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1 Introduction

The Compact Muon Solenoid (CMS) experiment [1] is designed to explore physics at the TeV en-
ergy scale exploiting the proton-proton collisions delivered by the Large Hadron Collider (LHC) [2].
The CMS silicon tracker [3, 4] consists of 1440 silicon pixel and 15 148 silicon strip detector mod-
ules. It is located, together with the electromagnetic and hadron calorimeters, inside a supercon-
ducting solenoidal magnet, which provides an axial field of 3.8 T. Outside of the solenoid, the muon
system is used both for triggering on muons and for reconstructing their trajectories in the steel of
the magnet return yoke.

The pixel tracker allows the reconstruction of charged particle trajectories in the region closest
to the interaction point. Installed in July 2008, it is a key component for reconstructing interaction
vertices and displaced vertices from heavy quark decays in an environment characterized by high
particle multiplicities and high irradiation.

CMS uses a right-handed coordinate system, with the origin at the nominal interaction point,
the x-axis pointing to the center of the LHC, the y-axis pointing up (perpendicular to the LHC
plane), and the z-axis along the anticlockwise-beam direction. The polar angle (θ ) is measured
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Figure 1. Sketch of the CMS pixel detector (a) and exploded view of a barrel module (b).

from the positive z-axis and the azimuthal angle (φ ) is measured from the positive x-axis in the x-y
plane, whereas the radius (r) denotes the distance from the z-axis.

The pixel tracker consists of three 53.3 cm long barrel layers and two endcap disks on each
side of the barrel section, as shown in figure 1(a). The innermost barrel layer has a radius of
4.4 cm, while for the second and third layers the radii are 7.3 cm and 10.2 cm, respectively. The
layers are composed of modular detector units (called modules) placed on carbon fiber supports
(called ladders). Each ladder includes eight modules, shown in figure 1(b), consisting of thin,
segmented n-on-n silicon sensors with highly integrated readout chips (ROC) connected by indium
bump-bonds [5, 6]. Each ROC [7] serves a 52×80 array of 150 µm × 100 µm pixels. The ladders
are attached to cooling tubes, which are part of the mechanical structure. The barrel region is
composed of 672 full modules and 96 half modules, each including 16 and 8 ROCs, respectively.
The number of pixels per module is 66 560 (full modules) or 33 280 (half modules) [8]. The total
number of pixels in the barrel section is 47 923 200.

The endcap disks, extending from 6 to 15 cm in radius, are placed at z = ±35.5 cm and
z = ±48.5 cm. Disks are split into half-disks, each including 12 trapezoidal blades arranged in a
turbine-like geometry. Each blade is a sandwich of two back-to-back panels around a U-shaped
cooling channel. Rectangular sensors of five sizes are bump-bonded [9] to arrays of ROCs, form-
ing the so-called plaquettes. Three (four) plaquettes are arranged on the front (back) panels with
overlap to provide full coverage for charged particles originating from the interaction point. The
endcap disks include 672 plaquettes, for a total of 17 971 200 pixels [10].

The minimal pixel cell area is dictated by the readout circuit surface required for each pixel.
In localizing secondary decay vertices both transverse (rφ ) and longitudinal (z) coordinates are
important, and a nearly square pixel shape is adopted. Since the deposited charge is often shared
among several pixels, an analog charge readout is implemented. Charge sharing enables interpola-
tion between pixels, which improves the spatial resolution. In the barrel section the charge sharing
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in the rφ -direction is largely due to the Lorentz effect. In the endcap pixels the sharing is enhanced
by arranging the blades in the turbine-like layout. The barrel sensors have a sensitive thickness of
285 µm, and the pixel size is 100 µm and 150 µm along the rφ and z coordinates, respectively [11].
The endcap sensors are 270 µm thick, with the same pixel size oriented in the r (100 µm) and rφ

(150 µm) coordinates. To avoid insensitive areas in-between ROCs, double-sized pixels are located
along the three ROC edges not including the chip periphery [7].

One of the greatest challenges in the design of the pixel detector was the high radiation level
expected on all components at very close distances to the colliding beams. At the design LHC
luminosity of 1034 cm−2s−1 the innermost barrel layer will be exposed to a yearly particle fluence
of 3 × 1014 neqcm−2. Assuming a gradual increase of the LHC luminosity, all components of the
pixel system are designed to stay operational up to a particle fluence of at least 6 × 1014 neqcm−2.
Test beam measurements have shown that the sensors can survive fluences up to 1015 neqcm−2 with
breakdown voltages above 600 V [11–14].

The pixel tracker performance is expected to evolve with the exposure to irradiation and con-
sequential change of the electric field profile within the silicon bulk. The sensor bias voltage will
have to be increased with increasing irradiation to compensate for the charge losses due to charge-
carrier trapping. Thus, the hit reconstruction software is designed to cope with a varying charge
collection efficiency, and to precisely measure the hit position throughout the detector lifetime. The
reconstruction techniques rely on periodic calibration procedures [15, 16].

This paper describes the detector calibration procedures and reports on early results from data
collected with a cosmic ray muon trigger. Detector calibrations are described in section 2. The
collected data samples and event selection steps are detailed in section 3, and first results from data
collected with the cosmic ray muon trigger are presented in section 4.

2 Detector calibration

This section describes the calibration of the pixel detector in fall 2008 immediately after detector
installation and prior to the cosmic ray run described in section 3. This first calibration and com-
missioning included adjustment of the readout chain, calibration of the pixel charge measurement,
and determination of pixel readout thresholds. A summary of hardware problems observed in 2008
is given.

