
Nuclear Physics B 840 (2010) 214–270

www.elsevier.com/locate/nuclphysb

Efficient color-dressed calculation of virtual corrections

Walter T. Giele a, Zoltan Kunszt b,c, Jan Winter a,∗

a Fermilab, Batavia, IL 60510, USA
b Institute for Theoretical Physics, ETH, CH-8093 Zürich, Switzerland

c Theoretical Physics, CERN, CH-1211 Geneva, Switzerland

Received 23 December 2009; received in revised form 19 April 2010; accepted 8 July 2010

Available online 14 July 2010

Abstract

With the advent of generalized unitarity and parametric integration techniques, the construction of a
generic Next-to-Leading Order Monte Carlo becomes feasible. Such a generator will entail the treatment
of QCD color in the amplitudes. We extend the concept of color dressing to one-loop amplitudes, resulting
in the formulation of an explicit algorithmic solution for the calculation of arbitrary scattering processes
at Next-to-Leading order. The resulting algorithm is of exponential complexity, that is the numerical eval-
uation time of the virtual corrections grows by a constant multiplicative factor as the number of external
partons is increased. To study the properties of the method, we calculate the virtual corrections to n-gluon
scattering.
Published by Elsevier B.V.
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1. Introduction

Automated Leading Order (LO) generators [1–8] play an essential role in experimental anal-
yses and phenomenology in general. However, the theoretical uncertainties associated with these
generators are only understood qualitatively. The augmentation of the LO generators with Next-
to-Leading Order (NLO) corrections will give a more quantitative understanding of the theoret-
ical uncertainties. This is crucial for the realization of precision measurements at the Hadron
colliders. By calculating NLO corrections using analytic generalized unitarity methods [9–11],
the one-loop amplitude is factorized into sums over products of on-shell tree-level amplitudes.
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This makes the integration of numerical generalized unitarity methods into the LO generators
attractive. One can use the LO generator as the building block for obtaining the NLO correction,
thereby negating the need for a separate generator of all the one-loop Feynman diagrams. The
generalized unitarity approach reduces the complexity of the calculation through factorization.
It can reduce the evaluation time with increasing number of external particles from faster than
factorial growth to slower than factorial growth.

By utilizing the parametric integration method of Ref. [12] significant progress has been made
in the algorithmic implementation of generalized unitarity based one-loop generators [13,14]
and other non-unitary methods [15].1 These implementations rely on the color decomposition
of the amplitude into colorless, gauge invariant ordered amplitudes [24,25]. At tree-level these
ordered amplitudes can be efficiently calculated by recursion relation algorithms [26,27]. These
algorithms are of polynomial complexity and grow asymptotically as n4 as the number of external
partons, n, increases [28,29]. By replacing the 4-gluon vertex by an effective 3-gluon vertex the
polynomial growth factor can be further reduced to n3 [30–32].

At the one-loop level the ordered amplitudes generalize into primitive amplitudes [33]. These
primitive amplitudes reflect the more complicated dipole structure of one-loop amplitudes. While
the analytic structure of the factorized one-loop amplitude in color factors and primitive ampli-
tudes is systematic, the subsequent calculation of the color summed virtual corrections becomes
unwieldy in the algorithmic implementation [34]. The reason for this is the rapid growth in the
number of primitive amplitudes. This rapid growth is mainly caused by the multiple quark-pairs
amplitudes. A further complication arises from the possible presence of electro-weak particles in
the ordered amplitudes.

While in LO generators the analytic treatment of color is more manageable, alternatives were
developed for high parton multiplicity scattering amplitudes [31,35,32]. Those alternatives pro-
vided a more numerical treatment of the color, thereby facilitating the construction of tree-level
Monte Carlo programs for the automated generation of high multiplicity parton scattering ampli-
tudes at LO. This was accomplished by not only choosing the external momenta and helicities,
but also choosing the explicit colors of the external partons for each scattering event consid-
ered. In doing so, the tree-level partonic amplitude is a complex number and the absolute value
squared is simply calculated. This numerical treatment can be done in the context of ordered
amplitudes [7] by calculating the explicit color weights of each ordered amplitude. This method
was generalized to one-loop calculations in Ref. [15]. More directly, one can reformulate the
recursion relations into color-dressed recursion relations [36,31,32]. These color-dressed recur-
sion relations integrate the now explicit color weights into the recursive formula. The resulting
algorithm is of exponential complexity and grows asymptotically as 4n for n-parton amplitudes;
again, a reduction of the growth factor to 3n can be achieved if the 4-gluon vertex is replaced by
the effective 3-gluon vertex [32].

In this paper we extend the generalized unitarity method of Ref. [13] as implemented in
Ref. [37] to incorporate the color-dressing method. The algorithm is developed such that it can
augment a dressed LO generator such as COMIX [8] to become a NLO generator.2 For the numer-
ical examples presented in this paper, we have used our own implementation of a color-dressed
LO gluon recursion relation to calculate the virtual corrections for n-gluon scattering processes.

1 These methods have matured to the point where explicit NLO parton generators for specific processes have been
constructed [16–23].

2 The LO generator needs to be upgraded to allow for complex momenta in the evaluation of tree-level matrix elements.
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The motivation for color dressing at the one-loop level is discussed in Section 2. We outline
in Section 3 the tree-level dressed recursion relations for generic theories expressed in terms
of Feynman diagrams. We optimize the color-sampling performance and study the phase-space
integration convergence for LO n-gluon scattering. The dressed formalism is extended to one-
loop amplitudes in Section 4. The scaling with n, the accuracy of the algorithm and the color-
sampling convergence of the virtual corrections to n-gluon scattering are studied in some detail.
We summarize our results in Section 5. Finally, two appendices are added giving an explicit LO
6-quark example and details on the color-dressed implementation of the gluon recursion relation.

2. Motivation for the color-dressed generalized unitarity method

So far the numerical implementations of generalized unitarity for the evaluation of one-loop
amplitudes make use of color ordering: the ordered one-loop amplitudes are constructed from
tree-level ordered amplitudes through the D-dimensional unitarity cuts. This has the advantage
that the color is factorized off the loop calculation and attached subsequently to each ordered
one-loop amplitude. For the pure gluon one-loop amplitude, this leads to a particularly simple
decomposition in terms of the adjoint generators F of SU(N):

M(0,1)(1,2, . . . , n) ∼
∑

P(2,3,...,n)

Tr
(
Fa1Fa2 · · ·Fan

)
m(0,1)(1,2, . . . , n). (1)

The decomposition is valid for both tree-level [24] and one-loop amplitudes [38]. Once we
can calculate the colorless ordered amplitude m(1,2, . . . , n), all other ordered amplitudes are
obtained by simple permutations. All kinematic information about the n-gluon amplitude is en-
capsulated in a single ordered amplitude. However, we also see the drawback of this approach as
we are interested in evaluating the amplitude squared. We have to calculate M(0,1)(1,2, . . . , n)×
(M(0)(1,2, . . . , n))† summed over all color and spin states of the external gluons. This immedi-
ately leads to a factorial complexity when doing the multiplications of the full amplitudes as we
have to sum over the permutations, P(2,3, . . . , n), of the ordered amplitudes. Additionally, the
color sum has to be performed either analytically or in some numerical manner.

When including quark pairs the situation becomes even more complicated. The reason is that
the internal structure of the one-loop amplitude is not uniquely defined by the external states,
thereby affecting the color flow of the ordered amplitudes. As a result there exist many types
of ordered amplitudes depending on the internal configuration of quark and gluon propagators.
These amplitudes are called primitive amplitudes [33] and in general cannot be obtained from
each other by simple permutations. For example, the one-loop qq̄ + n gluon amplitude is given
by [38]

M(1)(q;1, . . . , n; q̄)

∼
n∑

k=2

∑
P(1,...,n)

(
T yT a1 · · ·T akT x

)
ij

(
Fak+1 · · ·Fan

)
xy

m(1)(q,1, . . . , k, q, k + 1, . . . , n),

(2)

where the T -matrices are the fundamental generators of SU(N). While for the full amplitude
a cut line has an undetermined flavor, each primitive amplitude has an unique flavor for all the
cut lines. Therefore we can apply generalized unitarity to the primitive amplitudes. However,
from a numerical/algorithmic point of view the evaluation of this equation becomes tedious as
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can be seen for instance in the calculation of the one-loop matrix elements for W + 5 partons in
Ref. [34].

It is clear that for an automated generator of one-loop corrections one would like to avoid
ordered and/or primitive amplitudes altogether. For LO matrix elements, this can be done by
applying the color-dressed recursion relations to evaluate the (unordered) tree-level amplitudes.
From these color-dressed tree-level amplitudes we can build the one-loop color-dressed ampli-
tudes by applying generalized unitarity, thereby circumventing the need for primitive amplitudes
and explicit color summations. It is of interest to investigate the feasibility of this approach.
The n-gluon scattering process is good for studying the behavior of the dressed algorithm. The
color-ordered approach is most effective for n-gluon scattering. For processes with quark-pairs,
the color-dressed approach will become even more efficient compared to the color-ordered ap-
proach.

An additional advantage of the color-dressed algorithm is that it treats partons and color neu-
tral particles on the same footing. Specifically, we can include electro-weak particles without
altering the algorithm. This is in contrast to the color-ordered algorithm, where the addition of
electro-weak particles would lead to significant modifications in the algorithmic implementation
of the method.

3. Dressed recursive techniques for leading order amplitudes

In tree-level generators the Monte Carlo sampling over the external color and helicity states
has become a standard practice [31,35,32]. Such a color sampling allows for the efficient eval-
uation of large multiplicity partonic processes. A particular efficient implementation of the
color-dressed Monte Carlo method uses the color-flow decomposition of the multi-parton am-
plitudes [39,40,31,41,42,6,43,32].

The principle of Monte Carlo sampling over the states of the external sources generalizes to
any theory expressible through Feynman rules. By explicitly specifying the quantum numbers of
the n external sources, one can evaluate the tree-level amplitude squared and differential cross
section using Monte Carlo sampling:

dσLO(f1f2 → f3 · · ·fn)

= WS

Nevent
×

Nevent∑
r=1

dPS(r)(K1K2 → K3 · · ·Kn)
∣∣M(0)

(
f(r)1 , f(r)2 , . . . , f(r)n

)∣∣2
, (3)

where

f(r)i = {fi, hfi
,Cfi

,Kfi
}(r) (4)

denotes the flavor, spin, color and momentum four-vector of external state i for event r .3 The con-
stant WS contains the appropriate identical particle factors and Monte Carlo sampling weights.
For each event r , the external states are stochastically chosen such that when summed over many
events we approximate the correct differential cross section with sufficient accuracy.

