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A bstract

W ith the advent ofgeneralized unitarity and param etric Integration technigues, the construction ofa generic
N ext-tod.eading O rder M onte C arlo becom es feasble. Such a generator w ill entail the treatm ent of QCD

color In the am plitudes. W e extend the concept of color dressing to one-loop am plitudes, resulting in the
form ulation of an explicit algorithm ic solution for the calculation of arbitrary scattering processes at N ext-
toLeading order. The resulting algorithm is of exponential com plexity, that is the num erical evaluation
tim e of the virtual corrections grow s by a constantm ultiplicative factor as the num ber of external partons is
ncreased. To study the properties of them ethod, we calculate the virtual corrections to n-gluon scattering.

1. Introduction

Autom ated Leading O rder (LO ) generators H,B,B,B,B] play an essential role In experim ental analyses
and phenom enology in general. H ow ever, the theoretical uncertainties associated w ith these generators are
only understood qualitatively. T he augm entation of the LO generatorsw ith N ext-toL.eading O rder (NLO )
corrections w ill give a m ore quantitative understanding of the theoretical uncertainties. T his is crucial for
the realization of precision m easurem ents at the Hadron colliders. By calculating NLO corrections using
analytic generalized unitarity m ethods @ ,ﬁ ,B ], the one-loop am plitude is factorized into sum s over products
of on-shell tree-levelam plitudes. T hism akes the integration of num erical generalized unitarity m ethods into
the LO generators attractive. O ne can use the LO generator as the buiding block for obtaining the NLO
correction, thereby negating the need for a separate generator of all the one-loop Feynm an diagram s. T he
generalized unitarity approach reduces the com plexity of the calculation through factorization. Tt can reduce
the evaluation tim e w ith Increasing num ber of extermal particles from faster than factorial grow th to slower
than factorial grow th.

By utilizing the param etric integration m ethod of Ref. E] signi cant progress has been m ade in the
algorithm ic In plem entation of generalized unitarity based one-loop generators E ,ﬂ ]Jand othernon-unitary
m ethods 1E| T hese In plem entations rely on the color decom position of the am plitude into colorless, gauge
nvariant ordered am plitudes , ]. At treedevel these ordered am plitudes can be e clently calculated by
recursion relation algorithm s @]. T hese algorithm s are of polynom ial com plexity and grow asym ptotically
asn* as the num ber of external partons, n, increases E']. By replacing the 4-glion vertex by an e ective
3-gluon vertex the polynom jalgrow th factor can be firther reduced to n? @,@,@ ].

At the one-loop level the ordered am plitudes generalize into prim itive am plitudes 1. T hese prin i
tive am plitudes re ect the m ore com plicated dipole structure of one-loop am plitudes. W hile the analytic
structure of the factorized one-loop am plitude in color factors and prim itive am plitudes is system atic, the
subsequent calculation of the color sum m ed virtual corrections becom es unw ieldy In the algorithm ic in ple-
m entation @]. T he reason for this is the rapid grow th in the num ber of prin itive am plitudes. T his rapid

1T hese m ethods have m atured to the point where explicit NLO parton generators for speci ¢ processes have been con-

structed [13,[14,019,14,[171.
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grow th ismainly caused by the multiple quark-pairs am plitudes. A further com plication arises from the
possible presence of electro-w eak particles in the ordered am plitudes.

W hile In LO generators the analytic treatm ent of color ism ore m anageable, altematives w ere developed
forhigh parton m ultiplicity scattering am plitudes (23,127,124 ]. T hose altematives provided a m ore num erical
treatm ent of the color, thereby facilitating the construction of treelevel M onte C arlo program s for the
autom ated generation of high m ultiplicity parton scattering am plitudes at LO . T his was accom plished by
not only choosing the externalm om enta and helicities, but also choosing the explicit colors of the external
partons for each scattering event considered. In doing so, the tree-level partonic am plitude is a com plex
num ber and the absolute value sqyuared is sinm ply calculated. This num erical treatm ent can be done in
the context of ordered am plitudes [28 ] by calculating the explicit color weights of each ordered am plitude.
T hism ethod was generalized to one-loop calculations In Ref. [14]. M ore directly, one can reform ulate the
recursion relations into color-dressed recursion relations 29,123,124 ]. T hese color-dressed recursion relations
Integrate the now explicit color weights into the recursive form ula. T he resulting algorithm is of exponential
com plexity and grow s asym ptotically as 4" for n-parton am plitudes; again, a reduction of the grow th factor
to 3" can be achieved if the 4-gluon vertex is replaced by the e ective 3-gluon vertex [24].

In this paper we extend the generalized unitarity m ethod of Ref. [10] as In plem ented in Ref. [30] to
ncorporate the colordressing m ethod. T he algorithm is developed such that it can augm ent a dressed LO
generator such as CoM X [9] to becom e a NLO generatorld For the num erical exam ples presented In this
paper, we have used our own in plem entation ofa colordressed LO glion recursion relation to calculate the
virtual corrections for n-gluon scattering processes.

T he m otivation for color dressing at the onedoop level is discussed in Sec. 2. W e outline in Sec. 3
the treedevel dressed recursion relations for generic theories expressed in term s of Feynm an diagram s. W e
optin ize the color-sam pling perform ance and study the phase-space integration convergence for LO n-gluon
scattering. The dressed form alisn is extended to one-loop am plitudes in Sec. 4. The scaling w ith n, the
accuracy of the algorithm and the colorsam pling convergence of the virtual corrections to n-gluon scattering
are studied In som edetail. W e sum m arize our results In Sec. 5. Finally, two appendices are added giving an
explicit LO 6-quark exam ple and details on the colordressed in plem entation of the gluon recursion relation.

2. M otivation for the C olorD ressed G eneralized U nitarity M ethod

So far the num erical i plem entations of generalized unitarity for the evalnation of one-loop am plitudes

m ake use of color ordering: the ordered one-loop am plitudes are constructed from treelevel ordered am pli-
tudes through the D -dim ensional unitarity cuts. T his has the advantage that the color is factorized o the
Joop calculation and attached subsequently to each ordered one-loop am plitude. For the pure gluon one-loop
am plitude, this leads to a particularly sim ple decom position in term s of the ad pint generatorsF of SU (N ):

X
M O (1;2:05) Tr(F®F® THm 08 (1;2;:::m) @
P (2;3j::m)

T he decom position is valld for both treelevel [18]and one-loop am plitudes [31]. O nce we can calculate the

tions. A llkinem atic inform ation about the n-glion am plitude is encapsulated in a single ordered am plitude.
H ow ever,w e also see the draw back of this approach aswe are Interested in evaluating the am plitude squared.
W e have to calulateM 1) (1;2:::5;n) M 9 (1;2:::;m) ¥ summed over all color and spin states of the
extemalgluons. T his In m ediately leads to a factorial com plexity when doing the m ultiplications of the full

the color sum has to be perform ed either analytically or in som e num ericalm anner.
W hen including quark pairs the situation becom es even m ore com plicated. T he reason is that the internal
structure of the one-loop am plitude isnot unigquely de ned by the externalstates, thereby a ecting the color

°The LO m atrix-elem ent generator needs to be upgraded to allow for com plex externalm om enta.
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ow of the ordered am plitudes. A s a result there exist m any types of ordered am plitudes depending on the
Intermalcon guration ofquark and gluon propagators. T hese am plitudes are called prin itive am plitudes [25]
and in generalcannot be obtained from each other by sin ple perm utations. For exam ple, the one-loop gg+ n
gluon am plitude is given by [31]

(TyT™ BT,

j(Fak” a"E)Xym(1)(q;l;:::;k;q;k+ 1;:::5;n) : (2)

k=2 P (1;:::n)

w here the T -m atrices are the fundam ental generators of SU (N ). W hile for the fullam plitude a cut line has
an undeterm ined avor, each prin itive am plitude has an unigue avor for all the cut lines. T herefore we
can apply generalized unitarity to the prim itive am plitudes. H ow ever, from a num erical/algorithm ic point
of view the evaluation of this equation becom es tedious as can be seen for instance in the calculation of the
one—loop m atrix elem ents forW + 5 partons in Ref. 261].

Tt isclear that for an autom ated generator of one-loop correctionsonew ould like to avoid ordered /prin itive
am plitudes altogether. For LO m atrix elem ents, this can be done by applying the colordressed recursion
relations to evaliate the (unordered) treedevel am plitudes. From these colordressed tree-level am plitudes
we can build the one-loop colordressed am plitudes by applying generalized unitarity, thereby circum venting
the need for prin itive am plitudes and explicit color sum m ations. It is of interest to investigate the feasibility
of this approach. T he ngluon scattering process is good for studying the behavior of the dressed algorithm .
T he color-ordered approach is m ost e ective for n-gluon scattering. For processes w ith quark-pairs, the
colordressed approach w ill becom e even m ore e clent com pared to the color-ordered approach.

A n additionaladvantage of the colordressed algorithm is that it treats partonsand color neutralparticles
on the sam e footing. Speci cally, we can include electro-w eak particles w ithout altering the algorithm . T his
is In contrast to the color-ordered algorithm , where the addition of electro-weak particles would lead to
signi cantm odi cations in the algorithm ic Im plem entation of the m ethod.

3. D ressed R ecursive Technigues for Leading O rder A m plitudes

In tree-level generators the M onte C arlo sam pling over the extermal color and helicity states hasbecom e
a standard practice 23,127,124 ]. Such a color sam pling allow s for the e clent evaluation of largem ultiplicity
partonic processes. A particular e cient In plem entation of the colordressed M onte C arlo m ethod uses the
color- ow decom position of the m ultiparton am plitudes [23,I132,124 1.

T he principle of M onte C arlo sam pling over the states of the external sources generalizes to any theory
expressble through Feynm an rules. By explicitly specifying the quantum num bers of the n external sources,
one can evaluate the tree-level am plitude squared and di erential cross section using M onte C arlo sam pling:

d o (f1f2 ! £3 n)f=

Nygvent .

dPS™ (K K, ! K KM O e

2
AR Tl 3)

w here
£ = ffihe iCe K eg") (4)

denotes the avor, spin, color and m om entum fourwvector of external state i for event r@ T he constant
W s contains the appropriate dentical particle factors and M onte C arlo sam pling weights. For each event r,
the extemal states are stochastically chosen such that when summ ed overm any events w e approxin ate the
correct di erential cross section w ith su cient accuracy.

W ewilluse avor to indicate the particle type, such as eg.gluon, up-quark, W -boson, etc.



3.1. The G eneric R ecursive Form alian

To calculate the treedevel am plitude M 9 in Eq. (@), we ollow the m ethod of colordressed recursion
relations as detailed in R efs. @,B ]. A recursion relation buidsm ultijarticle currents from other currents.
Them -particle current Jg (£ ) hasm on-shellparticlesf = ffig;, = ff ;:::;5 gwhere = fij;i:ii;in g
and one o —shellparticleg = fg;L4;C4;K ygwih g,Lg,C4 and K 4 denoting the avor, Lorentz label, color
and fourm om entum , respectiygy. Them om entum oftheo -shellparticle,K 4, is constrained by m om entum
conservation: Kg= K = o Ki.

T he dressed recursion relation generates currents using the propagators and interaction vertices of the

theory. U sing standard tensor notation we can w rite the propagators as

P99 Q) = g4 coc,, PP Q);
X
P9 J() = PI9 K )J,, f
g1
X
P J(E,)J(E,) = Jg, £, P99 K ), £, ; (5)
9192
where eg. the gluon propagator is given by P * 2(Q) = g ! *=0“. Note that the particle sum s are

taken over all quantum num bers of the o —shell particles g;. Furthem ore, In all expressions m om entum
conservation is always im plicitly understood. The on-shell treelevel n-particle am plitude can hence be
expressed In tetm sofan (n 1)-current,

M O g6, =P YT fiiE 1 T8 (6)

W e denote the interaction vertices of the theory as Vg, |, @1;:::;Q%). Them axim al number of legs for
the allow ed vertices of the theory is denoted by Vy, ax . The num ber of legs of the vertex is ndicated by the
num ber of its argum ents and the type of vertex is speci ed by the quantum num bers of the legs. T he labels

m any of the vertices are set to zero. The theory is de ned by its particle content and its non-vanishing
vertices, which are generalized tensors:

..... — Lgl kb
\7q1 k 62 15::3Qx) = \]g k %3:1

1

cQ17:::50%) ¢ (7)

Ik

The sum of all vertices contracted in w ith currents constitutes the m ain building block of the recursion
relation. W e de ne it as

Dy J(f,);:::;0(E,) = \% L Kg= K K ;K ) J9fE IIE,. ; (8)

1

g1 k9

w here the inclusive list  is build up of unions of the exclusive lists:
k = it (9)

Fig.[ is a pictorial representation of Eq. (8) when using the exam ple ofQCD . For this case, we w ill work
out the generic vertex blob in detail n the next subsection.

T he recursion relations term inate w ith the one-particle currents. A one-particle g-current is de ned in
term s of the source S?:Li: (K¢, ). Hence, we have

‘ he. C
Jg & = B ©Cng B TR (10)

For exam ple, the g;-glion oneparticle source w ith helicity 1, color ¢ and mom entum K, is given by
Jg(g1)= °* !(K1).Ie.theqg;-gluon source isamatrix in color space m ultiplied by the helicity vector.
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Figure 1: A graphical representation of Eq. (g)) for k = 2 and an o -shell gluon in Q CD . Because of avor conservation only
one of the two vertices can contribute for any given partition.