2.1 Data acquisition electronics

The pixel data acquisition system is described in more detail in ref. [17]. A brief description
relevant to the detector calibration follows. The readout chain starts in the pixel cell of the ROC [7],
where the signals from individual pixels are amplified and shaped. To reduce the data rate, on-
detector zero suppression is performed with adjustable thresholds for each pixel. Only pixels with
charge above threshold are accepted by the ROC, marked with a time-stamp derived from the 40
MHz LHC bunch crossing clock, and stored on chip for the time of the trigger latency (about 3.7
µs) until readout. For each Level-1 trigger, an on-detector ASIC, the Token Bit Manager (TBM),
initiates a serial readout of the ROCs on one barrel module or endcap panel. In turn, each ROC
sends hits matching the trigger bunch crossing in a 40 MHz analog data packet, which encodes
pixel address and charge information as described in section 2.2. Electrical signals from the TBM
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are translated by the Analog Optical Hybrid (AOH), and transmitted via optical fiber to off-detector
electronics.

For the full detector, 1214 analog optical links are received in the underground service cavern
by forty 36-channel Front End Driver (FED) VME modules. Each FED has analog optical re-
ceivers, flash ADCs, and FPGAs that decode the analog data packets from each channel into pixel
addresses and digitized charge information, assemble data packets for each trigger, and buffer the
output for transmission of the raw data to the CMS central data acquisition system.

The ROC includes a charge injection circuit that is used to verify that each pixel cell is func-
tional. It also provides a means to calibrate the ADCs and measure the thresholds by scanning the
amount of injected charge. Data acquisition and control software runs on eight PCs connected to
the three FED VME crates and three other VME crates containing control electronics. The software
performs online calibrations, iteratively adjusting the parameters of the readout chain (section 2.2),
measuring the ADC response to injected charge (section 2.3), and determining the pixel thresholds
(section 2.4).

2.2 Calibration of the readout chain

In the 40 MHz analog data packet, six clock cycles are used to encode each hit pixel: the address
is amplitude encoded using a six-level scheme over five clock cycles, and the sixth clock cycle
gives the pixel charge [7]. A flash ADC on the FED records the data packets, and the FPGA
firmware decodes the address for each pixel hit. To operate the 40 MHz analog readout links
and properly decode the analog data packets, a number of online data acquisition calibrations are
performed sequentially to adjust each component of the analog readout chain: ROC and TBM
output offsets and gains, Analog Optical Hybrid laser bias and gain, FED optoreceiver and channel
offsets, and FED flash ADC clock delay. At each stage the signal must remain in the dynamic range
of subsequent elements of the readout chain and have sufficient amplitude to be reliably decoded
when received at the FED.

With the amplitude offsets, gains, and timing of the entire readout chain adjusted, the six
ADC levels corresponding to the address encoding are determined from raw ADC information in
a dedicated address level calibration run. Charge-injection data are collected from each pixel, and
all ADC values from the clock cycles corresponding to the address part of the data packet are
histogrammed. A sample set of six address level peaks from one ROC is seen in figure 2(a). The
uneven population of the peaks reflects the choice of encoding for the 4160 pixels on the ROC.
Once determined, the address levels are programmed to the FED FPGA and used to decode pixel
data in the FED firmware during subsequent runs. In rare cases additional adjustments to the front-
end parameters or to FED timing are required to achieve good level separation.

To characterize the overall performance of the analog links and encoding in 2008, the root-
mean-square (RMS) widths of all peaks on all operable readout chips are shown in figure 2(b). No
ROCs were removed from the analysis. The RMS is typically 3 ADC counts, with the broadest
peaks still less than 7 ADC counts. For a 10-bit ADC, the level separation is many times the width
of the address level peaks, as seen in figure 2(c). Here the separation between the mean of two
adjacent address level peaks is given in units of sigma, defined by summing in quadrature the RMS
widths for the adjacent peaks.
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Figure 2. (a) ADC values corresponding to the address encoding for a single ROC, where six peaks
corresponding to the levels are visible and well separated. (b) RMS of each peak for all active ROCs in
the detector. (c) Separation between adjacent peaks.

2.3 ADC-to-charge calibration

Conversion of pixel charge measurements from ADC counts to charge units requires calibration of
the net response function of the pixel readout chain. This calibration is essential to achieve a precise
hit position, as the cluster position is interpolated using the charge information from all pixels in
the cluster [15]. The most probable charge deposition for normally incident minimum-ionizing
tracks is approximately 21 000 electrons, as expected for fully depleted 270–285 µm thick sensors.
This charge is frequently deposited over more than one pixel due to Lorentz drift and diffusion of
collected electrons.

For each pixel the pulse height response in the 8-bit ADC to a given amount of collected
charge is measured using the charge injection feature of the ROC. For each chip, an 8-bit digi-
tal to analog converter (DAC), denoted VCAL, controls the amount of charge injection on each
ROC in two overlapping ranges, which differ by about a factor of seven. The high and low ranges
are cross calibrated, and measurements given here are converted to low-range VCAL DAC units.
The combination of the two ranges cover the expected dynamic range for pixel hits from tracks of
varying impact angle and momentum, from 2000 to 60 000 electrons. The charge injection circuit
is approximately linear up to 90 000 electrons, well beyond the saturation point of the front-end
amplifiers in the readout chain. The calibration of the internally injected charge is obtained using
barrel module test data from x-ray sources of known energies [18]. All barrel modules were tested,
finding an average slope of 65.5 electrons per VCAL unit and an offset of−414 electrons. The test
data show that the calibration varies by 15% among the chips. A pixel-to-pixel variation of similar
size is expected, consistent with the typical systematic variation of the charge-injection coupling
capacitors in each pixel cell. Lacking more detailed test data, the average charge injection cali-
bration is applied to all pixels in the detector. The systematic uncertainty on the calibration of the
charge injection circuit can be reduced in the future by using isolated tracks in beam collision data.