3 We will use flavor to indicate the particle type, such as e.g. gluon, up-quark, W -boson, etc.
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3.1. The generic recursive formalism

To calculate the tree-level amplitude M(0) in Eq. (3), we follow the method of color-dressed
recursion relations as detailed in Refs. [32,8]. A recursion relation builds multi-particle cur-
rents from other currents. The m-particle current Jg(fπ ) has m on-shell particles fπ = {fi}i∈π =
{fi1, . . . , fim} where π = {i1, . . . , im} and one off-shell particle g = {g,Lg,Cg,Kg} with g, Lg ,
Cg and Kg denoting the flavor, Lorentz label, color and four-momentum, respectively. The mo-
mentum of the off-shell particle, Kg , is constrained by momentum conservation: Kg = −Kπ =
−∑

i∈π Ki .
The dressed recursion relation generates currents using the propagators and interaction ver-

tices of the theory. Using standard tensor notation we can write the propagators as

P g1g2(Q) = δg1g2δCg1Cg2
P Lg1 Lg2 (Q),

P g[J (fπ )
] =

∑
g1

P gg1(Kπ)Jg1(fπ ),

P
[
J (fπ1), J (fπ2)

] =
∑
g1g2

Jg1(fπ1)P
g1g2(Kπ1)Jg2(fπ2), (5)

where e.g. the gluon propagator is given by P μ1μ2(Q) = −gμ1μ2/Q2. Note that the particle
sums are taken over all quantum numbers of the off-shell particles gi . Furthermore, in all expres-
sions momentum conservation is always implicitly understood. The on-shell tree-level n-particle
amplitude can hence be expressed in terms of an (n − 1)-current,

M(0)(f1, . . . , fn) = P −1[J (f1, . . . , fn−1), J (fn)
]
. (6)

We denote the interaction vertices of the theory as Vg1···gk
(Q1, . . . ,Qk). The maximal number of

legs for the allowed vertices of the theory is denoted by Vmax. The number of legs of the vertex
is indicated by the number of its arguments and the type of vertex is specified by the quantum
numbers of the legs. The labels g1, . . . ,gk run over the values of all particles of the theory.
Symmetries and renormalizability imply that many of the vertices are set to zero. The theory is
defined by its particle content and its non-vanishing vertices, which are generalized tensors:

Vg1···gk
(Q1, . . . ,Qk) = V

Lg1 ···Lgk

g1···gk;Cg1 ···Cgk
(Q1, . . . ,Qk). (7)

The sum of all vertices contracted in with currents constitutes the main building block of the
recursion relation. We define it as

Dg
[
J (fπ1), . . . , J (fπk

)
] =

∑
g1···gk

Vgg1···gk
(Kg = −KΠk

,Kπ1 , . . . ,Kπk
)

× J g1(fπ1) × · · · × J gk (fπk
), (8)

where the inclusive list Πk is build up of unions of the exclusive lists:

Πk =
k⋃

i=1

πi. (9)

Fig. 1 is a pictorial representation of Eq. (8) when using the example of QCD. For this case, we
will work out the generic vertex blob in detail in the next subsection.
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Fig. 1. A graphical representation of Eq. (8) for k = 2 and an off-shell gluon in QCD. Because of flavor conservation
only one of the two vertices can contribute for any given partition.

Fig. 2. The first recursion step for the unordered gluon current with u, d̄, s, s̄ quarks and a W− gauge boson in the
final state. There are 15 contributions corresponding to all possible partitions of the final-state particles into two groups.
Because of flavor conservation there are only 4 non-vanishing contributions for the “4 + 1” partitions (first term) and
2 non-vanishing contributions for the “3 + 2” partitions (second term).

The recursion relations terminate with the one-particle currents. A one-particle g-current is

defined in terms of the source S
hfi

Cfi

fiLg
(Kfi

). Hence, we have

Jg(fi ) = δgfi δCgCfi S
hfi

Cfi

fiLg
(Kfi

). (10)

For example, the g1-gluon one-particle source with helicity λ1, color c1 and momentum K1 is
given by Jg(g1) = δcc1ε

λ1
μ1(K1). I.e. the g1-gluon source is a matrix in color space multiplied by

the helicity vector.
The n-particle currents are now efficiently calculated from a recursively defined current in the

following manner:

Jg(f1, . . . , fn) =
Vmax−1∑

k=2

S2(n,k)∑
Pπ1 ···πk

(1,...,n)

Pg
[
D

[
J (fπ1), . . . , J (fπk

)
]]

, (11)

where S2(n, k) is the Stirling number of the second kind. The first recursive step is graphically
illustrated in Fig. 2 for the example of Jg(u, d̄, s, s̄,W−). The sum over Pπ1···πk

(1, . . . , n) gener-
ates all different partitions decomposing the set {1, . . . , n} into the non-empty subsets π1, . . . , πk .
An example for a list of different partitions is

Pπ1π2π3(1,2,3,4) = {
π

(i)
1 π

(i)
2 π

(i)
3

}S2(4,3)=6
i=1

= {{{1,2}{3}{4}},{{1,3}{2}{4}},{{1,4}{2}{3}},{{2,3}{1}{4}},{{2,4}{1}{3}},{{3,4}{1}{2}}}. (12)

The formalism described here fully specifies an automated algorithm of exponential com-
plexity to calculate the LO differential cross sections for any theory defined in terms of Feynman
rules. Owing to the characteristics of the partitioning, the computer resources needed to calculate
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the n-particle tree-level amplitudes asymptotically grow in proportion to S2(n,Vmax). The expo-
nential behavior arises from the large-n limit of the Stirling numbers, i.e. S2(n,Vmax) → V n

max
[30]. It may be possible to reduce Vmax by rewriting higher multiplicity vertices as sums of lower
multiplicity vertices thereby improving the efficiency of the recursive algorithm [31,6,32]. For
the case of the Standard Model, this has been fully worked out in Ref. [8] and implemented in
the COMIX LO generator.

3.2. Multi-jet scattering amplitudes

We specify the generic recursion relations to the perturbative QCD Feynman rules. This will
give an algorithmic description of the scattering amplitudes at LO for multi-jet production at
hadron colliders.

The external sources are gluons and massless quarks. All these particles have color and
helicity as quantum numbers. Instead of the traditional color representation in terms of funda-
mental generators, we choose the color-flow representation [4,43,6,32], which is more pertinent
to Monte Carlo sampling and easily derivable from the traditional color representation by mak-
ing the following two observation: first, any internal propagating gluon has as a color factor
δab = Tr(T aT b).This color factor can be rewritten as

M = Aa

δab

K2
Bb = Aa

Tr(T aT b)

K2
Bb = Aij

1

K2
Bji . (13)

Second, we contract the amplitude with T
ak

ikjk
for each external gluon:

|M|2 = Maδab

(
Mb

)† = MaT a
ij T

b
ji

(
Mb

)† = Mij M†
ji . (14)

From these observations it follows that we can calculate the interaction vertices in the color-flow
representation by simply contracting each gluon with T

ak

ikjk
and summing over ak . The three gluon

vertex is thus given by

Vg1g2g3(K1,K2,K3) = V
μ1μ2μ3
i1j1i2j2i3j3

(K1,K2,K3)

= T
a1
i1j1

T
a2
i2j2

T
a3
i3j3

V μ1μ2μ3
a1a2a3

(K1,K2,K3)

= T
a1
i1j1

T
a2
i2j2

T
a3
i3j3

f a1a2a3
√

2V̂
μ1μ2μ3
3 (K1,K2,K3)

= (
δ
i1
j2

δ
i2
j3

δ
i3
j1

− δ
i1
j3

δ
i2
j1

δ
i3
j2

)
V̂

μ1μ2μ3
3 (K1,K2,K3), (15)

with

V̂
μ1μ2μ3
3 (K1,K2,K3) = 1√

2

(
(K1 − K2)

μ3gμ1μ2 + (K2 − K3)
μ1gμ2μ3

+ (K3 − K1)
μ2gμ3μ1

)
. (16)

Similarly, for the four gluon vertex we find

Vg1g2g3g4 = V
μ1μ2μ3μ4
i1j1i2j2i3j3i4j4

=
∑

C(234)

(
δ
i1
j2

δ
i2
j3

δ
i3
j4

δ
i4
j1

+ δ
i1
j4

δ
i2
j1

δ
i3
j2

δ
i4
j3

)
V̂

μ1μ3,μ2μ4
4 , (17)

with

V̂
μ1μ2,μ3μ4 = 2gμ1μ2gμ3μ4 − gμ1μ3gμ2μ4 − gμ1μ4gμ2μ3, (18)
4
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and the sum is over the cyclic permutation of the indices {2,3,4}. In the color-flow representation
the quark–antiquark–gluon vertex is given by

Vqgq̄ = V
sμs̄
i,i1j1,j

=
(

δij1δi1j − 1

NC
δi1j1δij

)
V̂ sμs̄ , (19)

with

V̂
μ
ss̄ = 1√

2
γ

μ
ss̄ . (20)

The external sources are given by

Jg(g1) = δI i1δJj1ελ1
μ (K1),

Jq(q1) = δI i1vλ1
s (K1),

Jq̄(q̄1) = δJj1 ū
λ1
s̄ (K1), (21)

where g = {g,μ, (IJ ),−K1}, g1 = {g1, λ1, (i1j1),K1}, q = {q, s, I,−K1}, q1 = {q1, λ1, i1,K1},
q̄ = {q̄, s̄, J,−K1} and q̄1 = {q̄1, λ1, j1,K1}. The internal propagating particles are given by

P g1g2(Q) = δ
i1
j2

δ
i2
j1

(−gμ1μ2

Q2

)
,

P q1q2(Q) = δ
i1
i2

(/Q − mq1)
−1
s1s2

,

P q̄1q̄2(Q) = δ
j1
j2

(/Q + mq̄1)
−1
s̄1 s̄2

, (22)

with gk = {gk,μk, (ikjk),Q}, qk = {qk, sk, ik,Q} and q̄k = {q̄k, s̄k, jk,Q}.
We can now construct Berends–Giele recursion relations [26] using color-dressed multi-

parton currents based on Eq. (11). The result is

Jq(f1, . . . , fn) =
∑

Pπ1π2 (1,...,n)

Pq
[
D

[
J (fπ1), J (fπ2)

]]
,

Jg(f1, . . . , fn) =
∑

Pπ1π2 (1,...,n)

Pg
[
D

[
J (fπ1), J (fπ2)

]]
+

∑
Pπ1π2π3 (1,...,n)

Pg
[
D

[
J (fπ1), J (fπ2), J (fπ3)

]]
, (23)

where each current violating flavor conservation is defined to give zero. The compact operator
language can be expanded out to an explicit formula by adding back in the particle attributes. For
example,

Pg
[
D

[
J (fπ1), J (fπ2)

]] =
∑
qg1q̄

Pgg1
(KΠ2)V

qg1q̄Jq(fπ1)Jq̄(fπ2)

+
∑

g1g2g3

Pgg1
(KΠ2)V

g1g2g3(−Kπ1∪π2 ,Kπ1 ,Kπ2)Jg2(fπ1)Jg3(fπ2)

= 1

K2
Π2

V
s1μs2
i,IJ,j × J i

s1
(fπ1) × J

j
s2(fπ2)

+ 1

K2
Π2

V
μμ1μ2
IJ i2j2i3j3

(−Kπ1∪π2 ,Kπ1 ,Kπ2)

× J (ij)2
μ (fπ ) × J (ij)3

μ (fπ ). (24)

1 1 2 2
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The n-parton tree-level matrix element is calculated using Eq. (6). We exemplify in Appendix A
how to work out the 6-quark recursion steps using the above formalism.

3.3. Numerical implementation of n-gluon scattering

The method of color dressing as discussed in this section relies on the ability to perform a
Monte Carlo sampling over the degrees of freedom of the external sources. In this subsection
we will study in some detail the properties of such a sampling approach by means of the color-
dressed gluonic recursion relation. We are particularly interested in the accuracy of the color-
sampling procedure and overall speed of the implementation. The addition of quarks and external
vector bosons is a straightforward extension and will not affect the conclusions reached in this
subsection.

The explicit color-dressed gluon recursion algorithm is given in terms of colored gluonic
currents. The gluonic currents are 3 × 3 matrices in color space and defined as

Jg(gm) = δI imδJjmελm
μ (Km),

Jg(g1, . . . ,gm) =
∑

Pπ1π2 (1,...,m)

Pg
[
D

[
J (gπ1), J (gπ2)

]]
+

∑
Pπ1π2π3 (1,...,m)

Pg
[
D

[
J (gπ1), J (gπ2), J (gπ3)

]]
. (25)

The color-dressed n-gluon amplitude is given by

M(0)(g1,g2, . . . ,gn) = P −1[J (g1,g2, . . . ,gn−1), J (gn)
]
. (26)

For this specific example, we have labelled the on-shell gluons by gi , the off-shell gluon is de-
noted by g as before. The operator formulation of the recursive algorithm is particularly suited
for an object oriented implementation of the recursive algorithm. We have implemented the al-
gorithm presented above in C++. More details including the more explicit recursion equation are
shown in Appendix B.