T he n-particle currents are now e ciently calculated from a recursively de ned current in the follow ing
m anner:
Viax 1 Sagn k) h i
Jg iy = Py D J(E,);::;d(E,) (11)
k=2 P (1;:m)

where S, (n;k) is the Stirling num ber of the second kind. The rst recursive step is graphically illistrated
in Fig. () or the exam ple of Jy(u;d;s;s;W ). The sum over P | |, (1;:::;n) generates all di erent
di erent partitions is

n (@] )=
) , i) S2(4i3)=6

(1;2;3;4) = 1(1) él) é

P

12 3 .
i=1

£1;29f3gf4g ; fl;3gf2g9fdg ; £fl;49f2gf3g ;

o
£2;39flgfdg ; £2;4g9flgf3g ; £3;4gflgf2g : (12)

T he form alisn described here fiilly gpeci es an autom ated algorithm of exponential com plexity to cal-
culate the LO di erential cross—sections for any theory de ned in temm s of Feynm an rules. O wing to the
characteristics of the partitioning, the com puter resources needed to calculate the n-particle treelevel am —
plitudes asym ptotically grow in proportion to S; (n;Vy ax ). T he exponentialbehavior arises from the largen
lin it of the Stirling num bers, ie. S, (N;Vnax) | Viax @1. Tt m ay be possible to reduce V,, ox by rew riting
higher m ultiplicity vertices as sum s of lower m ultiplicity vertices thereby in proving the e ciency of the
recursive algorithm E,@}. For the case of the Standard m odel this has been fully worked out in Ref. E]
and in plem ented In the CoM X LO generator.

Figure 2: The rst recursion step for the unordered glion current with u;d;s;s quarks and a W gauge boson in the nal
state. T here are 15 contributions corresponding to all possible partitions of the nal-state particles into two groups. B ecause
of avor conservation there are only 4 non-vanishing contributions for the \4+ 1" partitions ( rst temm ) and 2 non-vanishing
contributions for the \3+ 2" partitions (second term ).



3.2. M ulbd-Jet Scattering Am plitudes

W e specify the generic recursion relations to the perturbative Q CD Feynm an rules. This will give an
algorithm ic description of the scattering am plitudes at LO for m ulti-ft production at hadron colliders.

T he extemal sources are gluons and m assless quarks. A 1l these particles have color and helicity as
quantum num bers. Instead of the traditional color representation in term s of findam ental generators, we
choose the color- ow representation B, @, 1, which is m ore pertinent to M onte Carl sam pling and
easily derivable from the traditional color representation by m aking the follow Ing two observation: rst,any

interal propagating glion has as a color factor ° = Tr T3T® H T his color factor can be rew ritten as

ab Tr T2T® 15
Second, w e contract the am plitude w ith Tji“jk for each extermalglion:
Y Y
MF=M*pM® = MAITITE M = M yM Y (14)

From these observations it follow s that we can calculate the Interaction vertices In the color- ow represen-—
tation by sin ply contracting each gluon w ith Tjikjk and summ Ing over ay . T he three gluon vertex is thus
given by

vglgzgg(Kl;K2;K3) = Vi1§1i27j:i3j3(Kl;K2;K3)

= T8 T2 T2 V. L2 3(Kqi;K,K3)

B1J1 T Ti3d3 Tarazas

P -
= TOLTIA T £M®E T 2% 2 (KK 5K 5)

B B s PR T

= 335 35y BT ELKK 1s)
w ith
1
P CEK2Ks) = Pz K1 Kp)'gl i+ K K3)'glC4 (Ks Ki)iglto: (16)
Sin ilarly, for the four gluon vertex we nd
X
_ 12 3 4 _ i iy i3 g SER PR ER V1 137 2 4
Vglg2ng4 - Vi] Jiiododzdsiade J2 J3 Ja Jn Ja h J Js @4 4 a7
C (234)
w ith
@417;34=2g12g34 g13g24 g14g23’. (18)

and the sum is over the cyclic pem utation of the indices £2;3;4g. In the color- ow representation the
quark-antiquark-glion vertex is given by

Vaga = Vi3 = i b9 i wh oy PO (19)
w ith
R (20)
T he external sources are given by
Jg(g1) = Th o ® )
Jqola) = i)
Jqola) =  7Prul K1) ; (21)

jo
4B ecause of this nom alization, the structure constants £2°¢ are a factor of 2 larger than in the conventionalde nition.



where g = fg; ;(IJ);

Kig9,91 =

for; 1;@ 3 )K19, 9 = fa;5;I; Kig, g1 = faq; 1;4;K19,9 =

fg;s;J; Kigand g1 = fag; 155K 19. The intemal propagating particles are given by

192 _ L i 9. .
P99 Q) = 2 & Q2 r
PUIQ) = P@ mg) i
p 192 Q) = i; @ + m g, ) 1 (22)

S182

with gx = £ok; k7 (& k)iQg,ax = £k iskiki;Qgand gx = fokiskikiQg-
W e can now construct B erends{G il recursion relations [20]using colordressed m ultiparton currents

based on Eq. (Idl). The result is

X h i
= Py D J(E,);J(E,)
P, (Lin)
X h i
= Py D J(E,);J(E,)
P, (Ljmn)
X h i
+ Py D J(E,);J(,);T(E,) 5 (23)
P (Lj:n)

w here each current violating avor conservation isde ned to give zero. T he com pact operator language can
be expanded out to an explicit form ula by adding back in the particle attributes. For exam ple,

h i
Py D J(E,);J(E,) =

X
Pyg, K )VITNT T (£ )Tg(E,)
d99:9
X
ngl K 2)Vglg2g3( K 1l 2;K 1;K 2)ng (fl)Jga (fz)
919293
1 S1 S2 i £ Jj £
KZ i;13;3 Jsl( 1) Jsz( 7)
2
1 12 . . (i3)2 (13)3
Vg (K o0 K K ) 3P E) TPE) (24)

2

T he n-parton treelevelm atrix elem ent is calculated using Eq. {@). W e exem plify in appendix [B] how to
work out the 6-quark recursion steps using the above form align .

3.3. Num erical Im plem entation of n-glion Scattering

T he m ethod of color dressing as discussed in this section relies on the ability to perform a M onte C arlo
sam pling over the degrees of freedom of the external sources. In this subsection we will study In som e
detail the properties of such a sam pling approach by m eans of the colordressed gluonic recursion relation.
W e are particularly interested in the accuracy of the color-sam pling procedure and overall speed of the
In plem entation. T he addition of quarks and extemal vector bosons is a straightforw ard extension and w ill
not a ect the conclusions reached in this subsection.

T he explicit colordressed gluon recursion algorithm is given in term s of colored gluonic currents. T he



gluonic currentsare 3 3 m atrices In color space and de ned as

Jg 9n = T I3 won Kn)i
X h i
Jg 917::ti9n = Py D J@,)idg ;)
P, (1m)
X h i
+ Py D J(@g ,)iJ@ ,)J@ ) : (25)
P I 3(l;:::m)

T he colordressed n—glion am plitude is given by
M © giigziitign = P ' J 9159255190 1 30 On : (26)

For this speci ¢ exam ple, we have labelled the on-shell gluons by g;, the o —shell gluon is denoted by g
as before. T he operator form ulation of the recursive algorithm is particularly suited for an ob Fct oriented
In plem entation of the recursive algorithm . W e have in plam ented the algorithm presented above in C++.
M ore details including the m ore explicit recursion equation are shown in appendix [El.

The rst issue to dealw ith is the correctness of the in plem ented algorithm . To this end we want to
com pare the colordressed am plitude to existing evaluations of the ghionic am plitudes based on ordered
am plitudes. To facilitate the com parison, we w rite the color-ordered expansion of the am plitude using the
color- ow representation [321]:

(0) % ko
M 917i927::8i9n = AV g gy
P (2;:::m)
X
- T an Tr F & a”Fm(O)( Teeene ")
i h in Jn G i 9
P (2;:::m)
X
_ } i i 1 Jﬂ+( l)n in in 1 i i m(O)( T eeeos ")
2 Jo 33 In J1 Jn1 Jn2 Jiodn G 7%
P (2;::m)
X
_ L i 1 m (0)( 1T eewos L) (27)
J2 33 Jn 1 9y 7 7n
P (2;:::m)
Them ) (g;" ;:::;9," ) are ordered am plitudes w ith the property m () (1;2;:::;n)= ( 1) m D (n;:::;2;1)

From the above form u]asttb]Jowst'hatA‘0)?1 : ?: A‘O)ﬂ ! By choosing the explicitm om entum , helicity

and color (ij), of each glion we can com pare the num erical values of Egs. (2d) and (27). W e have done
the com parison up to 2 ! 12 glion am plitudes and found com plete agreem ent, thereby valdating the
correctness of the colordressed algorithm .

An in portant consideration in calculating the colordressed am plitudes is the color-sam pling m ethod
used In theM onte Carlo program . Fora 2 ! n 2 glion scattering am plitude, each of the gluon color states
is stochastically chosen. T he full color con guration of the event is expressed by £(ij), g _; where i, and
Jn each denote a color state out of three possible ones that can be labelled £1;2;3g. In the \N aive" approach
one sam plesunibm Iy overallpossible color states of the gluons. T he num ber ofcolorcon gurations,N Y3e,

col

and the colorcon guration weight, W ;“Oﬁi"e , are given by

N Yaie - on (28)
and

WNalve — 1; (29)

col

respectively. About 95% of the naive color con gurations have a vanishing color factor. This results in a
rather ine cient M onte C arlo procedure when sam pling over the color states. A s was noted in Ref. [124],



Scattering N aive C onserved N on-Zero
21 2 6,561 639 378
213 59,049 4,653 3,180
21 4 531,441 35,169 27,240
215 4,782,969 272,835 231,672
21 6 43,046,721 2,157,759 1,949,178
217 387,420,489 17,319,837 16,279,212
21! 8 3,486,784,401 | 140,668,065 | 135,526,716

Table 1: T he num ber of color con gurations sam pled over w hen using the di erent M onte C arlo color schem es.

a signi cant num ber of the zero colorweight con gurations can be rem oved by in posing color conserva-
pon. This is In plam ented by vetoing any color con guration for which the condition 9c¢ 2 £1;2;3g :
n

me1 Cin e 5 <) & 0 is true. In other words, the non-vetoed color con gurations can be obtained by

which we nam e \C onserved", then yields

Xt n! 2
N Conserved __ *
col - ni+nz+nsmn

— (30)
ni 'np !n3!
nimny;msz=0

where n. = E: 1 i - Asthisway of sam pling is no longer uniform , each generated color con guration

gets an associated color weight described by

C onserved n n!
W = 3 —": (31)

1
e ni!'n,!'nsy!

Yet, there still are non-contrbuting color con gurations left in the sam pling set. W e have to augm ent the
selection criteria further by vetoing any color con guration for which the condition 9c 2 £1;2;3g : [8m 2
£f1;2;::0ng 1 (3 = ¢! i = Ju) 1jst|:ueﬁ TIn other words, we veto a color con guration if all occurrences
of a particular color c come paired: i, = J, = c. By adding this veto to the \Conserved" generation,
we obtain the \Non-Zero" M onte C arlo procedure that has rem oved all color con gurationsw ith zero color
welght. T he num ber of leftover con gurations sam pled over is given by

X |
NNon—Zero — n.
col ni+nz+nszmn n1!n2!n3!
niymnzmniz=0
1
P .
n! n;'nyng! 1 . ne 1) . me I)nc!(n ne)!
i (32)
ni 'n; Ins!

where the step function (x)= 1 forx 0 and zero otherw ise. T he weight associated w ith each sam pled
color con guration has to bem odi ed and reads

|
ne)!

P P
ne 1)

ni 'np !n3 !

n! nilny!ns! 1 1)nc!(n

_ <3n 3) c

W N on-Z ero c (l’lc

col

(33)

Forup to 10-gluon scatterings, Table[ll displays the resulting num ber of sam pled color con gurations in the
colum n indicated \Non-Zero". Tt is also shown how this num ber com pares to the num bers found for the
\C onserved" and \Naive" sam pling schem e.

W hen all colors are dentical,ie. iy = j1= b = Jo = 7= Jn , every color factor in Eq. ) is equal to one. W e can
still veto the event because the sum over all ordered am plitudes is identical to zero at tree level [20].
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Scattering color ordered color dressed | color dressed
(Vmax= 4) (Vmax= 3)
21 2 0.0313 0117 0.083
21 3 0169 40 0.495 424 0327 ©93)
21 4 0.791 (48 1556 (324 0.822 ?®1)
21 5 3.706 4:%9) 611 93 266 23
21 6 17.83 “4#1) 2526 413 755 (2:84)
21 7 99.79 0 93.43 (70 249 30
21 8 5579 (9©9) 3924 (4:200 761 305
21 9 2,979 =4 1,528 69 228 (299
21 10 19,506 (6:55) 5,996 (3:92) 693 (3:04)
21 11 118,635 ¢:08) 24,821 414
21 15 6,248,300 328

Table 2: The tin e (in seconds) to evaluate 10,000 colordressed tree-level am plitudes for 2 ! n 2 gluon scatterings. O nly
color con gurations w ith non-zero weight are taken into account. A Iso indicated is the grow th factor (given in brackets) w ith
increasing n. To com pute the am plitudes a 2.20 G H z Intel C ore2 D uo processor was used.

N ext we exam Ine the execution tin e of n-gluon scattering am plitudes using the \N on-Zero" color sam —
pling. In Tablke[d the CPU tin e needed to calculate the color-dressed am plitudes according to Eq. (26) and
Eq. {Z7) are com pared.