Dedicated calibration runs record the ADC response as a function of the injected charge for
all pixels. Because the pixels will operate in beam collisions with very low occupancy (< 10−4),
the charge injection data are also taken with a small fraction of the pixels (< 1%) receiving charge
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Figure 3. (a) Example of the ADC response as a function of injected charge in VCAL units (≈ 65.5
electrons) for one pixel. Distribution of gains (b) and pedestals (c) for all pixels.

injection on any trigger. The design of the data acquisition system demands this low occupancy,
but this also minimizes any effect of crosstalk by geographically separating the pixels with injected
charge. The pattern of injected pixels is changed to serially cover the entire chip. For each pattern
the injected charge is varied. The response is approximately linear below saturation at about 45 000
electrons, and the data are fit with a first degree polynomial in the linear region. An example fit for
one pixel is shown in figure 3(a).

The distributions of the two fit parameters for all pixels are given in figures 3(b) and 3(c).
The pedestal and gain parameters correspond to the intercept and the inverse slope, respectively, in
figure 3(a). The tail in the pedestal distribution is due to poorly optimized front-end parameters used
in some ROCs. Since fall 2008, the ROC parameters have been adjusted to remove the negative
pedestals.

2.4 Readout thresholds

The thresholds are controlled at pixel level using two 8-bit DACs per ROC plus one 4-bit trim value
per pixel. The pixel threshold is given by a global chip threshold DAC, adjusted with the 4-bit trim
within a range set by the second DAC. The trim bits are used to equalize the thresholds for all pixels
on a readout chip.

During the cosmic ray run, conservatively high thresholds were chosen to ensure stable and
efficient operation of the data acquisition, avoiding inefficiencies from overflowing hit buffers on
the ROCs. As thresholds decrease, hit rates increase and do so very sharply when reaching the level
where internal ROC readout induces crosstalk. The minimum threshold is set to avoid crosstalk in
the most sensitive pixel on each chip. The threshold parameters for the barrel detector were set to
values determined during module testing at construction time. The endcap disk thresholds were
tuned in situ by adjusting the threshold DACs and trim bits.

The threshold tuning process is iterative and time consuming. At each step, the threshold
DACs or trim bits are adjusted for a target threshold, and the threshold is measured, as described
below, for a sample of pixels on each ROC, iterating to converge to the target. Then all pixels
are checked to confirm that there is no buffer-overflow inefficiency at the target threshold. If suc-
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Figure 4. (a) Efficiency S-curve as a function of injected charge in VCAL units (≈65.5 electrons). (b)
Distribution of ROC-mean threshold in the endcap and barrel detectors.

cessful, the thresholds are lowered another step of approximately 300 electrons, and the procedure
is repeated.

The readout thresholds are measured using charge injection runs, performed by the DAQ sys-
tem in the same way as described for the ADC-to-charge calibration. For each pixel, the efficiency
as a function of injected charge (S-curve) is fit to an error function. The efficiency is defined as
the number of charge injection events with a pixel hit divided by the number of charge injection
events. The threshold is the injected charge where the efficiency is 50%. The noise is measured
from the slope of the turn-on region. The error function fit parameters are the threshold and noise,
defined as the mean and RMS width, respectively, of the Gaussian that gives the error function
when integrated. Figure 4(a) shows an example S-curve and fit for one pixel.

Figure 4(b) shows the distribution of the mean threshold per ROC in the barrel and endcap de-
tectors for the fall 2008 cosmic trigger run. The overall average thresholds are found to be 3829 and
2941 electrons for the barrel and endcap, respectively. Since there was more time available to tune
the endcap disks, they were operated at lower thresholds than the barrel layers. After the cosmic
run ended, a carefully tuned subset of the detector achieved lower and more uniform thresholds.
This tuning was extended to the entire detector in 2009 during a two-week commissioning period.

The thresholds reported above are absolute thresholds, valid for hits assigned to any bunch
crossing in the ROC. Because only a single bunch crossing may be read from the ROC, to measure
the absolute thresholds, the charge injection scan repeats three times, varying the ROC latency over
three consecutive bunch crossings, and the efficiencies defined above are summed. The in-time
threshold, which requires the time-stamp to match the bunch crossing of charge deposition, turns
out to be 600–1000 electrons higher. The higher in-time threshold comes from the time-walk effect
of the ROC comparator: due to the finite rise time of the shaped signal in the ROC, small signals
cross the threshold later than large signals [7] and can be time-stamped in the subsequent bunch
crossing. Such hits are suppressed at the ROC, which only reads out hits matching the trigger time-
stamp. The in-time threshold is appropriate when considering hit efficiency, where a hit must be
found in-time with the trigger bunch crossing to be transmitted for readout. The absolute threshold
controls the occupancy of on-chip hit buffers and stability of the ROC. See ref. [16] for additional
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Table 1. Summary of inoperative channels during the fall 2008 cosmic ray run.

Barrel Pixels
Cause # ROCs Fraction
No HV 40 0.35%
Readout wire bond 40 0.35%
Dead module 16 0.14%
Bad ROC 4 0.03%
Total 100 0.87%

Endcap Pixels
Cause # ROCs Fraction
Shorted LV cable 135 3.13%
Shorted HV cable 93 2.15%
Wire bond (HV) 8 0.19%
Bad TBM header 24 0.56%
Total 260 6.02%

discussion of pixel thresholds. The difference in absolute and in-time thresholds may be reduced
by increasing the bandwidth of the front-end amplifiers, which was not optimized during the initial
commissioning period.