The first issue to deal with is the correctness of the implemented algorithm. To this end we
want to compare the color-dressed amplitude to existing evaluations of the gluonic amplitudes
based on ordered amplitudes. To facilitate the comparison, we write the color-ordered expansion
of the amplitude using the color-flow representation [43]:

M(0)(g1,g2, . . . ,gn) =
∑

P(2,...,n)

A(0)i1···in
j1···jn

(
g

λ1
1 , . . . , gλn

n

)
= T

a1
i1j1

· · ·T an

injn

∑
P(2,...,n)

Tr
(
Fa1 · · ·Fan

)
m(0)

(
g

λ1
1 , . . . , gλn

n

)
= 1

2

∑
P(2,...,n)

(
δ
i1
j2

δ
i2
j3

· · · δin−1
jn

δ
in
j1

+ (−1)nδ
in
jn−1

δ
in−1
jn−2

· · · δi2
j1

δ
i1
jn

)
× m(0)

(
g

λ1
1 , . . . , gλn

n

)
=

∑
δ
i1
j2

δ
i2
j3

· · · δin−1
jn

δ
in
j1

m(0)
(
g

λ1
1 , . . . , gλn

n

)
. (27)
P(2,...,n)
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The m(0)(g
λ1
1 , . . . , g

λn
n ) are ordered amplitudes with the property m(0)(1,2, . . . , n) = (−1)n ×

m(0)(n, . . . ,2,1). From the above formulas it follows that A(0)i1···in
j1···jn

= A(0)j1···jn

i1···in . By choosing
the explicit momentum, helicity and color (ij)m of each gluon we can compare the numerical
values of Eqs. (26) and (27). We have done the comparison for up to 2 → 12 gluon amplitudes
and found complete agreement, thereby validating the correctness of the color-dressed algorithm.

An important consideration in calculating the color-dressed amplitudes is the color-sampling
method used in the Monte Carlo program. For a 2 → n−2 gluon scattering amplitude, each of the
gluon color states is stochastically chosen. The full color configuration of the event is expressed
by {(ij)m}nm=1 where im and jm each denote a color state out of three possible ones that can be
labelled {1,2,3}. In the “Naive” approach one samples uniformly over all possible color states
of the gluons. The number of color configurations, NNaive

col , and the color-configuration weight,
WNaive

col , are given by

NNaive
col = 9n (28)

and

WNaive
col = 1, (29)

respectively. About 95% of these naive color configurations have vanishing color factors. This
results in a rather inefficient Monte Carlo procedure when sampling over the color states. As
was noted in Ref. [32], a significant number of the zero color-weight configurations can be re-
moved by imposing color conservation. This is implemented by vetoing any color configuration
for which the condition ∃c ∈ {1,2,3}: ∑n

m=1(δim,c − δjm,c) 	= 0 is true. In other words, the non-
vetoed color configurations can be obtained by uniformly choosing the colors i1, . . . , in and
subsequently generating the colors j1, . . . , jn through a permutation of the list {i1, . . . , in}. For
the number of color configurations to be sampled over, this approach, which we name “Con-
served” in what follows, then yields

NConserved
col =

n∑
n1,n2,n3=0

δn1+n2+n3,n

(
n!

n1!n2!n3!
)2

(30)

where nc = ∑n
m=1 δim,c. As this way of sampling is no longer uniform, each generated color

configuration gets an associated color weight described by

WConserved
col = 3n n!

n1!n2!n3! . (31)

Yet, there still are non-contributing color configurations left in the sampling set. We have to
augment the selection criteria further by vetoing any color configuration for which the condition
∃c ∈ {1,2,3}: [∀m ∈ {1,2, . . . , n}: (im = c → im = jm)] is true.4 In other words, we veto a color
configuration if all occurrences of a particular color c come paired: im = jm = c. By adding this
veto to the “Conserved” generation, we obtain the “Non-Zero” Monte Carlo procedure that has
removed all color configurations with zero color weight. The number of leftover configurations
sampled over is given by

4 When all colors are identical, i.e. i1 = j1 = i2 = j2 = · · · = in = jn, every color factor in Eq. (27) is equal to one.
We can still veto the event because the sum over all ordered amplitudes is identical to zero at tree level [26].
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Table 1
The number of color configurations sampled over when using the different Monte Carlo color schemes.

Scattering Naive Conserved Non-Zero

2 → 2 6561 639 378
2 → 3 59,049 4653 3180
2 → 4 531,441 35,169 27,240
2 → 5 4,782,969 272,835 231,672
2 → 6 43,046,721 2,157,759 1,949,178
2 → 7 387,420,489 17,319,837 16,279,212
2 → 8 3,486,784,401 140,668,065 135,526,716

NNon-Zero
col =

n∑
n1,n2,n3=0

δn1+n2+n3,n

(
n!

n1!n2!n3!
)

×
(

n! − n1!n2!n3![1 − ∑
c Θ(nc − 1)] − ∑

c Θ(nc − 1)nc!(n − nc)!
n1!n2!n3!

)
,

(32)

where the step function Θ(x) = 1 for x � 0 and zero otherwise. The weight associated with each
sampled color configuration has to be modified and reads

WNon-Zero
col = (

3n − 3
)(n! − n1!n2!n3![1 − ∑

c Θ(nc − 1)] − ∑
c θ(nc − 1)nc!(n − nc)!

n1!n2!n3!
)

.

(33)

For up to 10-gluon scatterings, Table 1 displays the resulting number of sampled color configu-
rations in the column indicated “Non-Zero”. It is also shown how this number compares to the
numbers found for the “Conserved” and “Naive” sampling scheme.

Next we examine the execution time of n-gluon scattering amplitudes using the “Non-Zero”
color sampling. In Table 2 the CPU time needed to calculate the color-dressed amplitudes ac-
cording to Eqs. (26) and (27) are compared.

The evaluation of Eq. (27) employs the ordered recursion relation [26]. Naively one would
expect this evaluation to grow factorially with the number of gluons. However this growth is
considerably dampened by sampling over non-zero color configurations only. Note that for a
given event we calculate each ordered amplitude with non-vanishing color factor independently
of the other ordered amplitudes. One can speed up the computation time by sharing the calculated
sub-currents between different orderings. This, however, is outside the scope of this paper.

For the evaluation of Eq. (26) we use the color-dressed recursion relation of Eq. (25). To
study its time behavior we apply this recursion as discussed in Appendix B with and without the
4-gluon vertex. As can be seen from Table 2, the required CPU times scales as 4n or 3n if the 4-
gluon vertex is neglected. This exponential scaling was derived in Refs. [30,6,32]. The derivation,
following [32], uses the recursive buildup of the amplitude. To calculate an n-particle amplitude
using a V -point vertex, we have to evaluate the (n−1)-particle current of Eq. (6). This current in
turn is determined by calculating all

(
n−1
m

)
m-particle sub-currents, where n − 1 � m � 2. Each

m-current is constructed from smaller currents using Eq. (11) thereby employing the V -point
vertex. All possible partitions into V − 1 sub-currents are given by the Stirling number of the
second kind, S2(m,V −1). This leads to the following scaling of the calculation of the n-particle
amplitude
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Table 2
The time (in seconds) to evaluate 10,000 color-dressed tree-level amplitudes for 2 → n− 2 gluon scatterings. Only color
configurations with non-zero weight are taken into account. Also indicated is the growth factor (given in brackets) with
increasing n. To compute the amplitudes, a 2.20 GHz Intel Core2 Duo processor was used.

Scattering Color-ordered Color-dressed
(Vmax = 4)

Color-dressed
(Vmax = 3)

2 → 2 0.0313 0.117 0.083
2 → 3 0.169 (5.40) 0.495 (4.24) 0.327 (3.93)

2 → 4 0.791 (4.68) 1.556 (3.14) 0.822 (2.51)

2 → 5 3.706 (4.69) 6.11 (3.93) 2.66 (3.23)

2 → 6 17.83 (4.81) 25.26 (4.13) 7.55 (2.84)

2 → 7 99.79 (5.60) 93.43 (3.70) 24.9 (3.30)

2 → 8 557.9 (5.59) 392.4 (4.20) 76.1 (3.05)

2 → 9 2979 (5.34) 1528 (3.89) 228 (2.99)

2 → 10 19,506 (6.55) 5996 (3.92) 693 (3.04)

2 → 11 118,635 (6.08) 24,821 (4.14)

.

.

.
.
.
.

2 → 15 6,248,300 (3.984)

Tn =
n−1∑
m=2

(
n − 1

m

)
S2(m,V − 1) = S2(n,V ) ∼ V n. (34)

Consequently, the n-gluon amplitude using the standard 3-gluon and 4-gluon vertex has an ex-
ponential scaling behavior Tn → 4n. This is evident from the results shown in Table 2. As can
also be seen in the table, the scaling behaves as expected when the 4-gluon vertex is left out,
i.e. Tn → 3n. As was shown in Refs. [31,32], the 4-gluon vertex can be avoided and replaced
by an effective 3-point vertex. This results in a significant time gain for the evaluation of high
multiplicity gluon scattering amplitudes.

An important consideration in the usefulness of the color-sampling approach is the conver-
gence to the correct answer as a function of the Monte Carlo sampling size NMC. To this end,
we compare the phase-space integration performances for the two different cases of using (i) the
color-sampled result S

(0)
MC for the tree-level amplitude squared,

S
(0)
MC,r = Wcol(n1, n2, n3) × ∣∣M(0)

(
g(r)

1 , . . . ,g(r)
n

)∣∣2
, (35)

and (ii) the color-summed, i.e. color-exact, result

S
(0)
col,r =

3∑
i1,...,in=1

3∑
j1,...,jn=1

∣∣M(0)
(
g(r)

1 , . . . ,g(r)
n

)∣∣2
. (36)

In both approaches the average values are computed via

〈
S(0)

〉 = 1

NMC

NMC∑
r=1

S(0)
r (37)

where the index r numbers the different events with the only exception that the gluon polariza-
tions have been held fixed: λ1, . . . , λn = +−· · ·+−(+). The standard deviation of each average
is calculated by
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Fig. 3. The relative errors of the Monte Carlo phase-space integrations of color-summed and color-sampled 4- and 6-
gluon matrix elements at the tree level. The errors are shown as a function of the number of generated flat phase-space
points. For the applied phase-space cuts, see the text.

σ〈S(0)〉 =
√∑NMC

r=1 (S
(0)
r )2 − NMC〈S(0)〉2

NMC − 1
. (38)

The phase-space points have been distributed uniformly (by means of the Rambo algorithm) and
were subject to the constraints: p⊥,m > 0.1

√
s, |ηm| < 2 and 
Rml > 0.7, see also Eq. (65). In

Fig. 3 we show the relative errors σ〈S(0)〉/〈S(0)〉 of the color-sampled and color-summed Monte
Carlo integrations for the 4- and 6-gluon scattering examples as a function of the number of
generated phase-space points NMC. The behavior for large NMC may be approximated by a
power law of the form α/N

1/2
MC. The color sampling then introduces an additional uncertainty

to the pure phase-space integration resulting in larger α-factors. The magnitude of the additional
error depends on which color-sampling scheme has been employed. For the “Conserved” scheme,
we find this error to be of the order of the pure phase-space integration error. The discontinuities
in the presented error curves are a feature of the flat phase-space integration; they occur because
the randomly picked phase-space points generally come with largely fluctuating color and/or
matrix-element weights. It is of course possible – however beyond the scope of this paper –
to improve the integration performance by utilizing more sophisticated phase-space generators,
which accommodate for the antenna structures of QCD amplitudes.

