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1. Introduction 
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This paper deals with the stability criterion for transverse coherent 

oscillations of a coasting beam in a circular accelerator. The stability 

criterion is given in terms of U and·v, which are parameters proportional 

to the out-of-phase and in-phase component of the electromagnetic force 

produced by the oscillating beam. Our definition of U and V agrees with 
1) . . . . . . . ref.· except that theU, used in this paper takes into account the whole 

out-of-phase component, thus 1ncluding the reactance due to the skin effect. 

Approximate stability criteria and growth rates in the limits of U � V and 

U > > V were given in ref l) for some distribution.functions. The spread 

in betatron amplitude and in energy Wfl.R treated separately. 

Our approach to the exact solution of the dispersion relation derived 

in ref.1) is similar to that used in ref. 2),3) for longitudinal oscilla-

tions. We include in our analysis not only the spread in energy but also 

the spread in amplitude. Special attention is directed to distribution 

functions resulting from beam. st.acking by R�F. acceleration. 

The solution of the dispersion relation 1:s presented in the form of 

a mapping of the complex frequency plane w = w1 
+ iw2 onto the U,V plane. 

We find that the curve corresponding to infinite growth time encloses a 

region near the origin which is not covered by the mapping. No solution 

with an exponential time dependence is ;possible for values of U and V in-

side this region, which we call the stable region. Values of U and V 

characteristic for a particular accelerator then can be plotted in the 

diagram with the real frequency as running parameter. If a part of this 

U(w1), V(w1) curve happens to lie outside the stable region we can predict 

the growth rate of the unstable in.odes from the mapping. · A suitable 

normalization is applied to obtain universal graphs. 

In the evaluation of U and V the whole environment of the beam has 

to be taken into account l), 4). It was shown in ref.5) that also the 

distribution functions have an influence on U and V. 
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2. Normalization 

We use the dispersion relation ref.l) 

(1) 

a is the betatron amplitude of the particles in the beam, W equals 

27T(P-P ), where P is the average canonical angular momentum. 
0 0 

The number 

of betatron wavelengths per revolution, Q, anq. the revolution frequency 

Q/27T, depend upon a and W. The distrioution functions are normalized in 

the following way 

J g(a)ada = l 
0 

+oo 
I f(W)dW = l 

""00 

-iwt The time dependence of the coherent oscillations is e 

Linearising Q(a,W) and O(a,W) yi�lds 

Furthermore, we define 

n = n + �2 an2 + w � 
0 aa · aw 

+ . ag, ao 
,I, - : ( n + Q ) - + Q ,:::..::st 
"'w - o aw - o aw 

Since Q /Q �l and Q /n � 1, we can replace (l) by 
0 0 

1 = (U + iV) (I+ - !_) , 

I+ is given by 

(2) 
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+oo oo 

I =  l 
J I 

G
'(y)ydy + 0w ijiw-+ F(x) dx + + X - - yr:- - X 

where 

-00 0 1 

x = W/o 
w 

We define o by f(+o ) = f /2 and o2 by g(o2 ) = g{0)/2. w -w max a a 

The normalized complex frequency shift 

x
1

::!::. = r w - ( n + Q ) n ]1 o 1/J ::!::. , 
L - o o w w 

( 3) 

(4a,b) 

( 5) 

replaces w. 

in energy by 

We denote the ratio of the spread in amplitude to the spread 

� = o2 1/J 
+
Io iji 

+ 
a a w w 

The normalization of the new distribution functions is 

+oo 

J 
G
{y) dy = 1 and J F(x) dx = 1 

0 -oo 

(6a,b) 

As long as the spread in the quantity (n -Q)n does not become equal to the 

difference between the slow and the fast wave, we can neglect either 
. + . 

I+ or I_ depending upon whether x1 or x1 is small. In both cases we 

get the same contours in the U,V plane. 

sider the slow wave. 