From the threshold measurement with the fall 2008 tuning, the mean noise is 141 and 85
electrons for the barrel and endcap, respectively. The noise performance of the endcap detector is
expected due to a different design of the sensors [11, 12] resulting in smaller pixel capacitance.
These noise levels are well below operating thresholds, which must be set above crosstalk levels.
It should be noted that this noise represents the contribution from the front-end ROC only. The
remainder of the readout chain (amplifiers, laser, and optical receiver) contributes an additional 300
electrons of noise to the charge measurement, but has no effect on the S-curve or pixel occupancies.

2.5 Inactive and noisy channels

During the run with cosmic ray muon triggers, 99% of the barrel pixels and 94% of the endcap
pixels were operational. The remaining channels were inactive due to a small number of failures,
listed in table 1 and discussed in the following.

The barrel pixel detector had 100 ROCs that could not be operated, 80 of which, spread over
eight modules, were due to broken wire bonds or missing high voltage connections. One module
(16 ROCs) did not respond to programming and was disabled. Four additional ROCs, randomly
scattered throughout the detector, did not respond or produce signals. The number of dead pix-
els on otherwise functional ROCs was very low, 0.01%, and consistent with the fraction of faulty
bump-bond connections between the ROC and sensor observed during module testing. The net
inefficiency due to defective connections or hardware was less than 1%. Note that the dynamic
inefficiency from overflowing buffers in the readout chain will be a few percent at design luminos-
ity [1, 7].

In the endcap pixel detector, a shorted power supply cable resulted in a loss of six panels (out
of 192), 3.13% of the detector. Another shorted high voltage cable disabled the two outer plaquettes
on each of six panels (2.15%). These two faulty cables accounted for most of the lost channels in
the endcap pixel detector. They were repaired in 2009, demonstrating the quick removal, repair,
and reinstallation feature of the CMS pixel design. An additional plaquette (0.19%) was insensitive
due to a broken wire bond, detected by naked eye during installation in August 2008. The affected
panel was also replaced during maintenance. One other panel (0.56%) has an intermittent and
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temperature dependent connection. For the endcaps, dead pixels and faulty bump bonds, measured
during construction [9], add less than 0.1% to the losses in table 1.

The number of noisy pixels is negligible. During the cosmic ray run, a total of 263 barrel and
17 endcap pixels produced hits at a rate of more than 10−3 per trigger and were disabled during
early running. Given the exceptionally low occupancy in cosmic ray events, a hit rate at this level
is clearly due to malfunction or poorly adjusted thresholds. Changing the criterion for a noisy pixel
to a hit rate of 10−4 per trigger adds only 8 barrel and 5 endcap pixels. The total fraction of noisy
pixels was less than 5×10−6.

3 Data samples, alignment, event selection and simulation

The CMS collaboration conducted a month-long data taking exercise known as the Cosmic Run At
Four Tesla (CRAFT) during October–November 2008, with the goal of commissioning the exper-
iment for extended data taking [19]. CMS recorded 270 million cosmic-ray-triggered events with
the solenoid at its nominal axial field strength of 3.8 T and the tracking detectors operational. A
few percent of those events had cosmic ray muons traversing the tracker volume. Prior to CRAFT
and during the final installation phase of the experiment from May to September 2008, a series of
commissioning exercises to record cosmic ray events took place with the solenoid turned off. The
reverse bias voltage of the pixel sensors was set to 100 V and 300 V in the barrel and endcap sec-
tions, respectively. A higher bias voltage in the endcap section was used to reduce noise in a limited
number of plaquettes. These noisy plaquettes were close to the wafer edge during manufacture and
require a higher bias to meet performance specifications.

From the data taken with the 3.8 T field, approximately 85 000 tracks traversing the pixel
detector volume were reconstructed with the Combinatorial Track Finder (CTF) algorithm [20].
The algorithm combines hits in the pixel and strip tracker. For this set of tracks, the average
number of pixel hits is 3, for a total of about 257 000 clusters reconstructed in the pixel system. All
results shown in this paper were obtained using tracks reconstructed by the CTF algorithm.

Spatial alignment of the pixel detector is detailed in ref. [21]. The precision of the detector
position with respect to particle trajectories after track-based alignment has been derived from the
distribution of the median of the cosmic muon track residuals measured in each module. The
barrel precision is 3 µm RMS in the rφ coordinate and 4 µm in the z coordinate, while the endcap
precision is 14 µm RMS along both the r and φ coordinates.

The timing alignment of the pixel modules was performed during the cosmic data taking.
There are approximately 100 separate optical fibers distributing the beam crossing clock to the
pixel detector, with each fiber serving a group of modules in close proximity. The lengths of
these fibers are measured using reflectometry, and a programmable delay chip (Delay25) is used
to equalize the delay for each of the fiber links. The Delay25 chip can be set in increments of 500
ps; after correction for measured fiber lengths, the total delay is estimated to be controlled to better
than 2 ns. The inter-pixel timing adjustment was done a priori using fiber length measurements.

With each of the modules aligned to the same delay, a single overall delay remains to be
determined for the pixel detector relative to the trigger and the rest of CMS. Starting from an
a priori calculation of the total latency in the trigger and fiber delays, a coarse scan of the pixel
detector latency was made in four steps of 25 ns, the period of the beam crossing clock. Tracks were
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reconstructed in the silicon strip tracker, which has wider time acceptance than the pixel detector.
Tracks that cross the cylinder defining the pixel fiducial volume are used to measure the efficiency
of pixel hits for each delay setting. Two of the beam crossings had measurable efficiency. Initially
the more efficient of the two was used for about 50% of the CRAFT data. Part way through the run
the phase of the beam crossing clock was shifted by 9 ns to maximize the pixel efficiency.