Having estimated the effect of combining color and phase-space sampling, we concentrate in
the following on the discussion of the integration performances of the different color-sampling
methods. We therefore plot the ratio of the average value of the color-sampled amplitude squared
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and its standard deviation over the average value of the color-summed amplitude squared as a
function of the number of Monte Carlo events:

R =
〈S(0)

MC〉 ± σ〈S(0)
MC〉

〈S(0)
col 〉

. (39)

We define the ratio this way so that most of the phase-space integration fluctuations may divide
out. The normalization as given by the average color-summed result then implies a target value of
R = 1 for large NMC. If we want to estimate the total relative uncertainty on R (or more exactly
on 〈S(0)

MC〉/〈S(0)
col 〉), we have to add the relative errors σ〈S(0)

MC〉/〈S
(0)
MC〉 and σ〈S(0)

col 〉/〈S
(0)
col 〉, because

the average of the color-summed matrix elements is determined after NMC phase-space points
along with the average of the color-sampled squared amplitudes. The 4- and 6-gluon scattering
results for the R-ratio as defined in Eq. (39) are presented in the respective upper parts of Figs. 4
and 5 for the three different sampling methods “Naive”, “Conserved” and “Non-Zero”. As it
can be seen from the two plots by avoiding to sample over zero-weight color configurations the
convergence can be greatly enhanced. Note that in these plots we do not show the pure phase-
space integration errors of the color-summed results, as we wish to emphasize the differences in
the color-sampling schemes.

For NMC = O(105), we obtain sufficient accuracy in the “Non-Zero” sampling method. To
illustrate this more clearly, we show in the lower panels of Figs. 4 and 5 as well as in Fig. 6
the number of Monte Carlo events needed to achieve a certain relative precision in the color
sampling. For these plots, we generate Nevent events, which are partitioned into trial and sampling
events via Nevent = Ntrial × NMC. We define as a function of NMC the ratio

RMC(NMC) =
∑NMC

r=1 S
(0)
MC,r∑NMC

r=1 S
(0)
col,r

= 〈S(0)
MC〉(NMC)

〈S(0)
col 〉(NMC)

(40)

and plot NMC versus the relative precision σ(RMC)/μ(RMC). The mean value

μ(RMC) = 1

Ntrial

Ntrial∑
k=1

RMC,k(NMC) (41)

and the standard deviation

σ(RMC) =
√∑Ntrial

k=1 (RMC,k(NMC))2 − Ntrial μ2(RMC)

Ntrial − 1
(42)

are computed by using a sufficiently large number of trials, i.e. Ntrial estimates of RMC(NMC)

are calculated to obtain the mean value and the standard deviation for RMC. For Ntrial > O(100),
we get rather smooth curves. In the 4-gluon case shown in the lower part of Fig. 4 this gives
a reasonable description for NMC < 105. The 6- and 8-gluon scatterings are more involved and
require more statistics. The trend however can be read off the respective plots in Figs. 5 and 6.

For sufficiently large NMC, the expected scaling of the relative standard deviation σ with the
number of Monte Carlo events is σ(RMC) ∼ 1/

√
NMC. As can be seen from the second plot of

Fig. 4 the scaling is as expected and we can fit to the functional form A × N−B
MC . In the 4-gluon

case, we find

Naive:
σ(RMC) = 33.8 × N−0.529

MC ,

μ(RMC)
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Fig. 4. Top panel: comparison of Monte Carlo integrations, including the standard deviations, for various color-sampling
schemes shown as a function of the number of evaluated phase-space points and normalized to the exact color-summed

result. Adding the error on the color-summed result, one obtains after 107 steps 〈S(0)
MC〉/〈S(0)

col 〉 = 1.0034±0.0091(MC)±
0.0015(col), 0.9989±0.0027(MC)±0.0015(col) and 0.9999±0.0022(MC)±0.0014(col) for the “Naive”, “Conserved”
and “Non-Zero” sampling, respectively. Bottom panel: number of events required to reach a given relative accuracy on
the numerical evaluation of the color-sampled amplitude. For the definition of RMC(NMC) and the parameters of the
dashed fit curves, cf. the text.
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Fig. 5. Top panel: comparison of Monte Carlo integrations, plus their standard deviations, for various color-sampling
schemes shown as a function of the number of evaluated phase-space points and normalized to the exact color-summed

result. Including the errors on the color-summed results, one obtains after 105 steps 〈S(0)
MC〉/〈S(0)

col 〉 = 1.16 ± 0.32(MC)±
0.04(col), 0.995 ± 0.071(MC) ± 0.039(col) and 0.913 ± 0.037(MC) ± 0.026(col) for the “Naive”, “Conserved” and
“Non-Zero” sampling, respectively. Bottom panel: required number of events to reach a given relative accuracy on the
numerical evaluation of the color-sampled amplitude. For the definition of RMC(NMC), cf. the text. The fit curves
σ/μ = f (NMC) are described by 14.0N−0.287

MC , 2.84N−0.241
MC and 3.10N−0.331

MC for the “Naive”, “Conserved” and “Non-
Zero” sampling, respectively. In terms of computer time the latter two schemes run slower than the “Naive” scheme by
factors of f = 10.5 and f = 13.3 (see text).
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Fig. 6. Number of events required to reach a given relative accuracy on the numerical evaluation of the color-sampled
amplitude. For the definition of RMC(NMC), cf. the text. The fit curves σ/μ = f (NMC) are described by 8.04N−0.530

MC ,

3.25N−0.405
MC and 3.01N−0.344

MC for the “Naive”, “Conserved” and “Non-Zero” sampling, respectively. The computer
times for the “Conserved” and “Non-Zero” approaches are larger with respect to the “Naive” sampling method by factors
of f = 9.6 and f = 10.8, respectively (see text).

Conserved:
σ(RMC)

μ(RMC)
= 6.45 × N−0.487

MC ,

Non-Zero:
σ(RMC)

μ(RMC)
= 4.35 × N−0.484

MC . (43)

From these fits we can quantify the enhancements owing to the sampling strategies. The “Con-
served” sampling method improves over the “Naive” method by a factor of 33.8/6.45 = 5.2,
while the improvement of the “Non-Zero” method over the “Conserved” method yields an addi-
tional factor of 6.45/4.35 = 1.5 (or a factor of 33.8/4.35 = 7.8 over the “Naive” method). The
algorithm determines the color configurations with vanishing color factor before it fully eval-
uates the corresponding matrix-element weight. The differences between the various sampling
methods therefore become smaller when we measure the computer evaluation time to reach a
certain relative precision. When we express this in numbers for the example of 4-gluon scat-
tering, we notice that the “Conserved” and “Non-Zero” sampling schemes are slower than the
“Naive” sampling by factors of f = 2.42 and f = 3.29, respectively. This translates into chang-
ing the fit parameter A → A′ = Af B . The corresponding ratios then read 33.8/9.92 = 3.4 and
9.92/7.74 = 1.3 when specifying the improvement of the “Conserved” versus the “Naive” and
the “Non-Zero” versus the “Conserved” method, respectively. We see using improved sampling
over color configurations is still highly preferred.



W.T. Giele et al. / Nuclear Physics B 840 (2010) 214–270 231
4. Dressed generalized unitarity for virtual corrections

By using the parametric integration method of Ref. [12] one can implement the generalized
unitarity method of Ref. [10] into an efficient algorithmic solution [44]. For the evaluation of
color-ordered amplitudes, the algorithm is of polynomial complexity [29]. To calculate the di-
mensional regulated one-loop amplitude we extend the parametric expressions to D dimensions
and apply the cuts in several integer dimensions to determine all the parametric coefficients [13].5

The algorithm is equally applicable for the inclusion of massive quarks [48]. The power of this
algorithmic solution was demonstrated in Refs. [46,47,37] for pure gluonic scattering.

Given the fully specified external sources and interaction vertices, both real and virtual cor-
rections can be evaluated by the recursive formulas. The virtual corrections to the differential
cross section are given by

dσ (V )(f1f2 → f3 · · ·fn) = WS

Nevent
×

Nevent∑
r=1

dPS(r)(K1K2 → K3 · · ·Kn)

× 2�(
M(0)

(
f(r)1 , . . . , f(r)n

)† × M(1)
(
f(r)1 , . . . , f(r)n

))
, (44)

where the external sources, including momenta and quantum numbers, are sampled through a
Monte Carlo procedure. The weight WS is determined by process dependent symmetry factors
and sampling weights.

In this section we show how to use the color-dressed tree-level amplitudes discussed in the
previous section to construct the color-dressed one-loop amplitudes. By color sampling over the
external partons one can calculate the virtual corrections using Eq. (44). The generic algorithm
will be outlined and applied to pure gluon scattering.

4.1. Generic color-dressed generalized unitarity

The one-loop amplitude M(1)(f1, . . . , fn) is obtained by integrating the un-integrated ampli-
tude denoted by A(1)(f1, . . . , fn | �) over the loop momentum �:

M(1)(f1, . . . , fn) =
∫

dD�

(2π)D
A(1)(f1, . . . , fn | �). (45)

The integrand function can be decomposed into a sum of a finite number of rational functions of
the loop momentum with loop independent coefficients [12]. The coefficients can be calculated
in terms of tree-level amplitudes.

The parametric form of the integrand is given by the triple sum of rational functions,

A(1)(f1, . . . , fn | �) =
Cmax∑
k=1

max(1, 1
2 (k−1)!)S2(n,k)∑

RPπ1 ···πk
(1,2,...,n)

∑
gΠ1 ,...,gΠk

Pk( �CgΠ1 ···gΠk
| �)

dgΠ1
(�)dgΠ2

(�) · · ·dgΠk
(�)

, (46)

where the sum over the propagator flavors gΠ1, . . . , gΠk
is required as these are not uniquely

defined for unordered amplitudes. The first sum includes all basic denominator structures that

5 If one uses an analytical implementation of the D-dimensional unitarity method of Ref. [13], one can eliminate the
penta-cuts [45]. However, in numerical implementations the removal of the penta-cuts requires performing a numerical
contour integral in the complex plane [14].
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Fig. 7. Graphical representation of a quadrupole-cut partitioning of the external legs into an ordered set of four unordered
subsets π1,π2,π3,π4 of external particles. The corresponding tree-level diagrams are connected with the propagators
of particle gΠ1 , gΠ2 , gΠ3 and gΠ4 .

occur in the decomposition of the integrand while the second sum runs over all different cuts
related to a specific number k of denominators. In the most general case, i.e. when dealing with
massive internal particles, tadpole contribution (k = 1) have to be included. The maximum num-
ber of denominators needed to describe the dimensional regulated one-loop matrix element is
Cmax. The value of Cmax is given by the dimensionality of the loop momentum. For the one-loop
calculations in dimensional regularization the maximum dimension of the loop momentum is
equal to five, i.e. Cmax = 5. The denominator terms are defined as

dgΠm
(�) = (� + KΠm)2 − m2

g (47)

where mg denotes the mass of the internal particle and Πm is given through Eq. (9). The par-
tition sum is over RPπ1···πk

(1,2, . . . , n) (⊇ Pπ1···πk
(1,2, . . . , n)) elements. The total number of

elements is given by max(1, 1
2 (k − 1)!)× S2(n, k). This extended partition list now also includes

non-cyclic and non-reflective permutations over the regular partition lists {{πi}ki=1}; more specif-
ically we have:

RPπ1π2 = {Pπ1π2},
RPπ1π2π3 = {Pπ1π2π3},
RPπ1π2π3π4 = {Pπ1π2π3π4 ,Pπ1π3π4π2 ,Pπ1π4π2π3},
RPπ1π2π3π4π5 = {Pπ1π2π3π4π5 ,Pπ1π3π4π5π2,Pπ1π4π5π2π3 ,Pπ1π5π2π3π4,