T he evaluation of Eq. (27) em ploys the ordered recursion relation 20]. Naively one would expect this
evaluation to grow factorially with the num ber of gluons. H owever this grow th is considerably dam pened
by sam pling over non—zero color con gurations only. N ote that for a given event we calculate each ordered
am plitude w ith non-vanishing color factor independently of the other ordered am plitudes. O ne can speed
up the com putation tin e by sharing the calculated sub-currents between di erent orderings. T his, how ever,
is outside the scope of this paper.

For the evaluation of Eq. (28) we use the colordressed recursion relation of Eq. (23). To study its tine
behavior we apply this recursion as discussed in appendix [B] w ith and w ithout the 4-gluon vertex. A's can
be seen from Table[d, the required CPU tin es scales as 4" or 3" if the 4-gluon vertex is neglected. This
exponential scaling was derived in Ref. 24,124]. T he derivation, follow ing [24 ], uses the recursive buildup
of the am plitude. To calculate an n-particle am plitude using a V point vertex, we have to evaluate the
(n  1)-particle current of Eq. (). This current in tum is determ ined by calculating all " ! m particle
sub-currents, wheren 1 m 2. Each m -current is constructed from sm aller currents using Eq. ({IIl)
thereby em ploying the V point vertex. A 1l possible partitions into V 1 sub-currents are given by the
Stirling num ber of the second kind, S, (m ;V 1). This leads to the follow ing scaling of the calculation of
the n-particle am plitude

T, = Som;Vv 1) = S,n;v) V" : (34)

Consequently, the n-gluon am plitude using the standard 3-glion and 4-glion vertex has an exponential
scaling behavior T, !| 4" . This is evident from the results shown in Table[d. A s can also be seen in the
table, the scaling behaves as expected when the 4-gluon vertex is left out, ie. T, ! 3". Aswas shown in
Ref. [23,124], the 4-gluon vertex can be avoided and replaced by an e ective 3-point vertex. T his results in
a signi cant tin e gain for the evalnation of high m ultiplicity gluon scattering am plitudes.

An In portant consideration in the usefuilness of the color-sam pling approach is the convergence to the
correct answer as a function of the M onte Carlo sam pling size Ny ¢ . To this end, we com pare the color—
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sam pled result SQOC) for the treelevel am plitude squared,

(0) (r)
Suex = Weorlnijnzing) M O giiiingl (35)

to the colorsumm ed, ie. color-exact, result

(0) X X 0 (r) 2
S = M ¢ )91 ;ringle) : (36)

W e plot the ratio of the average value for the colorsam pled am plitude squared and its standard deviation
over the average value of the colorsumm ed am plitude squared as a function of the num ber of evaluated
M onte C arlo events:

0) .
1

(0)
R = — 4 (37)

W e de ne the ratio this way so that m ost of the phase-space Integration uctuations are divided out. The
average values are com puted via

New ¢
1 S(O) (38)

N r
MC =1

s @i =

w here the index r num bers the di erent events w ith the only exception that the gluon polarizations have

hedd =xed: q1;:::; o =+ :::+ (+). The standard deviation of the average is calculated by
q
P
VSR Ny SO (39)
hs (0)i — NMC l .

The 4-and 6-glion scattering results are shown in the respective top parts of Figs.[d and [4 for the three
di erent sam pling m ethods \N aive", \C onserved" and \Non-Zero". T he generated phase-space points w ere
sub Ect to the constraints: p; , > 0:1 S, jm j< 2and R p1> 0:7,see alo Eq. (69). As it can be seen
from the two plots by avoiding sam pling over zero-weight color con gurations the convergence is greatly
enhanced.

ForNyc = O (10°),we obtain su cient accuracy in the \N on-Zero" sam pling m ethod. To illistrate this
m ore clearly, we show in the lower panels of Figs.[d and [4 as well as in Fig.[d the num ber of M onte C arlo
events needed to achieve a certain relative precision in the color sam pling. For these plots, we generate
N event €vents, which are partitioned into trialand sam pling events via N eyent = Nitria1 Ny c . W ede neas
a function of Ny - the ratio

Py, (0) ) .
r~1 Swcy IS cilNyc)
RyucWNyc) = Py L0 0. (40)
r=1 Scol;r hgcoll(NM c)
and plot Ny ¢ versus the relative precision R yc )= R yc ). Them ean value
1 Nygrial
Ruc) = Rucx Nymc) (41)
N tria1
k=1
and the standard deviation
S
N tria1 2 2
k=1 RmcxW®mpc) Nitria1 “Rumc)
Rmc) = : (42)
Nipa1 1

are com puted by using a su ciently large num ber of trials, ie. N 451 estin atesof Ry ¢ (N ¢ ) are calculated
to obtain the m ean value and the standard deviation for Ry ¢ . FOr N 451 > O (100), we get rather sm ooth
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Figure 3: Top panel: com parison of M onte C arlo integrations for the various color-sam pling schem es, including the standard
deviation, to the exact color-sum m ed result as a function of the num ber of evaluated phase-space points. O ne obtains 1:0034

0:0091,0:9989 0:0027 and 0:9999 0:0022 after 10 steps for the \N aive", \C onserved" and \N on-Zero" sam pling, respectively.
Bottom panel: num ber of events required to reach a given relative accuracy on the num erical evaluation of the color-sam pled
am plitude. For the de nition of Ry ¢ (Ny ¢ ) and the values of the t param eters determ ining the dashed curves, cf. the text.
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deviation, to the exact color-sum m ed result asa function of the num ber of evaluated phase-space points. O neobtains1:16 0:32,
0:995 0:071 and 0:913 0:037 after 10° steps for the \N aive", \C onserved" and \N on-Zero" sam pling, respectively. B ottom
panel: num ber of events required to reach a given relative accuracy on the num ericalevaluation of the color-sam pled am plitude.

For thede nition ofRy ¢ (Ny ¢ ), cf.the text. The tcurvesin tem sof = (N y ¢ ) aredescribed by ].4:ONMOC:287 ,2:84NMOC:241

and 3:lONMOC:331 for the \Naive", \Conserved" and \Non-Zero" sam pling, respectively. The \Conserved" and \Non-Zero"

approaches are slow er by factors of £ = 10:5 and £ = 13:3, respectively (see text).
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Figure 5: Num ber of events required to reach a given relative accuracy on the num erical evaluation of the color-sam pled

am plitude. For the de nition of Ry ¢ (Ny ¢ ), cf. the text. The tcurvesin tetmm sof = (N y ¢ ) are described by 8:04NMOC:530 ,

325N MOC:405 and 3>:OlNM°C:344 for the \N aive", \C onserved" and \Non-Zero" sam pling, respectively. T he \C onserved" and

\N on-Zero" approaches are slow er by factors of f = 9: and £ = 10:8, respectively (see text).

curves. In the 4-gluon case show n in the low er part of F ig [J thisgivesa reasonabledescription forNy ¢ < 10°.
The 6-and 8-glion scatterings are m ore Involved and require m ore statistics. T he trend however can be
read o the respective plots in Figs.[4 and [H.

For su ciently largeN y ¢, the ected scaling of the relative standard deviation w ith the num ber of
Monte Carlo events is (Rumc) 1= Npyc .Ascan be seen from the second plt of Fig.[d the scaling is as
expected and we can t to the functionalform A N, 2 . In the 4gluon case,we nd

R .
Nawe : —=mc) _ a3g N, 252

Ruvc)
R .

Conserved  : _Ruc) 6:45 NM8‘487
Rmvc)
R .

Nonzero : —omc) _gge g ouss (43)
Ruvc) Me

From these ts we can quantify the enhancem ents ow ing to the sam pling strategies. The \C onserved"
sam pling m ethod im proves over the \N aive" m ethod by a factor of 33:8=6:45= 5:2, while the in provem ent
of the \N on-Zero" m ethod over the \C onserved" m ethod yields an additional factor of 6:45=4:35= 15 (ora
factor 0o£ 33:8=4:35= 7:8 over the \N aive" m ethod). T he algorithm determ ines the color con gurationsw ith
vanishing color factor before it fully evaliates the corresponding m atrix-elem ent weight. The di erences
betw een the various sam pling m ethods therefore becom e sm aller when we m easure the com puter evaluation
tin e to reach a certain relative precision. W hen we express this in num bers for the exam ple of 4-gluon
scattering, we notice that the \C onserved" and \N on-Zero"sam pling schem es are slow er by factors of £ =
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2:42 and f = 329, respectively. This translates into changing the t parameterA ! A°%= AfB . The
corresponding ratios then read 33:8=9:92 = 34 and 9:92=7:74 = 13 when specifying the in provem ent of the
\C onserved" versus the \N aive" and the \Non-Zero" versus the \C onserved" m ethod , respectively. W e see
using in proved sam pling over color con gurations is still highly preferred.

4. D ressed G eneralized U nitarity for V irtual C orrections

By using the param etric integration m ethod of R ef. E] one can in plem ent the generalized unitarity
m ethod ofR ef. [1]into an e cient algorithm ic solution [E ]. For the evaluation of color-ordered am plitudes,
the algorithm is of polynom ial com plexity E']. To calculate the din ensional requlated one-loop am plitude
we extend the param etric expressions to D -din ensions and apply the cuts in several integer din ensions
to determm ine all the param etric coe cients [E]E The algorithm is equally applicable for the inclision of
m assive quarks @ ]. The pow er of this algorithm ic solution was dem onstrated in R efs. @,@,@J for pure
gluonic scattering.

G ven the fully speci ed extemal sources and the interaction vertices, both realand virtual corrections
can be evaluated by the recursive form ulas. T he virtual corrections to the di erential cross section are given
by

N
W Xvenr_
d VNEE ! £ = - S dPS® (KK, ! Ki K
event r=1
©) £, e ¥ RIS B (x) .
2< M £ 000E M £k ; (44)

w here the extermal sources, ncluding m om enta and quantum num bers, are sam pled through a M onte C arlo
procedure. The welght W g is determ ined by process dependent sym m etry factors and sam pling weights.

In this section we show how to use the colordressed tree-level am plitudes discussed in the previous
section to construct the color-dressed one-loop am plitudes. By color sam pling over the extemal partons one
can calculate the virtual corrections using Eq. {44)). T he generic algorithm w ill be outlined and applied to
pure gluon scattering.

4.1. Generic ColrD ressad G eneralized Unitarity

T he oneJdoop am plitudeM ) (F ;:::;£ ) is obtained by integrating the un-integrated am plitude denoted
by 2 M) (f;:::;5 j*) over the Joop m om entum  “:
zZ dD 1 0
M Y (f e = A fi;:0:; i) . 45
(£ ) BE (f £ 39 (45)

T he Integrand function can be decom posed into a sum ofa nite num ber of rational functions of the loop
mom entum w ith loop independent coe cients [E ]. The coe cients can be calculated in term s of tree-level
am plitudes.

T he param etric form of the integrand is given by the triple sum of rational functions,

0 G ax max(l;%(& 1)!)S2 (nk) % Py Cog ] kgj,
AV (fryinf 30 = - - — (46)
k=1 RP o (1725:m) g | png oy dg 1 ( )dg 2 ) el kd( )
where the sum over the propagator avorsg ,;:::;g , is required as these are not uniquely de ned for

unordered am plitudes.

6 If one uses an analytical in plem entation of the D -dim ensional unitarity m ethod of R ef. ], one can elin inate the penta-
cuts @]. However, in num erical Im plem entations the rem oval of the penta-cuts requires performm ing a num erical contour
integral in the com plex plane ].
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Figure 6: G raphical representation of a quadrupole-cut partitioning of the extermal legs into an ordered set of four unordered
subsets 1; 2; 3; 4 ofexternalparticles. T he corresponding tree-leveldiagram s are connected w ith the propagators of particle
9 4,7/9 ,719 379 4 -

The m axin um num ber of denom nators needed to describe the din ensional requlated one-loop m atrix
elem ent iIsCypy ax - The value 0of C 4x Is given by the dim ensionality of the loop m om entum . For the one-loop
calculations in din ensional regularization the m axin um din ension of the loop m om entum is equalto ve,
ie.Cpax = 5. The denom inator term s are de ned as

de ()= (“+K ) m: (47
with , given through Eq. (d). The partition sum isover RP |, (1;2;:::5;n) (P, (1;2;:::;n))
elem ents. T he total num ber of elem ents is given by m ax l;%(k 1)! S, (n;k). This extended partition

list now also includes non-cyclic and non-re ective pem utations over the regular partition lists £f ;g5 ,g;
m ore speci cally we have:

n )
RP12: P17
n O
RP173: P123
n O
RP1234: P1234;P1347;P1473
n
RP12345: Pl2345;P13452;P14523;P15234;
P17453;P14537;P15374;P13745;
@)
P12534;P15342;P13425;P (48)

1 4 2 5 3

The polynom ial dependence of the num erator fiinctions Py on the loop m om entum is speci ed with a
vector of param etric coe cients Cyg | g- The explicit polynom ial form s that we are using are given in

Ref. [14]. The din ensionality of the param eter vector Cy | g depends on the num ber of denom inators.
In the case of 5 denom inators there is only one param eter, for the term s w ith 4 denom nators we have wve
param eters, etc. . T he param eters are determ Ined by putting sets of denom inators to zero and calculating
the residue in term s of tree—level am plitudes. Setting denom inator factors to zero ison a parw ith cutting the
correspond ing propagators as required by generalized D -din ensionalunitarity. Let * . be the \on-shell"

1
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Joop m om entum ful 1ling the \unitarity condition":
dg (. ) = = d’, .)=20; c=2;:1:;Cpax ® (49)

To ful 1 the unitarity conditions we allow also com plex values for the com ponents of the loop m om enta.
T he param etric form of the num erator functions for ccuts becom es

Pe Cg, 43", . = Regy g AV Gk 30, L)
E X X Pn Cy- -g3% - (50)
11 c ¢ b R .
m=ctl PP~ .~ (Lin) 9., .9 dg- (%, =) - (]&] o)
where the sum PP~ ..~ (1;:::;n) overallm ! perm utations of them partitions is supplam ented w ith the

—functions to generate the appropriate subtraction finctions. Each individual subtraction expression has
to be evaluated w ith the appropriate shift of the loop-m om entum , bAl ~ . This equation provides us w ith
an iterative procedure starting w ith the highest num ber of cuts. Fora gjycen num ber of cuts, the num erator
function becom es the residue of one-loop integrand function m inus the known contributions of term s w ith
higher num ber of denom inator factors. T he residue of the one-loop Integrand factorizes into a product of
tree-level am plitudes (see eg.Fig.[d):

h i
Res; g AW (Rjinh 30, ) = dg () g A AW (Eing )
X <Y° )
= MO g g (51)

g1 c gk=1

w here the index k is cyclic (ie.ger 1 = g1) and gy denotes the particles resulting from the cut lnes.