There are limitations to the ability to make a timing alignment for cosmic ray tracks. The cos-
mic tracks arrive at random phases of the LHC beam crossing clock, and have a broad distribution
in time of flight from the various muon stations to the pixel detector. These two effects give rise
to a time distribution that is much wider than the sharp distribution from beam collisions. Com-
bined with the single bunch crossing sensitivity of the readout chip, some inefficiency is expected
in cosmic ray running. These effects are not expected in beam collision running. Information on
the timing of cosmic ray events from the muon detectors is used to minimize these effects in the
analyses that follow. The muon time measurements have a mean resolution of approximately 6 ns.
They are corrected for time of flight to the pixel detector.

The events analyzed in section 4 were selected according to the following criteria:

• Events belonging to runs with stable magnetic field at 3.8 T;

• Events belonging to runs in which all pixel detector FEDs are included in the data acquisition;

• Events with two muon legs reconstructed by the muon detectors (see section 4.5);

• The weighted mean of the muons arrival time at the pixel detector, as determined by the
muon detectors, is required to be within ±20 ns with respect to the Level 1 trigger signal, in
phase with the LHC bunch crossing clock;

• The averaged uncertainty on the muon time measurement is required to be smaller than 10 ns.

For comparison with the data, event samples generated with CMSCGEN [22] are processed with
the CMSSW software and include the full detector simulation [23]. We also use the PIXELAV simula-
tion [24, 25], which is a detailed treatment of the pixel sensor, for the Lorentz angle and resolutions
studies presented in section 4.

4 Results

4.1 Hit distributions and charge collection

Pixel clusters are formed from adjacent pixels with a charge above the readout threshold. Both
side and corner adjacent pixels are included in the cluster. The charge collected in each pixel is
converted into electrons using the calibration procedure described in section 2 and cluster projec-
tions along the sensitive coordinates are obtained by summing the charge collected in the pixels
with the same coordinate. Residual charge miscalibration due to the pixel-to-pixel variation of the
charge injection capacitor are extracted from laboratory measurements and included in the Monte
Carlo simulation. Clusters with total charge above 5000 electrons are selected and their position is
calculated as described in ref. [15]. Figure 5 shows the number of track-associated hits in each bar-
rel ROC. ROCs showing no hits were excluded from the readout either because of DAQ or sensor
biasing problems.
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Figure 5. Number of hits associated to a track detected in each ROC for the first (a), second (b) and third (c)
barrel layers. Bins in white correspond to readout chips excluded from data taking. On average each ROC
had about 60 hits when integrated over the 85 000 tracks traversing the barrel pixel detector. The plot origin
corresponds to φ = 0 and z =−26.7 cm.
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Figure 6. Charge distribution in 103 electrons (ke) for clusters larger than one pixel measured with the barrel
(a) and endcap (b) pixel detector. The data points show the measurement with cosmic ray muons and the
solid line the CMSCGEN simulation. The simulated distributions are scaled to the data as described in the text.

Figure 6 shows the simulated and measured cluster charge after correcting for the track in-
cidence angle. To emulate the angle distribution expected for collisions, tracks with transverse
impact angle larger than 12◦ from the normal to the sensor surface are excluded from the study.
Clusters are required to include at least two pixels and those with edge pixels are excluded from
the sample. Finally, hits are excluded if more than one cluster is found within the same module
or plaquette. The angular distribution of reconstructed tracks was compared with the CMSCGEN

predictions and found to be in good agreement [20].
To derive the most probable cluster charge and the width of the cluster charge distribution,

fits to a Vavilov function [26] are performed. The Vavilov function can be used to describe the
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Table 2. Most probable value (MPV), width, κ and χ2/ndof of the Vavilov function fitted to the measured
and simulated cluster charge distributions. Errors represent the uncertainties of the fit.

Data (103 electrons) Simulation (103 electrons)

MPV Width κ
χ2

ndof MPV Width κ
χ2

ndof
Barrel 23.9±0.2 3.7±0.1 0.18±0.02 1.6 22.6±0.2 3.4±0.1 0.13±0.02 1.6
Endcap 21.5±1.0 3.3±0.8 0.09±0.1 0.9 20.5±0.4 2.7±0.3 0.06±0.05 0.7

energy deposition in thicker absorbers. The fit results are summarized in table 2. In addition to the
cluster charge most probable value, the width, and the χ2/ndof of the fit, the parameter κ is stated
in table 2. In the case that κ is very small (e.g. < 0.01) the Vavilov function converges to a Landau
function, for large values of κ (e.g. > 10) the function converges to a Gaussian. The widths of
the charge distribution agrees well with the simulation. The simulated charge peak is shifted by
1300 and 1000 electrons in the barrel and endcap respectively. The discrepancy is related to the
uncertainty on the scale factors applied to the data when converting the injected charge units into
electrons. The simulation predicts the charge from the deposited energy in the active region of the
simulated sensor, using the ionization energy of silicon. In figure 6 the simulated charge has been
shifted by the observed difference in peak positions.

4.2 Lorentz angle measurement

In the presence of combined electric and magnetic fields, the drift of the charge carriers is affected
by the Lorentz force. In the case of n-on-n sensors electrons are collected at the n+ pixel implant.
The charges drift at an angle (Lorentz angle) relative to the direction of the electric field, which
leads to charge sharing among neighboring pixels. The pixel hit reconstruction exploits this effect
to improve the spatial resolution by interpolating the charge collected in a cluster. Once the inter-
polation is done the resulting position is adjusted to account for the Lorentz drift. Because the pixel
barrel sensor planes are parallel to the magnetic field, the Lorentz drift is both maximal and in the
azimuthal direction. The forward pixel sensors are deliberately rotated by 20◦ with respect to the
detector radial axes to produce a radial Lorentz drift and to increase azimuthal charge sharing.