Pπ1π2π4π5π3 ,Pπ1π4π5π3π2 ,Pπ1π5π3π2π4 ,Pπ1π3π2π4π5 ,

Pπ1π2π5π3π4 ,Pπ1π5π3π4π2 ,Pπ1π3π4π2π5 ,Pπ1π4π2π5π3}. (48)

The polynomial dependence of the numerator functions Pk on the loop momentum is specified
with a vector of parametric coefficients �CgΠ1 ···gΠk

. The explicit polynomial forms that we are

using are given in Ref. [13]. The dimensionality of the parameter vector �CgΠ1 ···gΠk
depends on

the number of denominators. In the case of 5 denominators there is only one parameter, for
the terms with 4 denominators we have five parameters, etc. The parameters are determined by
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putting sets of denominators to zero and calculating the residue in terms of tree-level amplitudes.
Setting denominator factors to zero is on a par with cutting the corresponding propagators as
required by generalized D-dimensional unitarity. Let �Π1···Πc be the “on-shell” loop momentum
fulfilling the “unitarity condition”:

dgΠ1
(�Π1···Πc) = · · · = dgΠc

(�Π1···Πc) = 0; c = 1, . . . ,Cmax. (49)

To fulfill the unitarity conditions we allow also complex values for the components of the loop
momenta. The parametric form of the numerator functions for c-cuts becomes

Pc( �CgΠ1 ···gΠc
| �Π1···Πc) = ResgΠ1 ···gΠc

(
A(1)(f1, . . . , fn | �Π1···Πc)

)
−

Cmax∑
m=c+1

∑
PPπ̂1,...,π̂m (1,...,n)

δΠ1Π̂1
· · · δΠcΠ̂c

×
∑

gΠ̂c+1
···gΠ̂m

Pm( �CgΠ̂1
···gΠ̂m

| �̂Π̂1···Π̂c
)

dgΠ̂c+1
(�̂Π̂1···Π̂c

) · · ·dgΠ̂m
(�̂Π̂1···Π̂c

)
, (50)

where the sum PPπ̂1,...,π̂m(1, . . . , n) over all m! permutations of the m partitions is supplemented
with the δ-functions to generate the appropriate subtraction functions. Each individual subtrac-
tion expression has to be evaluated with the appropriate shift of the loop-momentum, such that
�Π1···Πc → �̂Π̂1···Π̂c

This equation provides us with an iterative procedure starting with the high-
est number of cuts. For a given number of cuts, the numerator function becomes the residue of
the one-loop integrand function minus the known contributions of terms with a higher number of
denominator factors. The residue of the one-loop integrand factorizes into a product of tree-level
amplitudes (see e.g. Fig. 7):

ResgΠ1 ···gΠc

(
A(1)(f1, . . . , fn | �Π1···Πc)

)
= [

dgΠ1
(�) × · · · × dgΠc

(�) × A(1)(f1, . . . , fn | �)]
�=�Π1 ···Πc

=
∑

g1···gc

{
c∏

k=1

M(0)
(
g†
k, fπk

,gk+1
)}

, (51)

where the index k is cyclic (i.e. gc+1 = g1) andthe gk denote the particles resulting from the cut
lines.

We can determine the parametric vector �CgΠ1 ···gΠc
in Eq. (50) by evaluating the right-hand

side for a set of loop momenta fulfilling the unitarity constraint of Eq. (49). The only physics
model input is given through the tree-level on-shell amplitudes, M(0), which we evaluate using
Eqs. (6) and (11). Two of the external lines to the on-shell tree-level amplitudes are generated
by the D-dimensional cut lines. These external states have in general complex, 5-dimensional
momenta. This extension of the momenta does not modify the general structure of the tree-level
level recursion relations discussed in the previous section. In this way we obtain a fully specified
algorithm to determine the parameters and thereby the parametric form on the left-hand side of
Eq. (46).

It is instructive to illustrate the structure given by Eq. (46) for a simple example. Let us con-
sider the cut-constructible (D = 4) part of the box terms in 4-gluon scattering (n = 4, k = 4).
In this case we have no pentagon terms and the numerator functions of the box terms are
parametrized by two coefficients:
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∑
RP1234(1,2,3,4)

∑
f ={g,q}

P4( �Cf1f2f3f4 | �)
df1(�)df12(�)df123(�)df1234(�)

= P4( �Cg1g2g3g4 | �)
dg1(�)dg12(�)dg123(�)dg1234(�)

+ P4( �Cg1g3g4g2 | �)
dg1(�)dg13(�)dg134(�)dg1342(�)

+ P4( �Cg1g4g2g3 | �)
dg1(�)dg14(�)dg142(�)dg1423(�)

+ P4( �Cq1q2q3q4 | �)
dq1(�)dq12(�)dq123(�)dq1234(�)

+ P4( �Cq1q3q4q2 | �)
dq1(�)dq13(�)dq134(�)dq1342(�)

+ P4( �Cq1q4q2q3 | �)
dq1(�)dq14(�)dq142(�)dq1423(�)

(52)

where

P4( �Cf1f2f3f4 | �) = C
(0)
f1f2f3f4

+ C
(1)
f1f2f3f4

× � · n; nμ = εμμ1μ2μ3p
μ1
1 p

μ2
12 p

μ3
123. (53)

The parameters are calculated by using the residue formula of Eq. (51). After the coefficients of
the box functions have been obtained, one turns to calculate the coefficients of the triangle con-
tributions. The numerator function for the triangle cut of the quark-loop contribution, Eq. (50),
becomes

P3( �Cq1q2q34 | �Π1Π2Π34) = Resq1q2q34

(
A(1)(g1,g2,g3,g4 | �Π1Π2Π34)

)
− P4( �Cq1q2q3q4 | �Π1Π2Π34)

dq123(�Π1Π2Π34)
− P4( �Cq1q2q4q3 | �Π1Π2Π34)

dq124(�Π1Π2Π34)
,

(54)

where the residuum of the quark loop can be calculated again using Eq. (51),

Resq1q2q34

(
A(1)(g1,g2,g3,g4 | �Π1Π2Π34)

)
= [

dq1(�) × dq12(�) × dq1234(�) × A(1)(g1,g2,g3,g4 | �)]
�=�Π1Π2Π34

=
∑

q1q2q3

M(0)
(
q†

1,g1, q̄2
) × M(0)

(
q†

2,g2, q̄3
) × M(0)

(
q†

3,g3,g4, q̄1
)
. (55)

Finally, we can obtain the one-loop amplitude, Eq. (45), by integrating out the parametric
forms on the right-hand side of Eq. (46) over the loop momentum. In this way one finds the
master-integral decomposition of the one-loop matrix element for every specified scattering con-
figuration point [13]:

M(1)(f1, . . . , fn) =
∫

dD�

(2π)D
A(1)(f1, . . . , fn | �)

=
Cmax∑
k=1

∑
RPπ1 ···πk

(1,2,...,n)

∑
gΠ1 ···gΠk

S
(gΠ1 ···gΠk

)

F

× (C̄gΠ1 ···gΠk
IgΠ1 ···gΠk

+ ¯̄CgΠ1 ···gΠk
RgΠ1 ···gΠk

) (56)

where S
(gΠ1 ···gΠk

)

F is the loop-integral symmetry factor (e.g. for a gluonic self-energy, the sym-
metry factor is 1

2 ), the IgΠ1 ···gΠk
denote the scalar master-integral functions corresponding to

the generalized cut given by the ordered partition list {Π1 · · ·Πk} and flavors of the cut lines



W.T. Giele et al. / Nuclear Physics B 840 (2010) 214–270 235
(gΠ1 · · ·gΠk
). The terms RgΠ1 ···gΠk

are the leading terms of the higher dimensional scalar inte-
grals in the limit D → 4,

RfΠ1 fΠ2 fΠ3 fΠ4
= −1

6
,

RfΠ1 fΠ2 fΠ3
= 1

2
,

RfΠ1 fΠ2
= − (KΠ1 − KΠ2)

2

6
+

m2
fΠ1

+ m2
fΠ2

2
,

RfΠ1
= 0. (57)

The scalar master integrals

IfΠ1 ···fΠk
= Ik(KΠ1 , . . . ,KΠk

,mfΠ1
, . . . ,mfΠk

), (58)

can be evaluated by e.g. using the numerical package developed in Ref. [50]. In Eq. (56) the coef-

ficients C̄ and ¯̄C are determined by applying Eqs. (50) and (51) using a numerical algorithm. The
¯̄C coefficients are generated due to the dimensional regularization procedure and are associated

with the higher dimensional terms in the parametric forms.

4.2. Numerical results for the virtual corrections of n-gluon scattering

We have applied the formalism of the previous sections to multi-gluon scattering. In this
case, Eq. (46) simplifies, since only gluons can occur as internal particles. Therefore, no cuts on
massive propagators have to be considered, tadpole contributions vanish (k � 2) and the propa-
gator flavor sum reduces to one term. Starting from these simplifications we have extended the
implementation presented in Ref. [37]. Three major changes are required to alter this generalized-
unitarity based algorithm (and similar ones) for the evaluation of color-ordered amplitudes to a
numerical algorithm capable of calculating color-dressed one-loop amplitudes. First, in the de-
composition of the one-loop integrands (cf. Eq. (3) of Ref. [37] and Eq. (46)), all sums over
ordered cuts have to be replaced by sums over partitions, which include all configurations ob-
tained by non-cyclic and non-reflective permutations:∑

[i1|ik]
→

∑
RPπ1 ···πk

(1...n)

. (59)

Note that [i1|ik] = 1 � i1 < i2 < · · · < ik � n. Second, the tree-level amplitudes occurring in
the determination of the integrand’s residues have to be calculated from color-dressed recursion
relations. In addition, one not only has to sum over the internal polarizations of the gluons but
also over their internal colors when computing these residues. Third, gluon bubble coefficients
need to be supplemented by a symmetry factor of 1/2!. The appearance of the symmetry factor
is associated with the parametrization ambiguity of the subtraction terms in the double cuts. For
example, Eq. (50) gives for one of the double cuts in 4-gluon scattering

P2( �Cg12g34 | �) = Resg12g34

(
A(1)(g1,g2,g3,g4 | �))

− P3( �Cg1g2g34 | �) − P3( �Cg2g1g34 | �) − P3( �Cg3g4g12 | �)

dg1(�) dg2(�) dg3(�)
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− P3( �Cg4g3g12 | �)
dg4(�)

− P4( �Cg1g2g3g4 | �)
dg1(�)dg123(�)

− P4( �Cg2g1g3g4 | �)
dg2(�)dg213(�)

− P4( �Cg1g2g4g3 | �)
dg1(�)dg124(�)

− P4( �Cg2g1g4g3 | �)
dg2(�)dg214(�)

= Resg12g34

(
A(1)(g1,g2,g3,g4 | �))

− P3( �Cg1g2g34 | �)
dg1(�)

− P3( �Cg1g2g34 | −� + K1 + K2)

dg1(−� + K1 + K2)

− P3( �Cg3g4g12 | �)
dg3(�)

− P3( �Cg3g4g12 | −� + K3 + K4)

dg3(−� + K3 + K4)

− P4( �Cg1g2g3g4 | �)
dg1(�)dg123(�)

− P4( �Cg1g2g3g4 | −� + K1 + K2)

dg1(−� + K1 + K2)dg123(−� + K1 + K2)

− P4( �Cg1g2g4g3 | �)
dg1(�)dg124(�)

− P4( �Cg1g2g4g3 | −� + K3 + K4)

dg1(−� + K3 + K4)dg124(−� + K3 + K4)
. (60)

We see that each of the four possible parametrized terms is subtracted twice but with a different
choice of the loop momentum. The symmetry factor of 1/2! “averages” over the double subtrac-
tions.