W e can detemm ine the param etric vector Cg | g Eqg. (50) by evaliating the right hand side for a
set of Joop m om enta fiul 1ling the unitarity constraint of Eq. (49). The only physics m odel input is given
through the treedevel on-shell am plitudes, M *), which we evaluate using Egs. (@) and {IIl). Two of the
extemal lines to the on-shell treelevel am plitudes are generated by the D -dim ensional cut lines. These
extemal states have In general com plex, 5-din ensionalm om enta. T his extension of the m om enta does not
m odify the general structure of the tree-level level recursion relations discussed in the previous section. In
thisway we obtain a fully speci ed algorithm to determm ine the param eters and thereby the param etric form
on the left hand side of Eq. {44).

It is nstructive to illustrate the structure given by Eq. {4d) for a sin ple exam ple. Let us consider the
cutconstructlble, D = 4, part of the box term s in 4gluon scattering (n = 4,k = 4). In this case we have
no pentagon term s and the num erator functions of the box term s are param etrized by two coe cients

X X Py Ctee0e, J°
de, (“)de,, (“)dg,,, (“)de,,,, (1)

RPi234(1;2;3;4) f=fguag

N4 1 4 1 4
Py Cg1g2g3g4 J Py Cglgsg4g2 J Py Cglgzxgzgs J

+ +
A (1)1, (dgiss (Igross () dgy (s ()dgras (dgias, () dgy (g, ()dgys, (g (1)

1 4 1 4 1 4
Py CChCIzCBGM J Py Cch%qz;% J Py quqzxqz% J

+ +
dq1 (l)dq'l7 (l)dq'l73 (l)dq'l734 (l) dCI1 <l)d<3I13(l)dCI134 (l)dq'l347 (l) dCI]<l)dCI14<I)dCI147(I)dCIM73 <l)

w here
P C 34 p— C(O) + C(l) Vi . _ 1 2 3 . (53)
4 “fiffifs 10 T “efeE, £1£,E55s n;ns= 12 3P Pi2Pyig3 t
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T he param eters are calculated by using the residue form ula of Eq. (&l). A frer the coe cients of the box
functions have been obtained, one tums to calculate the coe cients of the triangle contrbutions. The
num erator fiinction for the triangle cut of the quark-loop contrdbution, Eq. (&), becom es

P3 CCIJCI70134 jl 1 2 34 = ReSZJCPCBA A(l)(gl;g2;g3;g4 jl 1 2 34)
P4 CChCDCIsCM jl 1 2 34 P4 Cch%qz;% jl 1 2 34
- - ; (54)
dCIl?} ( 1 2 34 ) dQJHJ ( 1 2 34 )
w here the residuum of the quark loop can be calculated again using Eq. (&1l),
Resyqq, AM(91592593594 37, , o) =
h i
= dch <l) dCI]? (l) dCI1734<l) A(l)<g1 7192793794 jl) -,
1 2 34
X 0 0 0
= M D@¥igiia2) M Dadigzias) M “adigsigaian) : (55)
d19293

F inally, we can obtain the one-loop am plitude, Eq. {49), by integrating out the param etric form s on the
right hand side of Eq. (46]) over the Joop m om entum . In thisway one nds them aster-integraldecom position
of the one-loop m atrix elem ent for every speci ed scattering con guration point IIE I:

z D s
1) d 1) .
M U (Rnh) = ZBE AV (Bjrnh 37)
R X X (g 9
= Sg Cq ., olg | gt Cqg | Rag 9 (56)
k=1 RP ; k(1;2;:::;n) 9, i)
w here SF(q ' «J is the loop-integral sym m etry factor (eg. for a gluonic selfenergy, the sym m etry factor is
% ), the Ig 9 denote the scalar m aster-integral functions corresponding to the generalized cut given by
the ordered partition list £ xg and avors of the cut Ines (g , 9. Thetem sR 4 | gare the
leading temm s of the higher din ensional scalar Integrals n the Iim itD ! 4,
1
Ree,e,6, = P
1
Re e,6, = 5
2 2 2
= B K K7)+mfl+mf2
£.,f, = 6 ’
R = 0: (57)
T he scalarm aster integrals
If1 £ Lc K [;::5K  me  jiiime ; (58)

can be evaluated by eg. using the num erical package developed in R ef. ]. In Eq. (58) the coe cients C
and C are detemm ined by applying Egs. (80) and (&l) using a num erical algorithm . The C coe cients are
generated due to the din ensional reqularization procedure and are associated w ith the higher dim ensional
termm s in the param etric form s.
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4.2. Num erical Results for the V irtual C orrections of n-glion Scattering

W e have applied the form alisn of the previous sections to multighion scattering. To this end we
have extended the in plam entation presented In Ref. [30]. Three m a pr changes are required to alter the
generalized-unitarity based algorithm for the evaluation of color-ordered am plitudes to a num erical algo—
rithm capable of calculating colordressed one-loop am plitudes. F irst, in the decom position of the one-loop
integrands (cf. Eq. (3) of Ref. [30]and Eq. {4€)), all sum s over ordered cuts have to be changed into sum s
over partitions, which include all con gurations obtained by non-cyclic and non—re ective perm utations:

X X
! : (59)

[ Jix ] RP k(l:::n)

Note that i1k ]= 1 i < I < %« 1 n. Second, the treedevel am plitudes occurring in the
determ nation of the integrand’s residues have to be calculated from colordressed recursion relations. Tn
addition, one not only has to sum over the intemal polarizations of the gluons but also over their intemal
colors when com puting these residues. Third, gluon bubble coe cients need to be supplem ented by a

symm etry factor of 1=2!. The appearance of the symm etry factor is associated w ith the param etrization
am biguity of the subtraction temm s in the double cuts. For exam ple, Eq. (80) gives for one of the doubl
cuts in 4-gluon scattering

P2(Cy,q: 3°) = Resy,g, AY(91792i95i9a 37)
P3(Cg1g2g34 jl) P3(CnglgB4 jl) P3(Cg3g4g12 jl) P3(Cg4g3g12 jl)
dg, () dg, (1) dg, () dg, (1)
P4(C91929394 3" P4(C9291gsg4 39 P4(Cglg2g4gs s P4(ngglg4ga 3
dg, (“)dg,,, (1) dg, (“)dg,,5 () dyg, (“)dg,,, () dg, (“)dg,,, ()
= Resyug, A (©1792/93592 3°)
P3(C9192934 s P3(Cglgzga4 j '+ K1+ Kp)
dg, (“) dg, ( “+ K1+ K3)
P3(C9394912 s P3(Cgag4glz Jj '+ K3+ Ky)
dg; () dg; ( “+ K3+ Kyg)
P4(Cglgzg3g4 jl) P4(Cg1g2g3g4 ] ‘+ K 1+ Kz)
d%(l)dgws(l) dgl( I+K1+K2)dg173< I+K1+K2)
P4Cqq0qig J7) P4(Cqg,g59; J ‘+ K3+ Ky) . (60)
d%(l)dgwa(l) d%( I+K3+K4)dg174< I+K3+K4)

W e see that each of the four possible param etrized term s is subtracted tw ice w ith a di erent choice of the
Joop m om entum . T he sym m etry factor of 1=2! \averages" over the double subtractions.

T he results of the new form alisn can be tested thoroughly beyond applying the usualconsistency checks
such as solving for the m aster-integral coe cients w ith two independent sets of loop m om enta. T he valie
of the double pole (dp) can be crosschecked against the analytic result

c
M é;)ﬁh = —2nNcM 0 (61)
M oreover, for a given phase-space point, we can use the ordered algorithm of Ref. [30] to com pute the
fi1ll one-loop am plitude of a certain color and helicity (polarization) con guration. Follow ing the color-
decom position approach, we can analytically calculate the necessary color factors and sum up all relevant
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O rdered cuts.
# 5gon | box | triangle | bubble sum sum ,, total= sum # orderings | N ), = | N (cq,
n cuts | cuts cuts cuts Sum n 1 # orderings | = (n  1)E2 (n 2)!
4 0 1 4 6 11 33 3 2 3
5 1 5 10 10 26 2.36 312 12 6 7
6 6 15 20 15 56 215 3,360 60 24 22
7 21 35 35 21 112 2.00 40,320 360 120 40
8 56 70 56 28 210 1.88 529,200 2,520 720 144
9 126 126 84 36 372 1.77 7,499,520 20,160 5,040 756
10 252 210 120 45 627 1.69 113,762,380 181 440 40,320 2,088
11 462 330 165 55 || 1012 161 1,836,172,800 1,814,400 362,880
12 792 495 220 66 1573 155 31,394,563,200 19,958,400 3,628,800

Table 3: T he num ber of cuts required for the calculation of one ordered n-gluon am plitude. T he colum n labelled \total" gives
the num ber of cuts when calculating all (n 1)=2 ordered am plitudes needed to reconstruct the full virtual correction. T he
Jast two colum ns list the num ber of non—zero color-w eight orderings for two special color con gurations given in the text.

orderings to obtain the full result. In particular, we have em ployed:

( X R
M g1jiitign) = AV g iinigy”)
P (2 n)
2 3
X jn‘%n:2)nxk+l X0
1
= 4Ne 1+ (D w, i1 ooww 2m P2 n) (62)
P (1 n 1) k=1 mi=lmyp=my 1 +1
w here
_ i i In1 iy,
2 F %% w3 G (63)
For exam pl,
1 X (1)
M 91;92593594595) = A (91792793794;95)
P (2345)
X
= Nc 12345 1 2345 2 1345 3 1245 4 1235 5 1234
P (2345)

+ 12 345t 13 245t 14 235t 15 234t 23 145t 24 135

+ 25 131+ 31 125+ 35 120+ a5 123 m (P (12345) : (64)

Com pared to the LO color-ordered decom position, Eq. (27), the NLO colorordered decom position leads
to m any subleading color factors. The num ber of one-loop ordered am plitudes w ith zero color weight is
signi cantly an aller than the corresponding num ber for treedevel ordered am plitudes. A s a result, the
advantages of color dressing becom e m ore apparent at the one-loop level

For a m ore quantitative understanding of the one-loop am plitude decom position, w e respectively item ize
in Tables[d and[4how m any cuts need be applied to decom pose the color-ordered and color-dressed one-loop
Integrands for n extermal glions. In both cases we separately list the num bers of pentagon, box, triangle
and bubble cuts and their sum . W hile for the ordered cuts these num bers are ruled by com binatorics:
Cnm)= " withm = 1;:::;5;i theunordered case they are given by the Stirling num berﬂ of the second

m

™ ore exactly, the num ber of bubble cuts is given by 2" 1 1 n= S2(n;2) n,sincecuts that isolate one gluon do not
contribute. For triangle, box, and pentagon cuts, w e respectively have (3" 3 2+ 3)=6= S2(n;3),3S2(n;4)and 1238, (n;5)
w here, for the determ ination of the latter two, the recurrence relation So(n;m )= So(n 1;m 1)+ mSz(n 1;m ) isofhelp.
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U nordered cuts.