The Lorentz angle extraction from the cosmic ray data is based on the cluster size method.
The spread of the charge over neighboring pixels depends on the particle’s incidence angle and has
a minimum for tracks parallel to the drift direction of the charge carriers. The Lorentz angle is
extracted by finding the minimum of the mean cluster size along the local x coordinate measured
as a function of the cotangent of the incidence angle α , as shown in figure 7. The fit function is
given by

f (ξ ) = p0 +
√

p2
1 + p2

2(ξ −ξmin)2 , (4.1)

where ξ = cot(α), the parameter ξ min is the location of the function minimum, and p2 is indepen-
dently fitted for ξ values larger and smaller than the function minimum.

In this analysis the track χ2 per degree of freedom, χ2/ndf, is required to be smaller than 2, and
clusters with double-sized or edge pixels are excluded. In addition, to reject residual single-pixel
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Figure 7. Sketch of the track impact angles with respect to a pixel sensor (pixel cell dimensions not to scale).
The axes represent the local coordinate system. The magnetic field vector is anti-parallel to the y axis for the
barrel sensors and at 20◦ with respect to the z axis for the endcap sensors.

hits from out-of-time particles, only clusters with at least two pixels along the local y coordinate
are accepted.

Figure 8(a) shows the transverse cluster size as a function of cot(α) in the barrel pixel detector
with 3.8 T and without field. The minimum ξmin obtained for the data at 3.8 T is −0.462±0.003.
The measured value corresponds to a Lorentz angle of (24.8±0.2)◦ and a shift of the transverse hit
position of 65.9±0.5 µm for a 285 µm thick barrel sensor. The quoted uncertainty is purely statis-
tical. The systematic uncertainties on ξmin related to the selection cuts and fit range are estimated
to be approximately 3%.

The measured Lorentz angle value may be compared with the prediction of the PIXELAV pro-
gram [24, 25]. In the program the value of the reverse bias voltage is set to 100 V and 300 V
for the barrel and endcap detectors, respectively. The sensor temperature and the Hall factor are
set to 20 ◦C and 1.02, respectively. The dependence of the charge carrier mobility on the elec-
tric field is taken from ref. [27]. The systematic errors on the predicted values are dominated by
the uncertainty on the Hall mobility and can be as large as 10%. The prediction for the barrel of
ξ =−0.452±0.002 agrees well with the measured value.

To check the correctness of the method, the measurement is performed also using data col-
lected without magnetic field. The corresponding minimum is found to be 0.003±0.009, consistent
with zero, as expected in the absence of magnetic field.

Figure 8(b) shows the transverse cluster size as function of cot(α) for the endcap section. The
minimum obtained with the 3.8 T field is −0.074±0.005 and also agrees well with the PIXELAV

prediction of −0.074± 0.004. The measured value corresponds to a Lorentz angle of (4.2±0.3)◦

and a hit position shift of 9.9±0.7 µm for the 270 µm thick endcap sensors. The minimum obtained
with no magnetic field is consistent with zero (0.018±0.017).

The measured values of the Lorentz angle were used when reprocessing the collected and

– 13 –



2
0
1
0
 
J
I
N
S
T
 
5
 
T
0
3
0
0
7

)αcot(
−1.5 −1 −0.5 0 0.5 1

tra
ns

ve
rs

e 
cl

us
te

r s
iz

e 
[p

ix
el

s]

1.5

2

2.5

3

3.5

4

 0.003±) = −0.462 minα3.8T: cot(
 0.009±) = 0.003 minα0.0T: cot(

CMS 2008

(a)

)αcot(
−1 −0.5 0 0.5 1

tra
ns

ve
rs

e 
cl

us
te

r s
iz

e 
[p

ix
el

s]

1.2
1.4
1.6
1.8
2

2.2
2.4
2.6
2.8

3
3.2
3.4

 0.005±) = −0.074 minα3.8T: cot(
 0.017±) = 0.018 minα0.0T: cot(

CMS 2008

(b)

Figure 8. Cluster size along the local x axis as function of the cotangent of the impact angle α measured in
the barrel (a) and endcap (b) regions of the pixel detector. The circles correspond to the measurement with
the 3.8 T field while the triangles correspond to the measurement without magnetic field. The dashed line
shows the fit to the data points.

simulated data samples and therefore the Lorentz effect was correctly taken into account while
performing the spatial alignment of the pixel detector [21].

4.3 Hit detection efficiency

The hit reconstruction efficiency is measured by extrapolating tracks to the pixel sensors and check-
ing the presence of a compatible pixel hit [20, 28]. If one is found, it is added to the track and the
trajectory is updated with the new information. In this case the hit is called valid. If no hit is found
in the search window, a missing hit is added to the trajectory. The hit reconstruction efficiency is
defined as

ε = ∑valid
∑(valid +missing)

. (4.2)

The following selection cuts are applied:

• For each measurement one additional valid hit was required to be associated to the track in
both top and bottom halves of the pixel detector with respect to the beam plane;

• The muon arrival time at the pixel detector is required to be within 5 ns of the time that has
maximum efficiency, to take into account the timing alignment between the pixel and muon
systems;

• An extrapolated hit, either valid or missing, is not counted in the efficiency calculation when
its distance to the sensor edge is smaller than the uncertainty on the track trajectory propa-
gated to the sensor surface;

• Only events with a single track with momentum larger than 10 GeV/c are accepted.
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Figure 9. Hit detection efficiency measured in each sensor of the first (a), second (b), and third (c) barrel
layers. Modules affected by configuration problems, missing sensor bias or inactive ROCs are marked with
a crossed black box.