Thus it is sufficient to con -

We normalize U and V in the following way 

3. Results 

For simplicity, we will first discuss the case e << l which will 

(7) 
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reveal all basic features of the solution. Equation (3) becomes 

1 = 

Splitting the integral in its. principal value and in its imaginary part 

yields 

+00 

-00 

F(x) dx = 
X - X-

1 

+00 

P [ F(x) � + i1rF{x.
l
-
) 

x- x - , 

-00 

(9) 

where the sign of the imaginary part equals the sign of the vanishing 

imaginary part of x1• It is apparent from (8) and (9) that there will 

be a region disposed symmetrically around the U' axis which is not covered 

by the mapping of the complex x1 plane onto the U' ,V' plane. Thus no 

solution for x1 with the exponential time dependence can exist if U', V' 

fall into this region. This does not exclude the existence of damped 

solutions not obeying an exponential law6). Outside the stable area we 

always find two solutions., one for the slow and one for the fast wave. 

They are damped or growing depending upon the sign of vq;:, which turns out 

to be equal to the sign of the imaginary part of w. The symmetry of the 

mapping with respect to the U' axis .means that care has to be taken in 

designing an active feedback circuit, since an excessive negative V can 

give rise to growing waves 7) 

As a first example we consider the distribution function F(x) shown 

.in Fig. la, which represents adequately the distribution in energy aft.er 

the R.F, stacking process. The flanks are parabolae of 4th order. 

Assuming e: = 0 the integral in (8) becomesi' 

f = (__§_ ( o + o ) + 2�) l. { As + A (A2 - 2) -15a 1 2 s=l ,2 3 s s 
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-
s 

x
1 

- (-1) F,; 

A
·· = -='------
s 0'.0 

s 

and a. = Ii - 1/h. 

The mapping of the lower half-plane of x1 onto the U' ,V' plane is shown 

in Fig. 2. This half plane corresponds to growing solutions accordi�g 

to (5) because w- is assumed to be negative. w 

Gince the ratio of U/V is about 1 for the ISR, we gather from Fig.2 

and (Tb) that stability is guaranteed if 

holds. • 
( Q) .£2. << c)I'.\ This becomes for · n - aw � Q0 

v < 19.w c n 0,3 • a w o 

For high values of n we get 

an v < n aw cw o ,3 

(10) 

One should keep in mind that o is the half spread at half height. w 
Having performed the mapping for a variety of distribution functions we 

can state that (10) is a good criterion as long as U/V � 1 holds. 

In the case of U << V we find that 

has to be fulfilled in order to ensure stability. If V << U an inspection 

of the mapping is inevitable. This is apparent from Fig. 3a and Fig, 3b 

which show the influence of increasing flat top and asymmetry. The 

rectangular distribution gives as a limiting case a circle in the U' ,V' 

plane. 
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In a second example we consider the distribution functions shown. in 

Fig. lb, c. Fig. 4 reveals that the stabilization by the energy spread 

and the stabilization by the amplitude spread are not additive. Their 

combined influence depends on the ratio U/V and, not very strongly, on 

the distribution functions. 
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FIGURE CAPTIONS 

Fig. 1 Normalized distribution functions. 

a) Distribution function in energy with flat top. 

b) Distribution function in energy, 

c) Distribution function in betatron 

amplitude. G(y) = __]_ (1 - y:__
2

) 
2✓2 

2 

F(x) 
3 x2 

= - (1 - - ) 
4✓2 2 

Fi�. 2 Mapping of the lower half -plane of the normalized complex fre­

quency shift x1• Distribution function shown in Fig. la 

o1/o2 = 3,8 and 2�/o1 + o2 = 4. No amplitude distribution, e = o. 

Fig. 3a The stability limit Im(x�) = O for various values of 2�/(o1 
+ o'i · 

for 0/01 = 1 and e = O. Distribution function shown in- Fig. la. 



Fig. 3b 

Fig • .  4 
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The same as Fig. 3a except that 2�/@
1 

+ c,;)= 3 and a2/o
1 

is 

varied. 

The influence of the amplitude spread on the stability limit. 

Distribution :f'unctions shown in Fig. lb and c. The quantity 

e is the ratio between amplitude and energy spread. 
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