The results of the new formalism have been verified by applying the usual consistency checks
such as solving for the master-integral coefficients with two independent sets of loop momenta.
They indeed can be tested more thoroughly: for a given color configuration, the value of the
double pole (dp) can easily be cross-checked against the analytic result

M(1)
dp,th = −cΓ

ε2
nNC M(0). (61)

In principle, the single poles are also known analytically. Here, we will however use the already
validated ordered algorithm of Ref. [37] to compute the full one-loop amplitude of a certain color
and helicity (polarization) configuration for a given point in phase space including the singular
terms. Following the color-decomposition approach, we can analytically calculate the necessary
color factors and sum up all relevant orderings to obtain the full result. In particular, we have
employed:

M(1)(g1, . . . ,gn)

=
∑

P(2···n)

A(1)i1···in
j1···jn

(
g

λ1
1 , . . . , gλn

n

)

=
∑

P(1···n−1)

[
NC
1···n +

int(n/2)∑
k=1

n−k+1∑
m1=1

· · ·
n∑

mk=mk−1+1

(−1)k
m1···mk

1··· /m1··· /mk ···n

]

× m(1)(12 · · ·n) (62)

where


12···n = δ
i1
j2

δ
i2
j3

· · · δin−1
jn

δ
in
j1

. (63)

For example,
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Table 3
The number of cuts required for the calculation of one ordered n-gluon amplitude. The column labelled “total” gives the
number of cuts when calculating all (n − 1)!/2 ordered amplitudes needed to reconstruct the full virtual correction. The
last two columns list the number of non-zero color-weight orderings for two special color configurations given in the
text.

Ordered cuts

# 5-gon
cuts

box
cuts

triangle
cuts

bubble
cuts

sum sumn
sumn−1

total = sum ×
#orderings

#orderings
= (n − 1)!/2

N(ab)k
=

(n − 2)!
N(cd)k

n

4 0 1 4 2 7 21 3 2 3
5 1 5 10 5 21 3.00 252 12 6 7
6 6 15 20 9 50 2.38 3000 60 24 22
7 21 35 35 14 105 2.10 37,800 360 120 40
8 56 70 56 20 202 1.92 509,040 2520 720 144
9 126 126 84 27 363 1.80 7,318,080 20,160 5040 756

10 252 210 120 35 617 1.70 111,948,480 181,440 40,320 2688
11 462 330 165 44 1001 1.62 1,816,214,400 1,814,400 362,880
12 792 495 220 54 1561 1.56 31,155,062,400 19,958,400 3,628,800

M(1)(g1,g2,g3,g4,g5) =
∑

P(2345)

A(1)(g1,g2,g3,g4,g5)

=
∑

P(2345)

(NC
12345 − 
1
2345 − 
2
1345 − 
3
1245

− 
4
1235 − 
5
1234 + 
12
345 + 
13
245 + 
14
235

+ 
15
234 + 
23
145 + 
24
135 + 
25
134 + 
34
125

+ 
35
124 + 
45
123)m
(1)(12345). (64)

Compared to the LO color-ordered decomposition, Eq. (27), the NLO color-ordered decompo-
sition leads to many subleading color factors. The number of one-loop ordered amplitudes with
zero color weight is significantly smaller than the corresponding number for tree-level ordered
amplitudes. As a result, the advantages of color dressing become more apparent at the one-loop
level.

4.2.1. Cut configurations of ordered and unordered gluons
For a more quantitative understanding of the one-loop amplitude decomposition, we respec-

tively itemize in Tables 3 and 4 how many cuts need be applied to decompose the color-ordered
and color-dressed one-loop integrands for n external gluons. In both cases we separately list
the numbers of pentagon, box, triangle and bubble cuts and their sum. While for the ordered
cuts these numbers are basically ruled by combinatorics6: C(n,m) = (

n
m

)
with m = 1, . . . ,5; in

the unordered case they are given by the Stirling numbers7 of the second kind, S2(n,m), and
therefore grow more quickly with n than those of the ordered cuts. This is exemplified in the

6 Note that in the pure gluonic setup tadpole cuts are absent; also bubble cuts placing a single gluon on one side of the
cut lead to vanishing master integrals, hence, we only have C(n,2) − n bubble cuts to deal with as shown by the table.

7 More exactly, the number of bubble cuts is given by 2n−1 − 1 − n = S2(n,2) − n, since cuts that isolate one gluon
do not contribute. For triangles, boxes and pentagons, we respectively have (3n − 3 · 2n + 3)/6 = S2(n,3), 3S2(n,4)

and 12S2(n,5) cuts where for the determination of the latter two, the recurrence relation S2(n,m) = S2(n− 1,m− 1)+
mS2(n − 1,m) is of help.
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Table 4
The number of cuts needed to calculate color-dressed n-gluon amplitudes. The last three columns give ratios of total num-
bers of cuts required to compute the virtual corrections in both the color-decomposition and color-dressed approaches.
The first of these columns shows the ratios for all generic color orderings whereas the other columns show the ratios for
two specific configurations as given in the text.

Unordered cuts

# pentagon
cuts

box
cuts

triangle
cuts

bubble
cuts

sum
≡ total

sumn
sumn−1

ordr total/unordr total

n orderings (ab)k (cd)k

4 0 3 6 3 12 1.750 1.167 1.750
5 12 30 25 10 77 6.42 3.273 1.636 1.909
6 180 195 90 25 490 6.36 6.122 2.449 2.245
7 1680 1050 301 56 3087 6.30 12.24 4.082 1.361
8 12,600 5103 966 119 18,788 6.09 27.09 7.741 1.548
9 83,412 23,310 3025 246 109,993 5.85 66.53 16.63 2.495

10 510,300 102,315 9330 501 622,446 5.66 179.9 39.97 2.664
11 2,960,760 437,250 28,501 1012 3,427,523 5.51 529.9 106.0
12 16,552,800 1,834,503 86,526 2035 18,475,864 5.39 1686 306.6

“sumn/sumn−1” columns of the two tables. The growth factors slowly decrease for larger n,
approaching the limit of 5 for the color-dressed case. As emphasized in Table 4 the pentagon-
cut calculations dominate in this case over all other cut evaluations. The large-n growth of
the total cut number is hence described by that of S2(n,5) leading to the observed large-n
scaling of 5n. Using the color-decomposition approach, we have to deal with much fewer
cuts per ordering. However, the total number of ordered cuts is obtained only after multiply-
ing with the relevant number of orderings. When considering all possible (n − 1)!/2 order-
ings, the final numbers are given in column “total” of Table 3. The last three columns show
the number of generic orderings and the numbers N of non-vanishing orderings (i.e. those
having non-zero color factors) for two color configurations (ab)k ≡ (13)(31)(11) . . . (11) and
(cd)k ≡ (22)(12)(23)(31)(11)(22)(33)(11)(22) . . . .8 Of course, for a fair comparison between
the ordered and dressed approach, the latter two columns are of higher interest, since zero color
weights are not counted. Still, the ratios of total numbers of ordered versus unordered cuts is
always larger than one as can be read off the last three columns of Table 4. Keeping in mind the
greater cost of evaluating dressed recursion relations, the color-decomposition approach can be
expected to outperform the dressed method as long as these ratios remain of order O(1). This in
particular is true for simple color configurations such as (cd)k .

4.2.2. General test setup
The analytic knowledge of M(1)(g1, . . . ,gn) presented in Eq. (62) enables us to perform

stringent tests of our algorithm and its implementation. We consider 2 → n − 2 processes where
the gluons have possible polarization states λk ∈ {+,−} and colors (ij)k where ik, jk ∈ {1,2,3}
and k = 1, . . . , n, i.e. we make use of the color-flow notation. Our n-gluon results are given
in the 4-dimensional helicity (FDH) scheme [49]. In almost all cases, we compare our new
method labelled by “drss” with the color-decomposition approach, which – since it makes use
of the ordered algorithm – we denote “ordr”. We will present all our results for two choices of

8 The first four colors are always fixed, supplemented by the repeating sequence (11)(22)(33) according to
the number of gluons, i.e. for n = 5 we have (cd)k ≡ (22)(12)(23)(31)(11), while for n = 9 we use (cd)k ≡
(22)(12)(23)(31)(11)(22)(33)(11)(22).
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Table 5
Computer times τn in seconds obtained from the 4- and 5-dimensional evaluation of n-gluon virtual corrections at two
random phase-space points a and b using a 3.00 GHz Intel Core2 Duo processor. The results are shown for both the
color-ordered and color-dressed method. All virtual corrections were evaluated twice to check for the consistency of
the solutions. The n gluons have colors (ab)k and polarizations κk as specified in the text. Also given are the ratios

rn = τn/τn−1 where τn is the time to compute the correction for n gluons, in particular τn = (τ
(a)
n + τ

(b)
n )/2. The τn

ratios of the ordered versus dressed method are depicted in the respective last column of the 4- and 5-dimensional case.

n 4D-case 5D-case

ordr drss ordr
drss

ordr drss ordr
drss

τ
(a)
n τ

(b)
n rn τ

(a)
n τ

(b)
n rn τ

(a)
n τ

(b)
n rn τ

(a)
n τ

(b)
n rn

4 0.027 0.026 0.061 0.062 0.43 0.053 0.052 0.139 0.140 0.38
5 0.159 0.161 6.04 0.368 0.364 5.95 0.44 0.415 0.412 7.88 1.026 1.029 7.37 0.40
6 1.234 1.235 7.72 2.152 2.146 5.87 0.57 3.887 3.928 9.45 7.137 7.124 6.94 0.55
7 12.07 12.00 9.75 13.06 13.08 6.08 0.92 41.66 41.61 10.7 49.62 49.85 6.98 0.84
8 131.2 131.3 10.9 80.22 80.53 6.15 1.6 493.2 498.6 11.9 348.0 346.9 6.99 1.4
9 1579 1563 12.0 511.6 507.8 6.34 3.1 6316 6296 12.7 2466 2470 7.10 2.6

10 20,900 20,480 13.2 3640 3629 7.13 5.7 88,320 88,810 14.0 21,590 21,620 8.75 4.1

loop-momentum and spin-polarization dimensionalities D and Ds : the “4D-case” is obtained
by setting D = Ds = 4 and sufficient when merely calculating the cut-constructible part (ccp)
of the one-loop amplitude. The “5D-case” specified by D = Ds = 5 allows us to determine the
complete result including the rational part. In NLO calculations one identifies the momenta of
the external gluons with those of well separated jets. We therefore apply cuts on the generated
k = 1, . . . , n phase-space momenta (l = 3, . . . , n):

|ηl | < 2, p⊥,l > 0.1|E1 + E2|, 
Rkl > 0.7, (65)

where ηl and p⊥,l respectively denote the pseudo-rapidity and transverse momentum of the l-th
outgoing gluon; the 
Rkl describe the pairwise geometric separations in pseudo-rapidity and
azimuthal-angle space of gluons k and l. We perform a series of studies in the context of double-
precision computations: we investigate the accuracies with which the double pole, single pole
(sp) and finite part (fp) of the full one-loop amplitudes are determined by our algorithm. We
also examine the efficiency of calculating virtual corrections by means of simple phase-space
integrations. To begin with, we will verify the expected exponential scaling of the computation
time for different numbers of external gluons.