The position of the muon timing cut window is centered on the maximum efficiency, and adjusted
by the 9 ns timing shift between the two subsets of CRAFT data (section 3). This offset turns out
to be -8 ns and +1 ns for the early and late subsets, respectively. As the cut on the muon tim-
ing window is relaxed, the efficiency decreases, consistent with tracks arriving outside the time
acceptance of the pixel readout chip, taking into account the resolution of the muon time mea-
surement. The efficiency measured in each module of the three barrel layers is shown in figure 9.
The number of selected hits in the endcap region is not sufficient to perform this study. Modules
with efficiency below 90% correlate with known configuration problems, missing sensor bias, or
inactive ROCs. These modules are represented by cells marked by a crossed black box in figure 9.
Modules excluded from the DAQ or with insufficient number of hits are represented by white cells.
Removing these modules from the measurement, the layer efficiency averaged over the modules is
(97.1±1.4)%, (97.1±1.9)% and (96.4±2.6)% in the first, second, and third barrel layers, respec-
tively, where the statistical error is the RMS spread.

The measured hit detection efficiencies after the cuts are lower than test beam measure-
ments [11]. A correlation between the efficiency and the track impact angle is observed, showing
lower efficiency for tracks parallel to the charge carriers drift direction. These tracks are more
likely to create single-pixel hits. A loss of single-pixel hits in cosmic ray events can be explained
by random arrival times of cosmic rays with respect to the beam crossing clock and the time-walk
effect giving different time-stamps to high and low charge hits from the same track [7]. These
effects are peculiar to data taking with cosmic ray particles and are not expected to affect proton
collisions, where outgoing particles are synchronized with the machine clock.

4.4 Hit residuals and position resolution

The silicon strip and pixel tracker are spatially aligned as described in ref. [21]. After alignment, the
hit residuals are measured by refitting each track and comparing for each hit the track prediction and
the reconstructed hit position. The measured hit is excluded from the track fit, and only tracks with
momenta larger than 10 GeV/c are taken. Clusters of a single pixel are excluded if the cluster charge
is below 10 000 electrons, to avoid time-walk effects, which can split clusters from cosmic ray
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Figure 10. Pixel barrel hit residuals as a function of the transverse impact angle α (a), longitudinal impact
angle β (b), and cluster charge in 103 electrons (c). Circles and triangles correspond to the transverse (x)
and longitudinal (y) local coordinates, respectively. Normally incident tracks have impact angles of 90◦.

tracks between two beam crossings. In addition, clusters are excluded if they are close to the sensor
edges, as described in section 4.3. The residual distributions are measured as a function of the
impact angles and cluster charge and a Gaussian fit is performed in each bin. Contributions to the
width of the residual distribution come from track extrapolation error, intrinsic detector resolution,
and multiple scattering. The track extrapolation error is the largest component and includes the
uncertainties due to residual misalignment of the sensors used in the trajectory extrapolation with
respect to the measured sensor.

Figure 10 shows the width from the Gaussian fit of the barrel residual distribution as a function
of the α and β angles (see figure 7) and the total cluster charge. For tracks normal to the sensor
plane, the Gaussian sigma is about 30 µm and 65 µm along the local x and y coordinates, respec-
tively. The width strongly depends on the cluster charge and impact angles. The best precision is
expected for clusters that have two-pixels-wide projections and charges of about 30 000 electrons.
For larger values of the cluster charge, the position resolution deteriorates due to delta rays.

The detector intrinsic position resolution is measured using tracks that traverse overlapping
sensors in the barrel layers. A detailed explanation of the measurement technique is given in
ref. [28]. Tracks passing through two overlapping modules in the same layer are used to compare
the hit position with the expected position from the track trajectory. The difference of the local
track impact points is about ten times more precise than the individual predicted hit positions
and always below 5 µm. The double difference is formed by taking the difference between the
hit position difference and the predicted position difference (∆xpred). The width of this double
difference distribution is insensitive to translational misalignment of the overlapping modules.

The study is performed for both directions, x and y, in the pixel module coordinates. To
limit the effect of multiple scattering, a minimum momentum cut of 5 GeV/c is applied. Clusters
with charge below 10 000 electrons or containing pixels on the sensor edge are excluded. The
charge cut removes only 2.6% of all clusters. Tracks with angles greater than 30◦ from the normal
are also excluded. The double difference widths are fitted with a Gaussian and the uncertainty
from the tracking prediction is subtracted quadratically to recover the hit resolution on the position
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Figure 11. Hit position resolution of the barrel pixel detector along the local transverse (a) and longitudinal
(b) coordinates measured using overlapping sensors within a layer. Each measurement point corresponds to
a different pair of overlapping modules in z for (a) and in r-φ for (b). The circles show the measurement
while the solid line represents the error-weighted mean of the measurements.

difference. The results for the resolution are shown in figure 11 for the local x and y coordinates.
Each data point represents a measurement extracted from a pair of overlapping sensors with at least
30 crossing tracks.

The solid lines are weighted means of the measured resolutions. With the assumption of equal
resolution for each of the modules in the overlap, the final fit values for the resolution for a single
module are 18.6± 1.9 µm along x and 30.8± 3.2 µm along y. Events with the same range of
impact angles as in the measured sample are simulated using the PIXELAV program. This simula-
tion does not include misalignment effects. The residual distributions are obtained comparing the
true and reconstructed hit positions. A Gaussian fit to the simulated residual distribution gives a
resolution of 22.1±0.2 µm and 28.5±0.1 µm along the local x and y coordinates, respectively, in
good agreement with the measurements.

The position resolution will be further improved by reducing and equalizing the readout thresh-
olds before operation with colliding beams. In test beam measurements, an RMS resolution of
12 µm was measured along the local coordinate x affected by the Lorentz drift, using tracks per-
pendicular to the sensor, a readout threshold of 2500 electrons, and a 3 T magnetic field [29].

