eg. [B8) is only over the channels that factorize, i.e. that do
not display the aforem entioned problem atic behavior. Conversely, it is possible
to nd shifts that avoid these hon-standard channels’, however, at the price of
reintroducing a boundary contribution.

T he solution to this problem , developed in R ef. (9), is to use two independent
com plex continuations to determm ine the boundary contribution. Let usdenote the
prin ary shift by [§;1i and the auxiliary shift by [a;bi in the notation of eq. (I0).
W e then have two relations for the sam e am plitude, analogous to eq. (&),

ALTPP(0) = [IJQEA}]_IOOP +Ca(0) InfCy+ R D eowsweiliy RS 0M0);  (59)
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A}lﬂOOp(O) _ Cn(O) Inan + RE recursive;[a;bi+ RE nonstd;[a;bi+ Ri [a;bi(o) :(60)
[a i

W e have indicated w ith additional superscripts which shift has been em ployed.

RS isevaluated according to eg. (83). W e have also used that,

R B19%% = nfAl™P  mfc, ; (61)
(g1 G4

where InfA is the unknown largez behavior of the full am plitude found from a
[3;14

Laurent expansion ofA}l_bOP(z) around z = 1 w ith the shift [§;11, and sim ilarly

forC, (z). Egs. (59) and (&0) thus both contain unknown term s. Ifwe now apply

the prin ary shift [§;1i to the auxiliary recursion (€0), and take thelmitz ! 1 ,

we can extract the largez behavior of the prim ary shift,

IfAL ™% = InfC, Inf InfC, +Inf RE=umskelb  me p3BRQ )
(31 (31 i1 [abl (31 (314

(62)
where now all term s on the right-hand side are either known or recursively con—

structble, if

nf RE nonstd;lapi  _ 0: (63)
(314

Putting everything together, we nd the full am plitude from eg. (89), with
(Ed), (&3), and (&2), and the cut temm s constructed as described in the previous

section.

5 Conclusions and O utlook

In thisreview we have presented an overview of recent developm ents in the calcu-
lation of m ultiparton scattering am plitudes at the onedoop level. T hese devel-
opm ents are based on on-shell technigques that m ake e cient use of the physical
properties of the hard scattering, such as unitarity and factorization. T he basic
Ingredients in these new approaches are on-shell treelevel or lowerpoint one-
lIoop am plitudes instead of Feynm an diagram s, thus sidestepping m any of the
com plications associated w ith the use of Feynm an diagram s.

Furthem ore, these new technigues allow for e cient algorithm ic In plem en-—
tation and hence the construction of e cient, num erically stable, and fast com —
puter codes, such as BlackHat (10), CutTools/OneLOop (25,26)), Rocket (27),
and others (28). W ith these new techniques and com puter tools a urry of re—
sults relevant for the LH C has recently been com puted (311/32/33/341/35/36)), and
we expect further rapid progress in the near future.

N evertheless, much work rem ains to be done to bring oneldoop calculations
to the sam e level of autom atization as treelevel com putations, deally starting
from a Lagrangian and producing com plete events including parton shower and
hadronization corrections. Further open issues include, for exam ple, a better
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understanding of the com plex factorization properties of one-loop am plitudes and
the generalization of the new technijques to higher loops in nonsupersym m etric
theories.

In summ ary, the last few years have seen an unprecedented progress in the
developm ent of technigques for the com putation ofm ultiparton one-loop scatter—
Ing am plitudes which are an essential ingredient in precision calculations for the
LHC .These new m ethods have also been used to study the higher-Jdoop structure
ofN = 4 supersymm etric Yang-M ills theory and N = 8 supergravity (67). T heir
basic Ingredients are unitarity, factorization and com plex analysis, properties that
are quite generic. It is thus not nconceivable that these new techniguesw ill nd
further application beyond those presented or referenced in this review .
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Figure 1: Scheam atic representation of a typical tree recursive contribution to
eq. (I4). The labels T ' refer to on-shell tree am plitudes. Them om enta 3 and 1
are com plex continued, on-shellm om enta.

(@ (b)

Figure 2: R epresentative exam ples of integrals appearing in eq. (18): (@) a box
Integral, that is, a 4-point integral, (b) a twriangle (3point) Integral, (c) a bub-
ble (2point) integral, and (d) a tadpole integral. Each comer can have one or

m ore externalm om enta attached to it. T he tadpole vanishes when all intemal
propagators are m assless.
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Figure 3: A quadruple cut one-oop integral isolating the single box tem
do(K 7K 2;K 2;K 7).



32 M ultiParton Scattering Am plitudes via O n-ShellM ethods

Figure 4: The points on the circle used by the discrete Fourier projgction, cf.
eq. (24).

(c)

Figure 5: Schem atic representation of one-doop recursive contributions to eq. (50).
The Iabels T "and ‘L' refer to tree and the rational part of loop vertices, respec-

tively.
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