# pentagon box | triangle | bubble sum sum p ordr total/unordr total
n cuts cuts cuts cuts total | SUMn 1 || orderings | (ab)k (od )k
4 0 3 6 3 12 2.750 1.833 | 2.750
5 12 30 25 10 77 6.42 4.052 2.026 | 2.364
6 180 195 90 25 490 6.36 6.857 2.743 | 2514
7 1,680 1,050 301 56 3,087 6.30 13.06 4354 | 1451
8 12,600 5,103 966 119 18,788 6.09 28.17 8.048 | 1610
9 83412 23,310 3,025 246 109,993 5.85 68.18 17.05 | 2557
10 510,300 102,315 9,330 501 622,446 5.66 1828 40.61 | 2.708
11 2,960,760 437,250 28,501 1,012 3,427,523 551 535.7 1071

12 16,552,800 | 1,834,503 86,526 2,035 18,475,864 539 1699 3089

Table 4: T he num ber of cuts needed to calculate color-dressed n-gluon am plitudes. T he last three colum ns give ratios of total
num bers of cuts required to com pute the virtual corrections in both the color-decom position and color-dressed approaches.
The st of these colum ns show s the ratios for all generic color orderings w hereas the other colum ns show the ratios for two
speci ¢ con gurations as given in the text.

kind, S, (n;m ), and therefore grow m ore quickly w ith n than those of the ordered cuts. T his isexem pli ed In
the \sum ,=sum , 1" colum nsofthe two tables. T he grow th factors slow Iy decrease for larger n, approaching
the lim it of 5 or the colordressed case. A s em phasized in Table[4 the pentagon-cut calculations dom inate
in this case over allother cut evaluations. T he largen grow th of the totalcut num ber is hence described by
that of S, (n;5) leading to the observed largen scaling of 57 . U sing the color-decom position approach, we
have to dealw ith m uch few er cuts per ordering. H ow ever, the total num ber of ordered cuts is obtained only
afterm ultiplying w ith the relevant num ber of orderings. W hen considering allpossible (n  1)=2 orderings,
the nalnum bers aregiven in colum n \total" of Tablke[3. T he last three colum ns show the num ber of generic
orderings and the num bers N of non-vanishing orderings (ie. those having non—zero color factors) for two
color con gurations (ab)x  (13)(31)(11):::(11)and (cd)  (22)(12)(23)(31)(11)(22)(33)(11)(22) ::: ﬁ Oof
course, for a fair com parison between the ordered and dressed approach, the latter two colum ns are of
higher interest, since zero color w eights are not counted. Still, the ratios of total num bers of ordered versus
unordered cuts is always larger than one as can be read o the last three colum ns of Table[4. K esping in
m Ind the greater cost of evaluating dressed recursion relations, the colordecom position approach can be
expected to outperform the dressed m ethod as long as these ratios ram ain of order O (1). This In particular
is true for sim ple color con gurations such as (od)x .

T he analytic know ledge of M V(g1 ;:::;9, ) presented in Eq. (62) enables us to perform stringent tests
of our algorithm and its in plem entation. W e consider 2 ! n 2 processes w here the gluons have possible
polarization states 2 f+; g and colors (ij) where ik ;% 2 f1;2;3gand k= 1;:::;n, ie. wem ake use
of the color- ow notation. O ur n-gluon results are given in the 4-din ensional helicity (FDH ) schem e [4C].
In aln ost all cases, we com pare our new m ethod labelled by \drss" w ith the color-decom position approach,
which { since it m akes use of the ordered algorithm { we denote \ordr". W e w ill present all our results for
tw o choices of Joop-m om entum and spin-polarization din ensionalities D and D ¢ : the \4D <ase" is obtained
by setting D = D = 4 and su cient when m erely calculating the cutconstructible part (ccp) of the one-
Joop am plitude. The \5D <ase" speci ed by D = D¢ = 5 allow s us to detem ine the com plete result (all)
Including the rational part. In NLO calculations one denti es the m om enta of the external ghions w ith

Jij< 2; P> 01lFE 1+ Ezj; R x1 > 0:7; (65)

where ; and p; ; respectively denote the pseudorapidity and transverse m om entum of the I-th outgoing
gluon; R x; describe the pairw ise geom etric separations In pseudo-rapidity and azinm uthalangle space of

8The rst four colors are always xed, supplem ented by the repeating sequence (11)(22)(33) according to the num ber of
gluons,ie.forn = 5wehave (cd)x (22)(12)(23)(31)(11), while forn = 9weuse (cd )k (22)(12)(23)(31)(11)(22)(33)(11)(22).
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4D —case 5D —case
n ordr drss ordr ordr drss ordr
@ ) . @ ) . drss @ ) . @ ) o drss
0.027 0.026 0.061 0.062 043 0.053 0.052 0.139 0.140 0.38

0.159 0.161 | 6.04 | 0368 0364 | 595 | 044 0.415 0412 | 7.88 1.026 1.029 | 737 | 0.40
1234 1235 | 7.72 | 2152 2146 | 587 | 0.57 3.887 3928 | 945 7137 7124 | 694 | 055
12.07 1200 | 9.75 | 13.06 13.08 | 6.08 | 092 41 .66 4161 | 10.7 | 4962 4985 | 6.98 | 0.84
1312 1313 | 109 | 8022 8053 | 6.15 16 4932 4986 | 119 | 3480 3469 | 6.99 14
1579 1563 | 12.0 | 5116 5078 | 6.34 31 6316 6296 | 12.7 2466 2470 | 7.10 26
10 || 20900 20480 | 13.2 3640 3629 | 7.3 5.7 88320 88810 | 14.0 | 21590 21620 | 8.75 41

O 0 3 O U >

Table 5: Com puter timn es , in seconds obtained from the 4-and 5-din ensional evaluation of n-gluon virtual corrections at
two random phase-space points a and b using a 3.00 G H z Intel C ore2 D uo processor. T he results are shown for both the color-
ordered and colordressed m ethod. A 1l virtual corrections were evaluated tw ice to check for the consistency of the solutions.
The n gluons have colors (ab)y and polarizations  as speci ed in the text. A lso given are the ratiosr, = =, 1 where

n is the tim e to com pute the correction for n gluons, in particular , = ( rfa) + rfb) )=2. The , ratios of the ordered versus

dressed m ethod are depicted in the respective last colum n of the 4-and 5-din ensional case.

4D —case 5D —ase 4D /5D
n ordr drss ordr drss ordr | drss
@ ) . @ ) . @ ) . @ ) .
0.030 0.030 0.069 0.070 0.059 0.059 0.156 0.157 051 | 044

0.180 0.179 | 598 | 0418 0413 | 598 0.464 0465 | 7.87 1.150 1.148 | 7.34 039 | 0.36
1.384 1383 | 7.71 | 2419 2410 | 581 4370 4340 | 9.38 8.036 799 | 698 032 | 030
13.53 1352 | 9.78 | 1464 1465 | 6.07 46 .65 46.40 | 10.7 56.06 5599 | 6.99 029 | 0.26
1472 1475 | 109 | 9048 9160 | 6.22 5509 5495 | 118 3952 3919 | 7.02 027 | 023
1766 1764 | 12.0 | 5859 5850 | 6.43 7013 7029 | 128 2844 2845 | 723 025 ] 021
10 23100 22830 | 130 4233 4208 | 7.21 98760 98360 | 14.0 | 24220 24410 | 8.55 023 | 0.17

O 0 J O U

Table 6: Com puter tim es , in seconds for the sam e settings as used in Table[d, this tim e using a 2.66 G H z Intel C ore2 Q uad
processor. T he rightm ost part of the table depicts the ratios of 4-versus 5-dim ensional com puter tim es for both approaches.

gluonsk and 1. W e perform a series of studies in the context ofdoubleprecision com putations: we investigate
the accuraciesw ith which the double pole, single pole (sp) and nite part (fo) of the full one-loop am plitudes
are determ ined by our algorithm . W e also exam Ine the e ciency of calculating virtual corrections by m eans
of sin ple phase-space integrations. To begih with, we w ill verify the expected exponential scaling of the
com putation tin e for di erent num bers of external gluons.

T he scaling of the com puter tim e can roughly be estin ated by (f  Cpax)” . The constants Cy ax = 5 (4)
and 1 < £ 4 express the fact that the num ber of pentagon (box) cuts and the exponential scaling w ith
n of the treelevel colordressed recursion relation respectively govern the asym ptotic scaling behavior of
the unordered algorithm . A Ithough one naively expects £ = 4, this factor is reduced by the e cient re—
use of gluon currents between di erent cuts. The C 1, grow th of the number of cuts re ects the largen
Iin it of the Stirling num ber S; (n;Cy 2x ). W e show four tables sum m arizing our results for the com putation
tines , ofobtainingM M (g1;:::5gn) = M & ( x ;(ij) ) by using two independent solitions of the unitarity
constraints. T he tin e for the re-com putation hasbeen incluided n , . In realapplications such a consistency
check w ill becom e unnecessary, thereby halving the evaliation tim e per phase-space point. Table[d lists the
tin es obtained by running the 4-and 5-din ensional algorithm s for the calculation of two random phase—
gpace points labelled \a" and \b". The n gluons have colors (ij) = (ab)x and alternating polarizations

K= x + :1:+ (+).0wing to the absence of pentagon cutswe nd that the \4D <ase" calculations
are faster. M ore im portantly, the com putation tim e does not vary when the n-glion kinem atics changes.
Hence,we can calculate theratiosr, = .=, 1 byde ning , = ( éa) + éb) )=2 and show these ratios in the
table. W hile for the dressed algorithm these ratios are alm ost stable, they are larger and increase gradually



23

4D —case 5D —case
n ordr drss ordr ordr drss ordr
SR L N L R P Tl L L N I R I I T
0.049 0.045 0.074 0.076 0.63 0.088 0.085 0.153 0.155 0.56

4

5 0.186 0.185 | 3.95 0.364 0364 | 485 | 0.51 0479 0483 | 556 1.000 1.000 | 649 | 048
6 1186 1182 | 638 | 2071 2068 | 569 | 057 3629 3586 | 7.50 6.805 6.752 | 6.78 | 0.53
7 4185 4277 | 3.57 11.82 11.77 | 5.70 | 0.36 1402 1395 | 388 | 4442 4446 | 656 | 031
8 2712 2696 | 639 7034 71.10 | 6.00 | 0.38 9852 9913 | 7.07 | 2948 2978 | 6,67 | 033
9 2450 2429 | 9.02 | 4438 4455 | 629 | 0.55 9603 9548 | 9.69 2080 2070 | 7.00 | 046
10 1442 1446 | 592 3265 3270 | 7.35 | 044 5943 5968 | 6.22 | 18610 18480 | 8.94 | 0.32
11 28670 28690 | 8.78

2.044 5.62
7 11.66 5.70
8 68.85 590
9 4204 6.11
10 2972 7.07
11 26310 8.85
12 292000 | 111

Table 7: Com puter tin es , in seconds obtained for the color-ordered and colordressed evaluation of n-glion virtualcorrections
in 4 and 5 dim ensions using a 3.00 G H z Intel C ore2 D uo processor. R esults are shown for two di erent polarization choices
and . The virtual corrections were com puted at the sam e random phase-space point w ith the n-gluon colors set to (cd)y .

T he choices are speci ed in the text. Ratiosrn, = p=, 1 aregiven where , = ( ri K)oy ,i k)):2 is the tim e to evaluate the
correction for n gluons two tin es. T he re-com putation is used to check both solutions for their consistency. The , ratios of
the ordered versus dressed m ethod are depicted in the respective last colum n of the 4-and 5-dim ensional case.

for the m ethod based on ordered am plitudes. This re ects the (n  2)! factorial grow th of the num ber of
non-vanishing orderings of the color con guration (ab)y as given in Table[d. For the dressed approach,we

nd constant ratios of ry 6 and ry 7 in the \4D -case" and \5D -case", regpectively. T his m anifestly
con m s our expectation of exponential scaling. The di erence between the 4-and 5-dim ensional ratios
obviously arises because of the absence of pentagon cuts in the \4D <ase". The rjg ratios do not t the
constant trend . W e cannot exclude though that this is a consequence of the occurrence of large structures of
m aps to store the vast num ber of colordressed coe cients. T he Increasing num ber ofhighercut subtractions
termm s m ay also cause deviations from the expected scaling, which we derived from our sin ple argum ents
stated above. A 1so, the conceptually easier way of storing all coe cients and calculating the largestm cuts

rst is by far not the m ost econom ic in term s of m em ory consum ptionﬁ For an alln, the lower com plexity
of the orderaed recurrence relation facilitates a faster calculation of the virtual corrections through ordered
am plitudes. The tumaround appears for 7 < n < 8 and is just slightly above n = 7 for the \4D <ase".
W ith n 8 the dressed m ethod becom es superior ow ing to the di erent grow th characteristics of the two
approaches. T his is neatly expressed by the \ordr/drss" ratios given in Tablk[H.

W e have crosschecked the m easured com putation tim es in a di erent processor environm ent using ex—
actly the sam e settings. The results are shown in Table[d and consistent with those of Table[d. Mstead
of the \ordr/drss" ratios, here we list ratios com paring the 4—and 5-din ensional com putation for both ap—
proaches. T hey stress the relative in portance of the pentagon-cut evaliations, w hich start to dom inate the
full calculation when n gets large.