4.5 Track parameter residuals at vertex

The resolution on the track impact parameters is an important benchmark of the pixel system.
After detector alignment, the track parameter resolution can be extracted from data as described
in ref. [21]. The method splits the cosmic ray tracks in the barrel section at the point of closest
approach to the nominal beamline, creating two track candidates (or legs). The top and bottom legs
are taken as two independent tracks and fitted accordingly, with the track parameters propagated
to their respective points of closest approach to the beamline. The transverse residual distribution
is defined as: ∆dxy = (dxy,1− dxy,2)/

√
2, where the factor of

√
2 is included due to statistically

independent legs and dxy,1, dxy,2 are the track transverse impact parameters of each track leg. The
residual of the longitudinal impact parameter, dz, is defined similarly. The measurement technique
was validated using a full detector simulation. To select a sample that closely resembles tracks
expected from collision events, each track leg is required to have a momentum larger than 4 GeV/c,
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Figure 12. Residuals of the transverse (a) and longitudinal (b) track impact parameters measured with the
track splitting method for track momentum larger than 4 GeV/c. The residuals for tracks with momentum
larger than 20 GeV/c are shown in (c) and (d) for the transverse and longitudinal plane, respectively. The
solid line represents a Gaussian fit to the data.

at least 10 hits in the tracker, of which at least two two-dimensional hits are in the strip tracker, and
three hits are in the barrel pixel section. In addition, the track χ2 is required to be smaller than 100.

The distributions of the transverse (dxy) and longitudinal (dz) track impact parameter residuals
are shown in figures 12(a) and 12(b), respectively. The histogram shows the measurement and the
solid line is a Gaussian fit to the data. The width of the residual distribution from the Gaussian
fit is 23.3±0.3 µm and 39.4±0.5 µm in the transverse and longitudinal planes, respectively. If
the track momentum is required to be greater than 20 GeV/c, the width of the residual distribution
changes to 18.3±0.4 µm and 35.3±0.6 µm in the transverse and longitudinal planes, respectively,
as shown in figures 12(c) and 12(d). The momentum dependence of the impact parameter resolution
is discussed in more detail in ref. [21].

5 Summary

After installation in July 2008, the CMS silicon pixel detector was commissioned and then operated
in a cosmic ray run in October–November 2008. More than 96% of the endcap disks and 99%
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of the central barrel were included. About 270 million triggers were recorded, yielding about
85 000 tracks traversing the pixel detector, which have been used to evaluate the performance of
the detector. While cosmic rays do not mimic beam collisions in terms of spatial distribution and
are asynchronous with respect to the LHC beam crossing clock, these data allowed crucial testing
of detector performance and of calibration techniques.

Online charge calibration permitted a comparison of the charge measurements with the expec-
tations from simulation, showing good agreement for the distribution widths, both in the barrel and
endcap regions. Initial operating thresholds of about 3000–3700 electrons per pixel were deter-
mined in calibration runs with charge injections. Randomly arriving cosmic rays and the narrow
time acceptance of the pixel ROC increase the effective threshold to approximately 5000 elec-
trons, while a minimum ionizing particle deposits about 22 000 electrons in the pixel sensors at
normal incidence.

The Lorentz effect is crucial for the hit resolution in the CMS pixel detector design, where
Lorentz forces result in charge sharing among pixels. The Lorentz shift was extracted from data
and used to correct the reconstructed hit position. The measured values were found to be well
reproduced by simulation studies, for both barrel and endcap regions.

Although limited by the narrow time acceptance of the front-end electronics and the random
arrival time of cosmic rays, a hit efficiency study shows efficiencies greater than 96% for most
detector modules.

Hit resolution measurements, even at this early stage of tuning, confirm the precision of the
CMS pixel detector. Using tracks that intersect overlapping barrel modules, hit resolutions of 19
µm (rφ ) and 31 µm (z) were extracted from the small event sample available. The transverse
(longitudinal) impact parameter resolution was found to be 18 µm (35 µm) for high momentum
tracks, using a split-track technique. These results are in line with the expectations presented in
ref. [23]. The CMS pixel detector will perform according to its specifications during operation with
colliding beams.
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J. Nysten, E. Tuominen, J. Tuominiemi, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Korpela, T. Tuuva

Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux,
France
P. Nedelec, D. Sillou

– 23 –



2
0
1
0
 
J
I
N
S
T
 
5
 
T
0
3
0
0
7

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, R. Chipaux, M. Dejardin, D. Denegri, J. Descamps, B. Fabbro, J.L. Faure, F. Ferri,
S. Ganjour, F.X. Gentit, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, M.C. Lemaire,
E. Locci, J. Malcles, M. Marionneau, L. Millischer, J. Rander, A. Rosowsky, D. Rousseau,
M. Titov, P. Verrecchia

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, L. Bianchini, M. Bluj3, P. Busson, C. Charlot, L. Dobrzynski, R. Granier de Cassagnac,
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Laboratório de Instrumentação e Fı́sica Experimental de Partı́culas, Lisboa, Portugal
N. Almeida, L. Antunes Pedro, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Freitas
Ferreira, M. Gallinaro, M. Guerra Jordao, P. Martins, G. Mini, P. Musella, J. Pela, L. Raposo,
P.Q. Ribeiro, S. Sampaio, J. Seixas, J. Silva, P. Silva, D. Soares, M. Sousa, J. Varela, H.K. Wöhri
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J. Schümann, J.G. Shiu, Y.M. Tzeng, K. Ueno, Y. Velikzhanin, C.C. Wang, M. Wang

Cukurova University, Adana, Turkey
A. Adiguzel, A. Ayhan, A. Azman Gokce, M.N. Bakirci, S. Cerci, I. Dumanoglu, E. Eskut,
S. Girgis, E. Gurpinar, I. Hos, T. Karaman, T. Karaman, A. Kayis Topaksu, P. Kurt, G. Önengüt,
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