4.2.3. Scaling of the algorithm for n-gluon one-loop amplitudes
The scaling of the computer time can roughly be estimated by (f × Cmax)

n. The constants
Cmax = 5(4) and 1 < f � 4 express the fact that the number of pentagon (box) cuts and
the exponential scaling with n of the tree-level color-dressed recursion relation respectively
govern the asymptotic scaling behavior of the unordered algorithm. Although one naively ex-
pects f = 4, this factor is reduced by the efficient re-use of gluon currents among different
cuts. The Cn

max growth of the number of cuts reflects the large-n limit of the Stirling number
S2(n,Cmax). We show four tables summarizing our results for the computation times τn of ob-
taining M(1)(g1, . . . ,gn) = M(1)

n (λk, (ij)k) by using two independent solutions of the unitarity
constraints. The time for the re-computation has been included in τn. In real applications such a
consistency check will become unnecessary, thereby halving the evaluation time per phase-space
point. Table 5 lists the times obtained by running the 4- and 5-dimensional algorithms for the
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Table 6
Computer times τn in seconds for the same settings as used in Table 5, this time using a 2.66 GHz Intel Core2 Quad pro-
cessor. The rightmost part of the table depicts the ratios of 4- versus 5-dimensional computer times for both approaches.

n 4D-case 5D-case 4D/5D

ordr drss ordr drss ordr drss

τ
(a)
n τ

(b)
n rn τ

(a)
n τ

(b)
n rn τ

(a)
n τ

(b)
n rn τ

(a)
n τ

(b)
n rn

4 0.030 0.030 0.069 0.070 0.059 0.059 0.156 0.157 0.51 0.44
5 0.180 0.179 5.98 0.418 0.413 5.98 0.464 0.465 7.87 1.150 1.148 7.34 0.39 0.36
6 1.384 1.383 7.71 2.419 2.410 5.81 4.370 4.340 9.38 8.036 7.996 6.98 0.32 0.30
7 13.53 13.52 9.78 14.64 14.65 6.07 46.65 46.40 10.7 56.06 55.99 6.99 0.29 0.26
8 147.2 147.5 10.9 90.48 91.60 6.22 550.9 549.5 11.8 395.2 391.9 7.02 0.27 0.23
9 1766 1764 12.0 585.9 585.0 6.43 7013 7029 12.8 2844 2845 7.23 0.25 0.21

10 23.100 22,830 13.0 4233 4208 7.21 98,760 98,360 14.0 24,220 24,410 8.55 0.23 0.17

calculation of two random phase-space points labelled “a” and “b”. The n gluons have colors
(ij)k = (ab)k and alternating polarizations λk = κk ≡ + − · · · + −(+). Owing to the absence
of pentagon cuts we find that the “4D-case” calculations are faster. More importantly, the com-
putation time does not vary when the n-gluon kinematics changes. Hence, we can calculate the
ratios rn = τn/τn−1 by defining τn = (τ

(a)
n + τ

(b)
n )/2 and show these ratios in the table. While

for the dressed algorithm these ratios are almost stable, they are larger and increase gradually
for the method based on ordered amplitudes. This reflects the (n − 2)! factorial growth of the
number of non-vanishing orderings of the color configuration (ab)k as given in Table 3. For the
dressed approach, we find constant ratios of rn ≈ 6 and rn ≈ 7 in the “4D-case” and “5D-case”,
respectively. This manifestly confirms our expectation of exponential scaling. The difference
between the 4- and 5-dimensional ratios obviously arises because of the absence of pentagon
cuts in the “4D-case”. The r10 ratios do not fit the constant trend. We cannot exclude though
that this is a consequence of the occurrence of large structures of maps to store the vast number
of color-dressed coefficients. The increasing number of higher-cut subtractions terms may also
cause deviations from the expected scaling, which we derived from our simple arguments stated
above. Also, the conceptually easier way of storing all coefficients and calculating the largest-m
cuts first is by far not the most economic in terms of memory consumption.9 For small n, the
lower complexity of the ordered recurrence relation facilitates a faster calculation of the virtual
corrections through ordered amplitudes. The turnaround appears for 7 < n < 8 and is just slightly
above n = 7 for the “4D-case”. With n � 8 the dressed method becomes superior owing to the
different growth characteristics of the two approaches. This is neatly expressed by the “ordr/drss”
ratios given in Table 5.

We have cross-checked the measured computation times in a different processor environment
using exactly the same settings. The results are shown in Table 6 and consistent with those of
Table 5. Instead of the “ordr/drss” ratios, here we list ratios comparing the 4- and 5-dimensional
computation for both approaches. They stress the relative importance of the pentagon-cut evalu-
ations, which start to dominate the full calculation when n gets large.

In Table 7 we detail computation times when varying the polarizations of the n gluons while
keeping their color configuration fixed. We have chosen the two settings λk = σk ≡ + + −· · ·−
and, as before, λk = κk . In terms of colors we consider the computationally less involved point

9 It is for this reason that our calculations are currently limited to n = 12 in the “4D-case” and n = 10 in the “5D-case”.
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Table 7
Computer times τn in seconds obtained for the color-ordered and color-dressed evaluation of n-gluon virtual corrections
in 4 and 5 dimensions using a 3.00 GHz Intel Core2 Duo processor. Results are shown for two different polarization
choices σk and κk . The virtual corrections were computed at the same random phase-space point with the n-gluon colors

set to (cd)k . The choices are specified in the text. Ratios rn = τn/τn−1 are given where τn = (τ
(σk)
n + τ

(κk)
n )/2 is the

time to evaluate the correction for n gluons two times. The re-computation is used to check both solutions for their
consistency. The τn ratios of the ordered versus dressed method are depicted in the respective last column of the 4- and
5-dimensional case.

n 4D-case 5D-case

ordr drss ordr
drss

ordr drss ordr
drss

τ
(σk)
n τ

(κk)
n rn τ

(σk)
n τ

(κk)
n rn τ

(σk)
n τ

(κk)
n rn τ

(σk)
n τ

(κk)
n rn

4 0.049 0.045 0.074 0.076 0.63 0.088 0.085 0.153 0.155 0.56
5 0.186 0.185 3.95 0.364 0.364 4.85 0.51 0.479 0.483 5.56 1.000 1.000 6.49 0.48
6 1.186 1.182 6.38 2.071 2.068 5.69 0.57 3.629 3.586 7.50 6.805 6.752 6.78 0.53
7 4.185 4.277 3.57 11.82 11.77 5.70 0.36 14.02 13.95 3.88 44.42 44.46 6.56 0.31
8 27.12 26.96 6.39 70.34 71.10 6.00 0.38 98.52 99.13 7.07 294.8 297.8 6.67 0.33
9 245.0 242.9 9.02 443.8 445.5 6.29 0.55 960.3 954.8 9.69 2080 2070 7.00 0.46

10 1442 1446 5.92 3265 3270 7.35 0.44 5943 5968 6.22 18,610 18,480 8.94 0.32
11 28,670 28,690 8.78

6 2.044 5.62
7 11.66 5.70
8 68.85 5.90
9 420.4 6.11

10 2972 7.07
11 26,310 8.85
12 292,000 11.1

(ij)k = (cd)k . Both amplitudes are calculated at the same random phase-space point “c” dis-
similar from the points “a” and “b” previously used. For none of the four calculations, we notice
manifest deviations in the times τ

(λk)
n associated with the two polarization settings. When inspect-

ing the “ordr/drss” ratios, we observe that the ordered approach is advantageous in cases where
only a few orderings contribute to the result of a certain point in color space. The fluctuations seen
in the growth factors mirror the unsteady increase with n in non-zero orderings as depicted in
the last column of Table 3. For the dressed approach, we get similar, though somewhat smaller,
growth factors compared to the previous test. In order to validate the dressed algorithm up to
n = 12 external gluons, we introduced a few more optimizations specific to the 4-dimensional
calculations.10 The lower part of Table 7 shows the computer times obtained after the optimiza-
tion. They are consistent with our previous findings. As mentioned before, rn�10 > 6 likely occur
for reasons of increasingly complex higher-cut subtractions and computer limitations in dealing
with large memory structures.

For the calculation of the virtual corrections, one might question whether there exist enough
points in color space that occur with many trivial orderings. If so, the color-decomposition based
method would be more efficient on average. This is not the case for larger n as shown in Table 8.
For gluon multiplicities of n = 4, . . . ,10 and polarizations set according to κk , we list mean com-
putation times, growth factors, “ordr/drss” and “4D/5D” ratios obtained for one-loop amplitude
evaluations where the phase- and color-space points have been chosen randomly. Following the

10 Some parts of the algorithm can be speed up once pentagon cuts are completely avoided.
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Table 8
Color-configuration averaged computation times τn in seconds obtained from the 4- and 5-dimensional color-ordered
and color-dressed evaluations of n-gluon virtual corrections using 2.66 GHz Intel Core2 Quad processors. Results are
shown for random phase- and color-space points and alternating gluon polarizations λk = κk , see text. The respective
growth factors rn = τn/τn−1 are given where τn denotes the time needed to calculate the n-gluon one-loop amplitude
two times. The re-computation is used to check the two solutions for their consistency. Several time ratios are formed
and given in the respective columns to compare the ordered with the dressed method and the 4- with the 5-dimensional
computation.

n 4D-case 5D-case 4D/5D

ordr drss ordr
drss

ordr drss ordr
drss

ordr drss

τn rn τn rn τn rn τn rn

4 0.026 0.062 0.42 0.065 0.151 0.43 0.40 0.41
5 0.222 8.54 0.394 6.35 0.56 0.615 9.46 1.139 7.54 0.54 0.36 0.35
6 1.863 8.39 2.378 6.04 0.78 5.544 9.01 7.970 7.00 0.70 0.33 0.30
7 15.06 8.08 14.58 6.13 1.03 50.41 9.09 56.94 7.14 0.89 0.30 0.26
8 129.2 8.58 93.09 6.38 1.39 476.7 9.46 401.5 7.05 1.19 0.27 0.23
9 1127 8.72 603.6 6.48 1.87 4483 9.40 2800 6.97 1.60 0.25 0.22

10 10,980 9.74 3961 6.56 2.77 50,260 11.2 25,140 8.98 2.00 0.22 0.16

Table 9
Parameter values a and b obtained from curve fitting of the computation times τn to the functional form of τn = abn . The
results are given for the three different n-gluon color assignments used in Table 5 (hard), Table 7 (simple) and Table 8
(random) and for all four algorithms, the 4- and 5-dimensional color-ordered and color-dressed algorithm.

configuration: hard colors (ab)k simple colors (cd)k random non-zero colors

fit values: a/10−6 sec b a/10−6 sec b a/10−6 sec b

4D, ordr 1.91 9.75 +0.59
−0.56 34.5 5.65 +0.32

−0.30 4.67 8.57 +0.10
−0.09

5D, ordr 2.66 10.99 +0.48
−0.46 45.6 6.39 +0.29

−0.28 7.84 9.46 +0.13
−0.12

4D, drss 39.4 6.19 +0.09
−0.08 28.2 6.51 +0.29

−0.28 38.7 6.30 +0.04
−0.04

5D, drss 50.8 7.21 +0.10
−0.10 62.5 6.92 +0.08

−0.09 53.3 7.28 +0.11
−0.09

method outlined in Section 3.3, we only considered non-zero color configurations. We averaged
over many events, for n = 4, . . . ,10 gluons, we used O(106), . . . , O(102) points. We observe
that the pattern of the results in Table 8 resembles that found in Tables 5 and 6 where we have
studied the more complicated color point (ik)k = (ab)k . The ratios comparing the ordered and
dressed approach are smaller with respect to those of Tables 5 and 6. This signals that the mean
number of contributing orderings is somewhat lower than for the (ab)k case. We finally report
dressed growth factors that are consistent with our previous findings confirming the approximate
6n and 7n growths in computational complexity of the new method for the 4- and 5-dimensional
case, respectively.