In Tabl[dwe detail com putation tin eswhen varying the polarizations of the n ghionsw hile keeping their
color con guration xed.W e have chosen the two settings y = + + ::: and,asbefore, = .
In term s of colors we consider the com putationally less Involved point (ij) = (cd)x . Both am plitudes are
calculated at the sam e random phase-space point \c" dissim ilar from previous points \a" and \b". For none
of our four calculational options, w e notice m anifest deviations between the tin es ,i «) associated w ith the

9Tt is for this reason that our calculations are currently lin ited to n = 12 in the \4D -case" and n = 10 in the \5D —case".
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4D —case 5D —case 4D /5D
n ordr drss ordr ordr drss ordr || ordr | drss
n | In n | m | drss n | Tn W | T | dTSS
0.026 0.062 0.42 0.065 0151 043 || 040 | 041

0222 | 854 | 0394 | 635 | 0.56 0615 | 946 1139 | 754 | 0.54 036 | 035
1863 | 839 | 2378 | 6.04 | 0.78 5544 | 9.01 7.970 | 7.00 | 0.70 033 | 0.30
1506 | 8.08 | 1458 | 6.13 | 1.03 5041 | 9.09 56.94 | 7.14 | 0.89 030 | 0.26
1292 | 858 | 93.09 | 638 | 1.39 476.7 | 9.46 4015 | 7.05 | 119 027 | 023
1127 | 8.72 | 6036 | 648 | 1.87 4483 | 9.40 2800 | 697 | 160 025 | 022
10 [| 10980 | 9.74 3961 | 6.56 | 2.77 50260 | 11.2 | 25140 | 8.98 | 2.00 022 | 0.16

O 00 ~J O U1 >

Table 8: Colorcon guration averaged com putation tim es , in seconds obtained from the 4-and 5-dim ensional color-ordered
and color-dressed evaluations of n-gluon virtual corrections using 2.66 G H z Intel C ore2 Q uad processors. R esults are shown
for random phase-and color-space points and alternating gluon polarizations = i, see text. T he respective grow th factors
I'm = n=p 1 aregiven where , denotes the tim e that is needed to calculate the n-gluon one-loop am plitude two tim es. T he
re-com putation is used to check the two solutions for their consistency. Several tin e ratios are form ed to com pare the ordered
w ith the dressed m ethod and the 4-w ith the 5-din ensional com putation. T hese ratios are displayed in the colum ns indicated
accordingly.

con guration: hard colors (ab)x sin ple colors (od )k random non-zero colors
t values: a=10 ° sec b a=10 ° sec b a=10 ° sec b

4D , ordr 191 9:75 "5, 345 565 "5y 467 8:57 * oY

5D , ordr 266 1099 038 456 6:39 " 7.84 9:46 013

4D , drss 394 619 "2 282 651 "2 387 6:30 "0

5D, drss 508 721 0 625 6:92 * % 533 728t

Table 9: Param eter values a and b obtained from curve tting of the com putation tim es , to the functional form of , = ald'.
T he results are given for the three di erent n-glion color assignm ents used in Tables[H (hard),[@ (sin ple) and [g (random ) and
for all four algorithm s the 4-and 5-dim ensional color-ordered and color-dressed algorithm .

two polarization settings. W hen ingpecting the \ordr/drss" ratios, we observe that the ordered approach
is advantageous In cases where only a few orderings contribute to the result of a certain point in color
space. The uctuations seen in the grow th factorsm irror the unsteady increase w ith n in non-zero orderings
depicted in the last colim n of Table[3. For the dressed approach, w e get sim ilar, though som ew hat am aller,
grow th factors com pared to the previous test. In order to validate the dressed algorithm up to n = 12
extemalglions, we Introduced a few m ore optim izations speci ¢ to the 4-din ensional ca]cu]atjons The
low er part of Table[] show s the com puter tin es, which we obtained after optin ization. T hey are consistent
w ith our previous ndings. A sm entioned before, r,, 19 > 6 lkely occur for reasons of increasingly com plex
higher-<cut subtractions and com puter lin itations in dealing w ith large m em ory structures.

For the calculation of the virtual corrections, one m ight question w hether there exist enough points in
color gpace that occur w ith m any trivial orderings. If so, the color-decom position based m ethod would be
moree cienton average. T his isnot the case for largern as shown in Tabl [8. Forglion m ultiplicities of n =

and \4D /5D " ratios obtained for one-loop am plitude evaluations w here the phase-and color-space points
have been chosen random ly. Follow ing the m ethod outlined in Section [3.3, we only considered non-zero

points. W e observe that the pattem of the results in Table[§ resem bles that found in Tables[d and [@ where
we have studied the m ore com plicated color point (k) = (ab) . The ratios com paring the ordered and

0som e parts of the algorithm can be speed up when pentagon cuts are com pletely avoided.
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Hard color configuration. Simple color configuration. Random color configurations.
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Figure 7: Com putation tim es , versus the num ber n of external gluons for the three di erent gluon color assignm ents used
in Tables[d (hard),[d (sin ple) and [8 (random ). The results reported in these tables are shown for the 4-and 5-dim ensional
color-ordered and -dressed algorithm s. T he solid and dashed curves each represent the outcom es of the ts listed in Table[9
for both the dressed and ordered approach, respectively.

dressed approach are sm aller w ith respect to those of Tables[d and [d. T his signals that the m ean num ber
of contributing orderings is som ew hat lower than for the (ab)y case. W e nally report dressed grow th
factors that are consistent w ith our previous ndings con m ing the approxim ate 6" and 7° grow ths in
com putational com plexity of the new m ethod for the 4—and 5-din ensional case, respectively.

U sing the results of Tables[H,[d and [§ we have perform ed ts to the functional orm , = ald. We
show the outcom e of the curve ttings in Tabl[d. R ecall that the com putation tin es have been obtained
by using di erent color assignm ents for the n glions. Tables[d and [7 present results w here we have chosen
(ij)x = (@b} and (ijk = (cd)x as exam ples of hard and sin ple color con gurations, respectively. W e
have averaged over non-zero color settings to nd the results of Table[8l. Considering the perform ance of
the dressed algorithm , we conclude that these data are In agreem ent w ith exponential grow th for all color
assignm ents. The errors on the t param eter b are relatively an all, only the 4-dim ensional case of sin ple
colors is som ew hat worse because we included results up to n = 12 where parts of the com putation becom e
less e cient as explained above. The hard-and sim plecolors case of the ordered approach show rather
large errors for the bparam eter signalling that the genuine scaling law is not of an exponential kind in
both cases. Interestingly, one observes an e ective exponential scaling when averaging over m any non-zero
color con gurations. T he grow th descrlbed by the biparam eter is how ever a good tw o units stronger for the
ordered approach than the grow th seen In the colordressed approach. To summ arize, we have plotted in
Fig.[d all com puter tin es reported in Tables[H,[d and [§ as a function of the num ber of external gluons in
therange4 n 12.W e have included In these plots the curves , = aBd' ,which we calculated from the
respective t param eters stated in Table[d.
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Figure 8: R elative accuracies of the 1= 2330 poles of n = 6 gluon one-loop am plitudes as detemm ined by the double-precision
colordressed algorithm . T he gluon polarizationsaregiven by y, = + + + ,colorswere chosen random ly am ong non-zero
con gurations. Vetoed events are included, only those w ith unstable ortho-vectors are left out, see text form ore explanations.
The m ean accuracies and the num ber of random ly picked phase-space points are displayed in the top row and bottom left
comer of the plot, respectively.

In the follow Ing we w illdiscuss the quality of the sam inum ericalevaluations ofM ,(11) am plitudes for both

the color-ordered and colordressed approaches. To this end we analyze the logarithm ic relative deviations
of the double pole, single pole and nite part. Independent of the num ber n of gluons, we de ne them as

ollow s:
(1)[1]

(1) (1)[1] (1)[2]
:M dp ;num M

dpifhj . - b 2H s=fp mum s=fpnum 2
1 ’ sfp = O mnr L e L
:M dprtj’xj s=fp ;num J+ :M s=fp ;num

M

"ap = 1o (66)

where the structure of the doublepoles M ((ﬁp);th is known analytically given by Eq. (&1l). W e use two

Independent solutions denoted by [L]and [2] to test the accuracy of the single poles and nite parts. A1l
results reported here w ere obtained by using doubleprecision com putations. W e have run allour algorithm s
by choosing color con gurations and phase—space points at random . C olors are distributed according to the
\N on-Zero" m ethod presented in Sec.[33. T he phase-space points are accepted only if they obey the cuts,
which we have speci ed at the beginning of this subsection. T he ghion polarizations are always altermating
setby y = . Figure[d shows the " distrlbutions in absolute nom alization, which we obtain from the
5-din ensional colordressed calculation for the case of n = 6 extemalglions. T he num ber of points used to
generate the plots isgiven in the bottom left comer, the top row s display the m eans of the double-, single—
pole and nitepart distributions. Lin ited to doubleprecision com putations, we nd that the num erical
accuracy of our results forM ,(11) is satisfying. W ith " peak positions am aller than the respective m ean values
hy_s i< 8,weareabletoprovidesu ciently accurate solutions foralm ost allphasespace con gurations.

T here is however a certain fraction of events where the single pole and nite part cannot be determ ined
reliably. These O (100) events occur because In exceptional cases sn all denom inators, such as vanishing
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n 4D , ordr 5D , ordr 4D ,drss 5D ,drss

4 1.0 1.0 1.0 1.0

5 0.992 0991 0.984 0.984 (0.999)
6 0.960 0.960 0.964 0972 (0.994)
7 0872 0.873 0.891 0.892 (0.982)
8 0.635 0.642 0.829 0.825 (0.953)
9 0.182 (0.84) | 0.205 (0.81) 0.532 (0.93) | 0.533 (0.903)
10 00 (0s61) | 00 (0.50) 038 (086) | 033 (0.83)

Table 10: Fractions of n-gluon events that have a stable set of basis vectors in orthogonal space and also pass the veto on
inaccurate m aster-integral bubble coe cients when using veto = 0:02. In brackets, fractions of n-gluon events that pass the
test for unstable ortho-ectors.

G ram determm inants m ade of externalm om enta, cannot be com pletely avoided by the generalized-unitarity
algorithm s. W e also see accum ulation e ectsw here larger num bers getm ultiplied togetherw hile determ ining
the subtraction of highercut contributions. O w Ing to the lim ited range ofdoubleprecision calculations, such
e ects can lead to Insu cient cancellations of interm ediate large num bers that are supposed to cancel out
evenmaﬂy T he current Im plam entation of the algorithm has no special treatm ent for these exceptional
events. O ne either has to com e up w ith a m ore sophisticated m ethod treating these points separately or
increase the precision w ith which the corrections are calculated. Both of which is beyond the scope of this
paper and we leave it at vetoing these points. Yet, we need robust criteria that allow us to keep track of the
quality of our solutions: we rst test the orthonomm albasis vectors that span the space com plem entary to
the physical space constructed from the externalm om enta associated w ith the particular cut con guration
under consideration. Failures in generating these basis vectors alw ays lead to the refection of the event In
the exam ple of F i.[8, such events occurred w ith a rate 0of 0%6% and were not included in the plot. Secondly,
and m ore in portantly, we test the reliability of solving the system s of equations to determ ine the m aster—
Integral coe cients. To this end we generate an extra 4-din ensional loop m om entum during the evaluation
of the bubble coe clents establishing the cutconstructlble part. Thaccuracies in solving for triangle etc.
coe cients w ill be also detected, since at this level all highercut subtractions are necessary to obtain the
correct value of the bubble coe cients. W e use the extra loop m om entum to ndividually re-solve for the
cutconstructible bubble coe cient and com pare this solution w ith the one obtained in rst place. W e veto
the event, if the deviation vero In the com plex plane of the two solutions exceads a certain am ount. W e x
the veto cut at  yero = 002 for this publication. H aving this crosscheck at hand, we gain nice control over
the events populating the tail of the accuracy distributions in Fig.[8. Applying the veto, we arrive at the
distributions presented in the top left plot of F ig.[11]l w here the steeper tails clearly dem onstrate the e ect of
the veto. Certainly, both these shortcom ings of in precise ortho-vectors and inaccurately solved coe cients
can be lifted by sw itching to higher precision whenever the respective doubleprecision evaluations have not
passed our criteria. A ccordingly, Table[IQ quanti es the fractions of events, w hich are w ithin the scope of the
colordressed and color-ordered algorithm s presented here. O w ing to the m ore com plicated event structures,
the fraction of rejected events increases w ith n, where m ost of the events fail the bubblecoe cient test. W e
observe that the loss of events is m ore severe for the ordered algorithm .

In the upper part of Figs. ) we show the distrbutions of relative accuracies " as occurring in the
evalnation of glion loop correctionsw ith n = 4;:::;9 external glions. T he lower part of these gures and
F igs.[1d and [17 them selves depict scatter graphs VJSual'lZJl’lg the relative accuracies as a function of the size
of the virtual corrections for the single pole and nite contributions only, as the double pole contribution
has no observable variance. This form of presenting the results has inform ation on whether certain points
dom inate the uncertainty of the total correction when averaging over the phase space. T he r~variables used

11M ore detailed explanations can be found in R ef. [30].
121 e test in particular whether the norm alization of the orthonom albasis vectors deviates less than 10 '? units from one.
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Figure 9: D ouble, singlepole and nitepart accuracy distributions (upper part) and scatter graphs (lower part) extracted
from doubleprecision com putations of one-loop am plitudes forn = N= 4 gluonsw ith polarizations , = + + and random ly
chosen non-zero color con gurations. T he virtual corrections w ere calculated at random phase-space points satisfying the cuts
detailed in the text. Unstable solutions were vetoed. R esults from the colordressed algorithm are com pared w ith those of the
color-ordered m ethod indicated by dashed curves and brighter dots in the plots. The 5(4)-din ensional case is shown in the top
left (right) and center (bottom ) part of the gure. The de nitions of " and r are given in the text. A 1l scatter graphs contain
2 10% points.
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Figure 10: D ouble-, singlepole and nitepart accuracy distributions (upper part) and scatter graphs (low er part) extracted
+ and random ly
chosen non-zero color con gurations. T he virtual corrections w ere calculated at random phase-space points satisfying the cuts
detailed in the text. Unstable solutions were vetoed. R esults from the color-dressed algorithm are com pared w ith those of the
color-ordered m ethod indicated by dashed curves and brighter dots in the plots. T he 5(4)-dim ensional case is shown in the top
left (right) and center (bottom ) part of the gure. T he de nitions of " and r are given in the text. A 1l scatter graphs contain
104 points.

