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1. Introduction 

This paper deals with the stability criterion for transverse coherent 
oscillations of a coasting beam in a circular accelerator. The stability 
criterion is given in terms of U and V, which are parameters proportional 
to the out-of-phase and in-phase component of the electromagnetic 
force produced by the oscillating, beam. Our definition of U and V 
agrees with ref.[l] except that the U, used in this paper takes into account 
the whole out-of-phase component, thus including the reactance due to 
the skin effect. Approximate stability criteria and growth rates in the 
limits of U V and U>>V were given in ref.[1] for some distribution 
functions. The spread in betatron amplitude and in energy. was. treated 
separately. 

Our approach to the exact solution of the dispersion relation derived 
in ref.[1] is similar to that used in ref. [2, 3] for longitudinal oscillations. 
We include in our analysis not only the spread in energy but also the 
spread in amplitude. Special attention is directed to distribution functions 
resulting from beam stacking by R. F. acceleration. 

The solution of the dispersion relation is presented in the form of 
a mapping of the complex frequency plane ω=ω1+iω2 onto the U, V 
plane. We find the curve corresponding to infinite growth time encloses 
a region near the origin which is not covered by the mapping. No solu
tion with an exponential time dependence is possible for values οf U and 
V inside this region, which we call the stable region. Values of U 
and V characteristic for a particular accelerator then can be plotted in 
the diagram with the real frequency as running parameter. If a part of 
this U(ω1), V(ω1) curve happens to lie outside the stable region we can 
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predict the growth rate of the unstable modes from the mapping· A 
suitable normalization is applied to obtain universal graphs. 

In the evaluation of U and V the whole environment of the beam 
has to be taken into account [1, 4]. It was shown in ref.[5] that also the 
distribution functions have an influence on U and V. 

2. Normalization 
We use the dispersion relation ref.[l] 

l=Ω0Ω0(U+iV)∫∫ g
'(a)a2da f(W)dW (1) l=Ω0Ω0(U+iV)∫∫ [(ω-nΩ)2·-Q2Ω2] (1) 

a is the betatron amplitude of the particles in the beam, W equals 
2π(P—P0), where P0 is the average canonical angular momentum. The 
number of betatron wavelengths per revolution, Q, and the revolution 
frequency Ω/2π, depend upon a and W. The distribution functions are 
normalized in the following way 

∞ 

g(a)ada=l 
+∞ 

f(W)dW=l ∫ g(a)ada=l f f(W)dW=l 
0 

g(a)ada=l 
—∞ 

f(W)dW=l 

The time dependence of the coherent oscillations is e-iωt. 
Linearising Q(a, W) and Ω(a, W) yields 

Q=Q 0+a 2 Q + W Q Q=Q 0+a 2 
a2 + W W 

Ω=Ω0+a2 Ω + W Ω Ω=Ω0+a2 
a2 + W W 

Furthermore, we define 
ψa±=(n±Q0) Ω ±Ω0 Q ψa±=(n±Q0) a2 ±Ω0 a2 

ψw±=(n±Q0) Ω ±Ω0 
Q ψw±=(n±Q0) W ±Ω0 W 

Since Q0/Q l and Ω0/Ω l, we can replace (l) by 
l=(U+iV) (I+-I-), (2) 

I± is given by 

I±= 1 + 
F(x) dx 

∞ 

G'(y)ydy ,(3) I±= 1 
∫ F(x) dx ∫ G'(y)ydy ,(3) I±= δwψw± ∫ 

F(x) dx ∫ x1
±-yε±-x 

,(3) I±= δwψw± —∞ 
F(x) dx 

0 x1
±-yε±-x 

,(3) 

where 
x=W/δw. y=a2/δ2a (4a, b) 

We define δW by f(±δw)=fmax/2 and δ2a by g(δ2a)=g(0)/2. 
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The normalized complex frequency shift 
X1±=[ω-(n±Q0)Ω0]/δwψw±, (5) 

replaces ω. We denote the ratio of the spread in amplitude to the spread 
in energy by 

ε±=δ2aψa±/δwψw± 

The normalization of the new distribution function is 
∞ 

G(y)dy=l and 
+∞ 

F(x)dx=l (6a, b) 
∫ G(y)dy=l and ∫ 

F(x)dx=l (6a, b) 
0 

G(y)dy=l and 
-∞ 

F(x)dx=l (6a, b) 

As long as the spread in the quantity (n—Q)Ω does not become equal 
to the difference between the slow and the fast wave, we can neglect 
either I+ or I- depending upon whether x+1 or x-1 is small. In both 
cases we get the same contours in the U, V plane. Thus it is sufficient 
to consider the slow wave. 

We normalize U and V in the following way 
U'=U/δw|ψ-w| V1=V/δw|ψ-w| (7) 

3. Results 
For simplicity, we will first discuss the case ε<<l which will 

reveal all basic features of the solution. Equation (3) becomes 

l=(U'+iV') |ψ-w| ∫ 
F(x)dx l=(U'+iV') ψ-w ∫ x—x-1 

Splitting the integral in its principal value and in its imaginary part 
yields 

+∞ F(x)ds = P 
+∞ F(x) dx ±iπF(x-1), (9) f F(x)ds = P ∫ 
F(x) dx ±iπF(x-1), (9) ∫ x-x-1 = P ∫ x-x-1 

±iπF(x-1), (9) 
-

x-x-1 
= P 

—∞ 
x-x-1 

±iπF(x-1), (9) 

where the sign of the imaginary part equals the sign of the vanishing 
imaginary part of x-1. It is apparent from (8) and (9) that there will be 
a region, disposed symmetrically around the U' axis which is not 
covered by the mapping of the complex x-1 plane onto the U' V' plane. 
Thus no solution for x-1 with the exponential time dependence can exist 
if U',V' fall into this region. This does not exclude the existence of 
damped solutions not obeying an exponential law [6].Outside the stable 
area we always find two solutions, one for the slow and one for the fast 
wave. They are damped or growing depending upon the sign- of Vψ±, which 
turns out to be equal to the sign of the imaginary part of ω. The sym
metry of the mapping with respect to the U' axis means that care has 
to be taken in designing an active feedback circuit, since an excessive 
negative V can give rise to growing waves[7]. 
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As a first example we consider the distribution function F(x) shown 
in Fig. 1a, which represents adequately the distribution in energy after 
the R. F, stacking process. The flanks are parabolae of 4th order. 
Assuming ε=0 the integral in (8) becomes 

∫=( 8 (δ1+δ2)+2ξ) Σ { As +As(A2s-2)-∫=( 15α (δ1+δ2)+2ξ) s=1,2 { 3 +As(A2s-2)-
(-1)s[ A2s -(A2s-1)2ln As - lnAsδs ]} (-1)s[ 2 -(A2s-1)2ln As+(-1)s - lnAsδs ]} 

where 
As= x-1-(-1)sξ and α=√1-1/√2 As= αδs and α=√1-1/√2 

The mapping of the lower half-plane of x-1 onto the U', V' plane is 
shown in Fig. 2· This half plane corresponds to growing solutions accor 
ding to (5) because ψ-w is assumed to be negative. 

Since the ratio of U/V is about 1 for the ISR, we gather from Fig. 2 
and (7b) that stability is guaranteed if 

V<δw|ψ-w|0.3 (10) 

holds. This becomes for(n-Q) Ω << Q Ω0 holds. This becomes for(n-Q) W << W Ω0 

V< Q δwΩ0 0,3. V< W δwΩ0 0,3. 
For high values of n we get 

V<n Ω w 0,3. V<n W w 0,3. 

One should keep in mind that δw is the half spread at half height. 
Having performed the mapping for a variety of distribution functions we 
can state that (10) is a good criterion, as long as U/V 1 holds. 

In the case of U<<V we find, that 
V<0,6δw|ψ-w| 

has to be fulfilled in order to ensure stability. If V<<U an inspection of 
the mapping is inevitable. This is apparent from Fig. 3a and Fig. 3b 
which show the influence of increasing flat top and asymmetry. The 
rectangular disrribution gives as a limiting case a circle in the U',V' plane. 

In a second example we consider the distribution functions shown in 
Fig. 1b, c. Fig. 4 reveals that the stabilization by the energy spread and 
the stabilization by the amplitude spread are not additive. Their combi
ned influence depends on the ratio U/V and, not very strongly, on the 
distribution functions. 
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Fig. 1 Normalized distribution functions. 
a) Distribution function in energy with flat top. 
b) Distribution function in energy, F(x)= 3 (1-) b) Distribution function in energy, F(x)= 4√2 (1-2 ) c) Distribution function in betatron 

amplitude. G(y)= 3 
(1-

y2 
) amplitude. G(y)= 2√2 (1- 2 ) 



Fig. 2 
. Mappi g of the lower half-plane of the normalized complex frequency shift x-1 

Distribution function shown in Fig. 1a δ1/δ2=3.8 and 2ξ/δ1+δ2=4. No amplitude dis
tribution ε=0. 



Fig. 3a. The stability limit lm(x-1)=0 for various values of 2ξ/(δ1+δ) for δ2/δ1=1 and 
ε 0. Distribution function shown in Fig. 1a. 



Fig. 3b. The same as Fig. 3a except that 2ξ/(δ1+δ2)=3 and δ2/δ1 is varied. 



Fig. 4. The influence of the amplitude spread on the stability limit. Distribution func
tions shown in Fig. 1b and c. The quantity ε is the ratio between amplitude and 

energy spread. 
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