from double-precision com putationsofone-loop am plitudes forn = N= 5gluonsw ith polarizations
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Figure 11: D ouble-, singlepole and nitepart accuracy distributions (upper part) and scatter graphs (low er part) extracted
from doubleprecision com putations of one-loop am plitudes forn = N = 6 gluons w ith polarizations , = + + + and
random ly chosen non-zero color con gurations. T he virtualcorrections w ere calculated at random phase-space points satisfying
the cuts detailed in the text. Unstable solutions were vetoed. Results from the colordressed algorithm are com pared w ith
those of the color-ordered m ethod indicated by dashed curves and brighter dots in the plots. The 5(4)-din ensional case is
shown in the top left (right) and center (bottom ) part of the gure. The de nitions of " and r are given in the text. A 1l scatter
graphs contain 2 10% points.
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Figure 12: D ouble-, singlepole and nitepart accuracy distributions (upper part) and scatter graphs (low er part) as obtained
from doubleprecision evaluations of one-loop am plitudes for n = N = 6 glions w ith polarizations and colors set to =

+ + and (ij) = (12)(21)(13)(31)(11)(22), respectively. T he virtual corrections w ere calculated at random phase-space
points satisfying the cuts detailed in the text. T he veto procedure has been applied to reject unstable solutions. T he results
given by the colordressed algorithm are com pared w ith those of the color-ordered m ethod indicated by dashed curves and
brighter dots in the plots. The 5(4)-din ensional case is shown in the top left (right) and center (bottom ) part of the gure.
The de nitions of " and r are given in the text. Each scatter graph contains 2 104 points. 94:7(94:1)% and 91:2(91:0)% of
the events pass all tests in the dressed and ordered \5(4)D -case", respectively.
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Figure 13: D ouble-, singlepole and nitepart accuracy distributions (upper part) and scatter graphs (low er part) extracted
from doubleprecision com putations of one-loop am plitudes forn = N= 7 gluons w ith polarizations , = + + + + and
random ly chosen non-zero color con gurations. T he virtualcorrections w ere calculated at random phase-space points satisfying
the cuts detailed in the text. Unstable solutions were vetoed. Results from the colordressed algorithm are com pared w ith
those of the colorordered m ethod indicated by dashed curves and brighter dots in the plots. The 5(4)-din ensional case is
shown in the top left (right) and center (bottom ) part of the gure. The de nitions of " and r are given in the text. A 1l scatter
graphs contain 2 10% points.
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Figure 14: D ouble-, singlepole and nitepart accuracy distributions (upper part) and scatter graphs (low er part) extracted
from doubleprecision com putations of one-loop am plitudes for n N = 8 gluons w ith polarizations + + + +
and random ly chosen non-zero color con gurations. The virtual corrections were calculated at random phase-space points
satisfying the cuts detailed in the text. Unstable solutions w ere vetoed. R esults from the color-dressed algorithm are com pared
w ith those of the color-ordered m ethod indicated by dashed curves and brighter dots in the plots. T he 5(4)-din ensional case
is shown in the top left (right) and center (bottom ) part of the gure. The de nitions of " and r are given in the text; the
num ber of points contained by each scatter graph is found in the lower left.
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Figure 15: D ouble-, singlepole and nitepart accuracy distributions (upper part) and scatter graphs (low er part) extracted
from doubleprecision com putations of one-loop am plitudes forn = N= 9 gluons w ith polarizations = + + + + +
and random ly chosen non-zero color con gurations. The virtual corrections were calculated at random phase-space points
satisfying the cuts detailed in the text. Unstable solutions w ere vetoed. R esults from the color-dressed algorithm are com pared
w ith those of the color-ordered m ethod indicated by dashed curves and brighter dots in the plots. T he 5(4)-din ensional case
is shown in the top left (right) and center (bottom ) part of the gure. The de nitions of " and r are given in the text; the
num ber of points contained by each scatter graph is found in the lower left.
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Figure 16: Singlepole and nitepart scatter graphs extracted from the double-precision com putation of one-loop am plitudes
forn = N = 10 gluons w ith polarizations = + + + + + and random ly chosen non-zero color con gurations.
T he virtual corrections were calculated at random phase-space points satisfying the cuts as described in the text. Unstable
solutions w ere vetoed and, therefore, not included in the plots. T he upper (lower) row of plots show s the results obtained from
the 5(4)-din ensional color-dressed algorithm . For the de nition of r, see text. T he num ber of points contained by each scatter
graph can be found in the lower left.

in these plots are de ned by

_ 2 (67)
T3

and represent corrections of the order of 4. Speci cally, the r, r’ and ry, given in the plots are obtained
by employingM *) = M élz)s[if]pmm M =M éigf;mm andM 4 =M é;)rth, respectively. In all cases we
have refpcted events w ith unreliable basis vectors in orthogonal space. E xcept for the results presented in
Fig.[Id, we have vetoed all events that led to unstable solutions of the bubble m aster-integral coe cient

using  veto = 0:02. T he statistics conceming these refctions is shown in Table[1Q.

W e com pare in allplots of F igs.[3HF the colordressed w ith the color-ordered approach w here the results
of the Iatter are indicated by dashed curves in the spectra (with the h"i given by the lower top row of
num bers) and brighter points in the scatter graphs. The " spectra of the \5D case" (\4D <ase") are always
shown in the top left (right) parts of the gures; the associated scatter graphs are com piled in the center
(bottom ) parts. In F ig.[T8 we present our results orn = 10 gluons w here for reasons of lin ited statisticswe
solely show the scatter graphs related to the dressed m ethod. T he veto procedure has a very strong in pact
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Figure 17: D ouble-, single-pole and nitepart scatter graphs visualizing the accuracy of double-precision evaluations of one-
loop am plitudes forn = N= 9 and 10 gluons of altemating polarizations. N on—zero random ly chosen color con gurations were
used. N ote that unstable solutions were not vetoed and therefore included in this presentation. T he virtual corrections were
calculated at random phase-space points satisfying the cuts as described in the text. R esults of the 5-din ensional algorithm s
either based on color ordering (ordr) or color dressing (drss) are shown; forn = N = 9, the \4D —case" results are also given
(ccp only). For the de nition of r, see text; axis labels as used in F ig.[18 are understood. T he rightm ost graph contains O (20)
points per —pole, while the left plot of the \5(4)D —case" has approxin ately 50(120) points per pole.

on M éll)o calculations. For the purpose of direct com parisons betw een vetoed and non-vetoed sam ples, we

have added in Fig.[I7 scatter plots that include vetoed events.

In allcases we notice that the double poles are obtained very accurately w ith alm ost no loss in precision
for Increasing num ber of glions. The n-dependence of the singlepole and nitepart precisions is not as
stable as for the double pole. W e see noticeable shifts of the peak and m ean positions towards larger
values when increm enting the num ber of external gluons. T he distrbution’s tails are under good control.
B ecause of the iIntroduced veto procedure, they quickly dieo around " 2. In rare cases w Orse accuracies
occur, which happens m ore frequently for the 5-din ensional calculations. W e can avoid these cases, fwe
extend the veto criteria by re-solving for and testing the rationalbubble coe cient aswell. Forn > 9, the
Iim itations of double-precision com putationsunavoidably lead to rather unreliable singlepole and nitepart
determ nations. A s an interesting fact, we observe that the colordressed m ethod yields throughout results
of higher precision. M oreover, the decrease in accuracy for grow ing n is m ore m oderate com pared to the
m ethod based on color ordering. C learly, on the one hand this algorithm has to be run for m any orderings
and m ay therefore lead to an accum ulation of am all in precisions. O n the other hand a rather inaccurate
determ ination of m ) m ay appear jist for a sihgle ordering, in tum spoiling the overallresult. Both e ects
m ake the ordered approach less capable of delivering accurate results. Tuming to the scatter plots, we

nd that the m ost accurate but also inaccurate evaluations occur for points distributed near the vertical
line of O (1) corrections. Tt is very encouraging that all top right quadrants are rather sparsely populated,
dispelling the doubts that Insu clently determ ined large correctionsm ay dom nate our nalresults. The
scatter regions of the doublepole solutions rem ain alm ost unchanged for larger n, while those of the single
poles and nite parts are slightly grow ing gradually shifting tow ards low er relative accuracies. T he scatter
patches of the dressed m ethod are displaced w ith respect to those of the color-decom position approach:
advantageously, they cover regions of greater precision, in particular populate the bottom right quadrants
m ore densely. Due to the sin plicity of the 4-glion kineam atics, the case of n = 4 glions stands out from
the rest: the single pole and nite part can be obtained w ith aln ost the sam e accuracy as the double pole.
T his feature is preserved even if rationalpart calculationsare incuded. W ith 5 gluons orm ore it is com m on
that all coe cients contrbute to the decom position of the one-loop am plitude. T he relative accuracies of
the single poles and nite parts therefore develop a m uch di erent, less steeper, tail com pared to the double
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Figure 18: Finite-part versus single-pole accuracy (in double precision) as achieved in one-loop am plitude calculations using
the colordressed approach for various num bers n N of external gluons w ith polarizations i+ (+) and colors
random ly chosen am ong non-zero con gurations. Note that unstable solutions have not been vetoed. The n N 9 and
n = N= 10 graphs only contain 1:6 19 and 87 points, respectively, w hereas all other plots com prise 10* points.

k = *

poles. T here are alm ost no di erences betw een the double-and singlepole results obtained from the 4—and
5-din ensional algorithm s. T his is no surprise, since the coe cients necessary to reconstruct these poles can
be determm ined In 4 dim ensions and our algorithm s have been set up accordingly. In the absence of rational-
part calculations it tums out that the nite partsm ay on average be obtained slightly m ore precisely than
the single poles. T he tails of the 1= spectra reach out to the largest "-valies occurring in the evaliation of
the cutconstructible part. T he behavior is reversed in the 5-din ensionalcase ow ing to the addition of the
rationalpart. For the sam e reason, w e note increased h"s, 1 in the \5D <case", furthem ore, the 5-din ensional
scatter graphs show higher densities w ith respect to the 4-din ensional ones at low er accuracies.
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As a special case of Fig.[1dl we have displayed in Fig.[I2 accuracy distrdbutions and scatter plts for
n = 6 ghions of polarizations x = + + when instead of random color-space points the xed non-
zero color con guration (ij)x = (12)(21)(13)(31)(11)(22) has been selected. W e notice that all "-spectra
are shifted towards am aller accuracies. A lso, as illustrated by the scatter graphs, the m agnitude of the
virtual corrections is bound at O (1) w ith the exception of the nite piece of the cutconstructible part of
the one-loop am plitudes. Interestingly, this is corrected back by adding in the rationalpart.

In Ref. @] it was shown that the nitejpart accuracy of the evaluation of ordered am plitudes ism ostly
correlated w ith that of the single poles. W e have studied this issue for the dressed algorithm in the \5D -case".
T he corresponding scatter plots also include the vetoed events and are presented in Fig.[I8. The m ultitude
of points is distrbuted along the diagonal indicating a strong correlation. A s for colorordered am plitudes
the evaluation of the rationalpart becom esm ore Involred w ith increasing gluon num bers. T herefore, regions
of ower nitepart precision start to get populated distorting the diagonal trend.

Finally, wewant to show that theM onte C arlo sam pling asde ned in Eq. (44)) converges su ciently fast
for the colordressed calculated virtual corrections. To this end we generalize the LO discussion follow ing
Eq. (33) w ith the details given in Sec.[33. T he relevant quantity to explore in the M onte C arlo averaging is

Nyvipts
0+ 1) 1 X 2
Syc = = W co1(nyjnzing) M, + ——< M
Ncolpts

(68)

k=1

where we choose bg = 0:12 and M g)k isthe nite part of the virtual corrections. The sum over the N coppts

color con gurations for each phase-space point is an optional \m iniM onte Carlo" over colors for faster
convergence as a function of the num ber of phase-space point evaluations. By adding the real corrections
to Eq. (68) and perform ing the coupling constant renorm alization and m ass factorization, one obtains the
gluonic contrdbution to the NLO m ulti-it di erential cross section. T herefore, the convergence of Eq. (&8)
is the relevant quantity to study.

By de ning the n-gluon color-summ ed counterpart of SQOS 1) ,

X3 X3 2 b
(0+1) (0) s (1) (0)Y
Seor | = M, o+ 2—< M g Moy ; (69)
Ljuuin=1 Jijunda=1
we can form the ratios
0+ 1), 0+ 1),
}S (0+ 1 ]TS (0+ 1),
RO+ _ Mc BSy ¢ . RV) _ Mc by, 4 (70)
0+ 1), ’ 0).
hS( N hs %4

col col

analogously to Eq. (37). W e de ne the m ean values and standard deviations of the ratios sim ilarly to
Egs. (38) and (39), respectively. Note that Sc(gi is already de ned at LO by Eq. (3d). As we increase
the num ber of M onte Carlb points, Ny ¢ , the R V) zatios quantify the relative in portance of the virtual
corrections, w hile the R °* 1) aatios should converge to one. For the latter, this is nicely dem onstrated i
Fig.[I9 for the 4-gluion virtual corrections and the \Non-zero" sam pling schem e as described in Sec.[33.
A frer 15900 eventswe obtain R (°* 1) = 0939  0:039, which is satisfactory for this consistency check.

A s n the LO discussion we want to ilustrate how m any events are needed to achieve a certain relative
integration uncertainty when perform ing the M onte C arlo color sam pling. In analogy to Eq. {40) we can

construct the ratio P
Nuyc 0+ 1)
(0+ 1) _ r=1 ®MC;r
RMC (NMC) - Ny c 0+ 1) (71)
r=1 Scol;r
as a function of Ny ¢ . Again, it is interesting to change the nom alization of the ratio and also de ne
P Ny c S(O+l)
V) _ r=1 M C;r
RycWMuec) = oo 2O (72)

r=1 col;r
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Figure 19: Consistency test for the M onte Carlo integration of 4-gluon virtual corrections using \N on-Zero" color sam pling
com pared to the exact color summ ing. A s a function of the num ber Ny ¢ of evaluated phase-space points the R (°* 1) xatio is
plotted converging to one as it should be. T he inserted plot show s the num ber of phasespace evaluations needed to reach a

given relative accuracy in tem s of R, (0+ b (Ny ¢ ) while M onte C arlo integrating; for the de nitions, see text. T he dashed line
depicts the tfunction = = AN MBC , see also Table[Idl.

in order to study the in pact of the virtual corrections. A s before we partition N cyent = N a1 Ny ¢ events
to have a certain num ber of trials to com pute the correspondingm ean values and standard deviations for
n-gluon LO and virtual scattering according to Egs. {41l and {42, respectively. For the case ofR O+ b (N Mc )
and 4-gluon scattering, the num ber of M onte C arlo points versus a given relative accuracy is show n In the
inlaid plot of Fig.[19. A satLO , the curve bends behaving as statistically determ ined after a certain am ount
ofM onte Carlo integration steps.

To quantify the color-ntegration perform ances, we again perform ts to the functional form A N, g
and show the values of the tted param eters in Table[ldl or the various cases. A s argued in Sec.[33 for large
enough Ny ¢ , we expect a scaling of = that is proportionalto 1=~ Ny ¢ . The goodness of the sam pling
schem es is signi ed by the A —and A %param eters, where the Jatter ism ore in portant since the tin e factors
are Included. Sm aller values of these param eters indicate a better e clency of the sam pling procedure.

U sjng theR ) and R, w) o (Ny ¢ ) ratios, we summ arize in Figs.[2023 our M onte C arlo integration results
forn = 4;:::;7 g]uon processes and for the various colorsam pling schem es. T he upper graphs display
the averaging of S nom alized to the M onte Carlo average of the colorsumm ed LO contribution as
a function of the num ber of phase—spaoe eva]uatjons. W e also indicate the estin ate of the Integration
uncertainty, see Egs. (Z0) and . To com pare alldi erent test cases, Tabl [17 list the nalvalues for
RY), T allthese gureswe plot jn the low er graphs the num ber of phase-space point evaluations needed

13A s for the LO studies in Sec. , the gluon polarizations are taken alternating and rem ain xed while perform ing the
M onte C arlo integrations.
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:) N aive C onserved N on-Zero Non-Zero,N coprs = 4
B A B A a° £ B A a° £ B A A° £
0479 | 336

0497 | 220 0489 | 541 | 17.0 | 104 0476 | 357 | 135 | 164 0.485 2.05 156 | 65.7
0482 | 594 0454 | 133 | 433 | 135 0442 | 971 | 364 | 198 0.439 5.56 378 | 792
0325 | 7.08 0344 | 537 | 140 | 163 0255 | 160 | 350 | 21.7 0233 | 0850 | 2.14 | 876

S N N N

Table 11: Param eter values B ,A and A% obtained from curve tting ofthe (R y ¢ )= (R y ¢ ) to the functional form A NMBC .

T he results are given for the di erent ways of sam pling over colors In n-gluon scattering. The 4-gluon case m arked by \ "

corresponds to the consistency check shown in Fig.[I9], where R;ﬁoé Y has been considered. In all other cases Rl\(/lvc) has been

used, cf. Figs.[20,[21] and 22l Note that forn = 6,we have tted (R 1\(4vc) ). The param eters A% = A f? take into account that

the evaluation of a xed num ber of M onte C arlo events takes longer for the other than \Naive" color-sam pling m ethods. T he
tin e factors £ relative to the \N aive" case are also displayed.

:) N aive C onserved N on-Z ero Non-Zero, N coprs = 4
ni Nuc RV Nuyc RV Nuec RV Nuec RV

4| 4 15| 04739 0:0054 || 4 10| 04750 00017 || 4 10 | 0:4724 00013 || 1 1D | 04738 0:0020
5 || 631K 0241 0:022 631K | 02673 0:0072 || 631K | 02744 0:0058 || 160K | 02790 00058
6 64K 0:10 0:12 64K 0059 0:094 || 502K 0076 0:062 16K 0044 0:066
7 4K 087 066 4K 023 0:09 4K 0:14 0:10 2K 097 065

Table 12: M onte C arlo integration results for the R V) ratios as de ned in the text after Ny ¢ phase-space point evaluations
for n-gluon scattering and di erent color-sam pling schem es using color-dressed tree-level and one-loop am plitude calculations.

to reach a certain relative integration uncertainty on Rb(qvc) (Nyc ). We show in Tabl[I]] the results of the
curve ttings represented by the dashed lines in these plots.

A s isclear from theseM onte C arlo averaging tests and results, the convergence ism ore than satisfactory
for future applications of the colordressing techniques In NLO calculations. If faster sam pling convergence
is required we can evaluate m ultiple color con gurations per phase-space point. T his is shown in the graph,
w here we have chosen to evaluate four color con gurations at one phase-space point.

5. Conclusions

In thispaperw e explored the possibility of color sam pling w ithin the context ofD -din ensionalgeneralized
unitarity. Up to now generalized unitarity has only been used w ithin the context of color-ordered prim itive
am plitudes. In the color-ordered approach, color is treated di erently from the other quantum num bers
such as spin and avor. T hism akes the reconstruction of the fiill one-loop am plitude rather cum bersom e.

W e have reform ulated the D -din ensionalgeneralized unitarity form alisn to include color dressing. T hat
is, we choose the explicit color of each parton, together w ith all other quantum num bers, for each M onte
Carlo event. In this way all particles, colored or colorless, are treated on an equal footing. There is no
distinction betw een di erent particles as far as the form alisn goes. C onsequently, the resulting algorithm is
Independent of the type and avor of the external particles. E g. the sam e algorithm calculates the 6-glion
virtual corrections, the 6-photon virtual corrections and the W + 6 parton virtual corrections.

T he use of unordered am plitudes requires the partition of the external legs Into unordered subsets. T his
is necessary for the calculation of the treelevel am plitudes as well as for generating all the unitarity cuts.
A s a result the com plexity of the resulting algorithm is exponential. T hat is, the com puter tin e needed
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Figure 20: Upper graph: convergence of the 4-gluon virtual corrections integration as a function of the num ber of evaluated
phase-space points. A lso shown is the standard deviation as an estin ator of the integration uncertainty. Lower graph:
convergence of the M onte C arlo integration, w here the relative integration uncertainty is shown as a function of the num ber of
phase-space evaluations. T hedashed linesdescribe the tfunctions = = AN MBC ,see also Table[Idl. T he \N aive", \C onserved"
and \N on-Zero" color-sam pling m ethods are explained in Sec.[33. T he points indicated by \N on-Zero, N colpts= 4" average over
4 color con gurations per phase-space point.
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Figure 21: Upper graph: convergence of the 5-gluon virtual corrections integration as a function of the num ber of evaluated

phase-space points. A lso shown is the standard deviation as an estin ator of the integration uncertainty.
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4 color con gurations per phase-space point.
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to calculate the virtual corrections grow s w ith a constant m ultiplicative factor when one adds extemal
particles. In addition, we have to sum over all color states of the internal lines. O ne m ay conclide from
these general features that the in plem entation of the colordressed D -din ensional generalized unitarity is
less e cient In com parison with an in plem entation based on ordered prin itive am plitudes. A s we have
explicitly dem onstrated for the exam ple of calculating the virtual corrections to n-glion scattering, this is
not the case. W e com pared the color-sam pling approach for both the color-ordered and colordressed case.
The calculation of the virtual corrections In the colordressed case scales as 77, while in the color-ordered
case the e ective scaling up to 10 gluons behaves as 9" . M oreover, the color-dressed calculation has a better
accuracy in calculating the value of the one-loop am plitude. The im proved accuracy over color-ordered
evaluations increases w ith n..

A swe showed for n-glion scattering, the color-dressed approach becom esm ore e cient than the color-
ordered m ethod for large n. One could argue that the di erences are sm all and color sam pling over the
ordered n-gluon am plitudes will work as well. However, when including quarks and other electro-weak
particles the colordressed approach w ill easily w in out over the color-ordered approach. T his is because any
notion of prim itive am plitudes is absent. T he algorithm sin ply calculates the virtual correction. M oreover,
the colordressed algorithm rem ains dentical when including quarks and electro-weak particles. It is this
algorithm ic sim plicity that will enable us to em ply paralle]l programm Ing to signi cantly in prove the
com puter evaluation tim e.

W e conclude that the colordressed form ulation is com petitive for calculating one-loop virtualcorrections
for ngluon scattering. It is expected that it w illbe even m ore e cient in calculating virtual corrections for
processes nvolving quarks and electro-w eak gauge bosons in addition to the glions.
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A . The Tree-Level 6Q uark Am plitude

A s an exam ple we can take a few recursive steps In calculating the 6-quark treelevelm atrix elem ent.
W e start w ith the de nition of the tree-levelm atrix elem ent in temm s of the 5-quark ferm ionic current

1

M @ ujsuj;d;d;s;s = P J uju;d;d;s ;J (s) (73)

wherew e use the shorthand notationu = u;" K1),u=uy '(K2),d=d;?K3),d=d; “Ka),s= s (Ks)

J2 13
and s= s, (K ¢). The 5quark ferm lonic current decom poses into
h i h i
Js ujsu;d;dy;s = Pg D J djdjs ;0 (u;u) + Pg D J(ujugs);d d;d
h i
+ PgD J(s);J ujzu;d;d : (74)

T he 3-gquark ferm lonic current decom poses into
h i
Js (@iqjs) = Ps D J(s);J (@iq) i (75)

where g 2 fu;dg and g 2 fu;dg. The l-guark ferm onic current is sin ply the source tem . Finally the
4-quark glionic current is given by
h i h i
Jg uju;d;d = Py D J(@);J d;d;u + Py D J(u;d;u);Jd (u)
h i h i
+ Pg D J(d);J (umu;d) + Py D J(djuzu);J d ; (76)
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and the 2-quark glionic current is w ritten as
h i
Jg (@ja) = Pg D J(@);J () : (77)

T he above steps de ne the 6quark LO am plitude recursively as would be done by the algorithm . N ote that
we have ignored all avor violating currents.

B . The Im plem ented G luon R ecursion R elation

M aking use of the color- ow representation [32], we de ne the colordressed gluon currents as 3 3
m atrices of ordered gluon currents:

Iy = 5P @) (78)
w here the externalgluon g; has the polarization ; and foursm om entum K ; , its colors are denoted by (ij); .

T he color- ow labels of the dressed current are (IJ ) and indicates the Lorentz label. U sing thisde nition,
the connection to the com pact notation introduced in Sec.[3l is found as

Jg g1 = I Jh "R ) gl illJ (gll) _ J(JI)<g11) . (79)
Sinceweonly considerghions, a plain num bering of the extermalparticlesgy = fox; x;(1j)k ;K xgissu cient
and helps sin plify the notation such that the color dressing becom es m ore em phasized. Hence, In allwhat

follow swe write Jg (1) = gl §1J (1)= J(JI)(I).Dressedn—gluon currents are then described by

JTN1;2;5:00m) = Lo DT T (g 25ttt on) g (80)
2Snh

currents at hand, we can re-w rite the last equation and form ulate the treedevel am plitude in tem s of the
colordressed currents:

O)(1:e9eeens . — 2
M (1;2;:::;nn+ 1) = K f125mmg
X 1, LT 1, J in+
j]j2 i J J(ll 2;”’;n) Jar1 I J(n+1)
25,
= Kle;z;m;ngJ(IJ)(1;2;:::;n)J(JI“ m+1): (82)

Owing to the sin ple color structure of the onegluon current, the summ ation over the color indices (IJ)

e ectively reduces to the calculation of a single scalar product of the ordered currents J e deen) gng
2

JGe1dac1)i | The invariantm ass prefactor K ? is detemm ined by the glion mom enta via K loiimg =
K1+ Ko+ :::+ Ky ). The onegluon current is given in Eq. {Z8), while the m ultigluon current is obtained

recursively. Starting from Eg. (80), one incorporates the ordered glion recurrence relation to evaluate
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X h i
17 2 ILN IN L K L M N
J"(1;2;::0;n) = Kfl;2;::;ng KM g MR JEL ()T ")+

Plz(l;:::;n)
X
ILN P IPN L ILPN INPL
KM OJ OM K J KOM J M OKJ
Py, 5 (Ljn)
#
n o
JERIC g™ )00 (5) + s, (83)

where we have em ployed the bracket notation for ordered-current operations, which was introduced in
Ref. @]. T he partition sum s are explained in Sec.[3.]l and an im plicit sum m ation over the color indices
K ;L;M ;N ;0 ;P isunderstood. To e ciently com pute the dressed currents, the color factors in front of the
operator brackets can be precalculated such that the com putation of zero colorweight contributions can
be avoided. W e have used the shorthand notation

ik m ik m
31 n 91 n * (84)
T he recursion relation presented in Eq. (83) scales asym ptotically as 4", since w e kept the 4-glion vertex as
an entity In our calculation. A s a consequence w e have to evalnate 3-subset partitions and the corresponding
curly brackets that m erge three di erent dressed currents.
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