Using the results of Tables 5, 7 and 8 we have performed fits to the functional form τn = abn.
We show the outcome of the curve fittings in Table 9. Recall that the computation times have been
obtained by using different color assignments for the n gluons. Tables 5 and 7 present results
where we have chosen (ij)k = (ab)k and (ij)k = (cd)k as examples of hard and simple color
configurations, respectively. We have averaged over non-zero color settings to find the results of
Table 8. Considering the performance of the dressed algorithm, we conclude that these data are
in agreement with exponential growth for all color assignments. The errors on the fit parameter b
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Fig. 8. Computation times τn versus the number n of external gluons for the three different gluon color assignments used
in Table 5 (hard), Table 7 (simple) and Table 8 (random). The results reported in these tables are shown for the 4- and
5-dimensional color-ordered and color-dressed algorithms. The solid and dashed curves each represent the outcomes of
the fits listed in Table 9 for both the dressed and ordered approach, respectively.

are relatively small, only the 4-dimensional case of simple colors is somewhat worse because we
included results up to n = 12 where parts of the computation become less efficient as explained
above. The hard- and simple-colors cases of the ordered approach show rather large errors for
the b-parameter signalling that the genuine scaling law is not of an exponential kind in both
cases. Interestingly, one observes an effective exponential scaling when averaging over many
non-zero color configurations. The growth described by the b-parameter is however a good two
units stronger for the ordered approach than the growth seen in the color-dressed approach. To
summarize, we have plotted in Fig. 8 all computer times reported in Tables 5, 7 and 8 as a function
of the number of external gluons in the range 4 � n � 12. We have included in these plots the
curves τn = abn, which we calculated from the respective fit parameters stated in Table 9.

4.2.4. Accuracy of the coefficient determination
In the following we will discuss the quality of the semi-numerical evaluations of M(1)

n am-
plitudes for both the color-ordered and color-dressed approaches. To this end we analyze the
logarithmic relative deviations of the double pole, the single pole and the finite part. Independent
of the number n of gluons, we define them as follows:
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Fig. 9. Relative accuracies of the 1/ε2,1,0 poles of n = 6 gluon one-loop amplitudes as determined by the double-
precision color-dressed algorithm. The gluon polarizations are given by λk = +−+−+− , colors were chosen randomly
among non-zero configurations. Vetoed events are included, only those with unstable ortho-vectors have been left out, see
text for more explanations. The mean accuracies and the number of randomly picked phase-space points are displayed in
the top row and bottom left corner of the plot, respectively.

εdp = log10

|M(1)[1]
dp,num − M(1)

dp,th|
|M(1)

dp,th|
, εs/fp = log10

2|M(1)[1]
s/fp,num − M(1)[2]

s/fp,num|
|M(1)[1]

s/fp,num| + |M(1)[2]
s/fp,num|

, (66)

where the structure of the double-poles M(1)
dp,th is known analytically given by Eq. (61). We use

two independent solutions denoted by [1] and [2] to test the accuracy of the single poles and finite
parts. All results reported here were obtained by using double-precision computations. We have
run all our algorithms by choosing color configurations and phase-space points at random. Colors
are distributed according to the “Non-Zero” method presented in Section 3.3. The phase-space
points are accepted only if they obey the cuts, which we have specified earlier, see Section 4.2.2.
The gluon polarizations are always alternating set by λk = κk . Fig. 9 shows the ε distributions
in absolute normalization, which we obtain from the 5-dimensional color-dressed calculation for
the case of n = 6 external gluons. The number of points used to generate the plots is given in
the bottom left corner, the top rows display the means of the double-, single-pole and finite-part
distributions. Limited to double-precision computations, we find that the numerical accuracy of
our results for M(1)

n is satisfying. With ε peak positions smaller than the respective mean values
〈εd/s/fp〉 < −8, we are able to provide sufficiently accurate solutions for almost all phase-space
configurations.
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Table 10
Fractions of n-gluon events that have a stable set of basis vectors in orthogonal space and also pass the veto on inaccurate
master-integral bubble coefficients when using 
veto = 0.02. In brackets, fractions of n-gluon events that pass the test
for unstable ortho-vectors.

n 4D, ordr 5D, ordr 4D, drss 5D, drss

4 1.0 1.0 1.0 1.0
5 0.992 0.991 0.984 0.984 (0.999)
6 0.960 0.960 0.964 0.972 (0.994)
7 0.872 0.873 0.891 0.892 (0.982)
8 0.635 0.642 0.829 0.825 (0.953)
9 0.182 (0.84) 0.205 (0.81) 0.532 (0.93) 0.533 (0.903)

10 0.0 (0.61) 0.0 (0.50) 0.38 (0.86) 0.33 (0.83)

There is however a certain fraction of events where the single pole and finite part cannot be
determined reliably. These O(100) (out of 79505) events occur because in exceptional cases
small denominators, such as vanishing Gram determinants made of external momenta, cannot
be completely avoided by the generalized-unitarity algorithms. We also see accumulation effects
where larger numbers get multiplied together while determining the subtraction of higher-cut
contributions. Owing to the limited range of double-precision calculations, such effects can lead
to insufficient cancellations of intermediate large numbers that are supposed to cancel out eventu-
ally.11 The current implementation of the algorithm has no special treatment for these exceptional
events. One either has to come up with a more sophisticated method treating these points sepa-
rately or increase the precision with which the corrections are calculated. Both of which is beyond
the scope of this paper and we leave it at vetoing these points. Yet, we need robust criteria that
allow us to keep track of the quality of our solutions: we first test the orthonormal basis vectors
that span the space complementary to the physical space constructed from the external momenta
associated with the particular cut configuration under consideration. Failures in generating these
basis vectors always lead to the rejection of the event.12 In the example of Fig. 9, such events
occurred with a rate of 0.6% and were not included in the plot. Secondly, and more importantly,
we test the reliability of solving the systems of equations to determine the master-integral coeffi-
cients. To this end we generate an extra 4-dimensional loop momentum during the evaluation of
the bubble coefficients establishing the cut-constructible part. Inaccuracies in solving for triangle
etc. coefficients will be also detected, since at this level all higher-cut subtractions are necessary
to obtain the correct value of the bubble coefficients. We use the extra loop momentum to indi-
vidually re-solve for the cut-constructible bubble coefficient and compare this solution with the
one obtained in first place. We veto the event, if the deviation 
veto in the complex plane of the
two solutions exceeds a certain amount. We fix the veto cut at 
veto = 0.02 for this publication.
Having this cross-check at hand, we gain nice control over the events populating the tail of the
accuracy distributions in Fig. 9. Applying the veto, we arrive at the distributions presented in the
top left plot of Fig. 12 where the steeper tails clearly demonstrate the effect of the veto. Certainly,
both these shortcomings of imprecise ortho-vectors and inaccurately solved coefficients can be
lifted by switching to higher precision whenever the respective double-precision evaluations have
not passed our criteria. Accordingly, Table 10 quantifies the fractions of events, which are within

11 More detailed explanations can be found in Ref. [37].
12 We test in particular whether the normalization of the orthonormal basis vectors deviates less than 10−12 units from
one.
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the scope of the color-dressed and color-ordered algorithms presented here. Owing to the more
complicated event structures, the fraction of rejected events increases with n, where most of the
events fail the bubble-coefficient test. We observe that the loss of events is more severe for the
ordered algorithm.

In the upper part of Figs. 10–16 we show the distributions of relative accuracies ε as occurring
in the evaluation of gluon loop corrections with n = 4, . . . ,9 external gluons. The lower part
of these figures and Figs. 17 and 18 themselves depict scatter graphs visualizing the relative
accuracies as a function of the size of the virtual corrections for the single-pole and finite-part
contributions only, as the double-pole contribution has no observable variance. This form of
presenting the results has information on whether certain points dominate the uncertainty of the
total correction when averaging over the phase space. The r-variables used in these plots are
defined by

r = 1

2π

�(M(0)† M(1))

|M(0)|2 (67)

and represent corrections of the order of αs . Specifically, the r and r ′ given in the plots are
obtained by employing M(1) = M(1)[1]

s/fp,num and M(1) = M(1)[2]
s/fp,num, respectively. In all cases we

have rejected events with unreliable basis vectors in orthogonal space. Except for the results
presented in Fig. 18, we have vetoed all events that led to unstable solutions of the bubble master-
integral coefficient using 
veto = 0.02. The statistics concerning these rejections is shown in
Table 10.

We compare in all plots of Figs. 10–16 the color-dressed with the color-ordered approach
where the results of the latter are indicated by dashed curves in the spectra (with the 〈ε〉 given
by the lower top row of numbers) and brighter points in the scatter graphs. The ε spectra of the

Fig. 10. Double-, single-pole and finite-part accuracy distributions (upper part) and scatter graphs (lower part) extracted
from double-precision computations of one-loop amplitudes for n = N= 4 gluons with polarizations λk = + − + − and
randomly chosen non-zero color configurations. The virtual corrections were calculated at random phase-space points
satisfying the cuts detailed in the text. Unstable solutions were vetoed. Results from the color-dressed algorithm are
compared with those of the color-ordered method indicated by dashed curves and brighter dots in the plots. The 5(4)-
dimensional case is shown in the top left (right) and center (bottom) part of the figure. The definitions of ε and r are
given in the text. All scatter graphs contain 2 × 104 points.
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Fig. 10. (continued)

“5D-case” (“4D-case”) are always shown in the top left (right) parts of the figures; the associated
scatter graphs are compiled in the center (bottom) parts. In Fig. 17 we present our results for
n = 10 gluons where for reasons of limited statistics we solely show the scatter graphs related
to the dressed method. The veto procedure has a very strong impact on M(1)

9,10 calculations. For
the purpose of direct comparisons between vetoed and non-vetoed samples, we have added in
Fig. 18 scatter plots that include vetoed events.

In all cases we notice that the double poles are obtained very accurately with almost no loss
in precision for increasing number of gluons. The n-dependence of the single-pole and finite-
part precisions is not as stable as for the double pole. We see noticeable shifts of the peak and
mean positions towards larger values when incrementing the number of external gluons. Be-
cause of the introduced veto procedure, the distribution’s tails are under better control falling
off more quickly around ε ≈ −2. In rare cases worse accuracies occur, which happens more
frequently for the 5-dimensional calculations. We can avoid these cases, if we extend the veto
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criteria by re-solving for and testing the rational bubble coefficient as well. For n � 9, the lim-
itations of double-precision computations unavoidably lead to rather unreliable single-pole and
finite-part determinations. As an interesting fact, we observe that the color-dressed method yields
throughout results of higher precision. Moreover, the decrease in accuracy for growing n is more
moderate compared to the method based on color ordering. Clearly, on the one hand the ordered
algorithm has to be run for many orderings and may therefore lead to an accumulation of small
imprecisions. On the other hand a rather inaccurate determination of m(1) may appear just for a
single ordering, in turn spoiling the overall result. Both effects make the ordered approach less
capable of delivering accurate results. Turning to the scatter plots, we find that the most accurate
but also inaccurate evaluations occur for points distributed near the vertical line of O(1) correc-
tions. It is very encouraging that all top right quadrants are rather sparsely populated, dispelling
the doubts that insufficiently determined large corrections may dominate our final results. The
scatter regions of the double-pole solutions remain almost unchanged for larger n, while those
of the single poles and finite parts are slightly growing gradually shifting towards lower relative
accuracies. The scatter patches of the dressed method are displaced with respect to those of the
color-decomposition approach: advantageously, they cover regions of greater precision, in par-
ticular populate the bottom right quadrants more densely. Due to the simplicity of the 4-gluon
kinematics, the case of n = 4 gluons stands out from the rest: the single pole and finite part can
be obtained with almost the same accuracy as the double pole. This feature is preserved even if
rational-part calculations are included. With 5 gluons or more it is common that all coefficients
contribute to the decomposition of the one-loop amplitude. The relative accuracies of the single
poles and finite parts therefore develop a much different, less steeper, tail compared to the dou-
ble poles. There are almost no differences between the double- and single-pole results obtained
from the 4- and 5-dimensional algorithms. This is no surprise, since the coefficients necessary

Fig. 11. Double-, single-pole and finite-part accuracy distributions (upper part) and scatter graphs (lower part) extracted
from double-precision computations of one-loop amplitudes for n = N= 5 gluons with polarizations λk = + − + − +
and randomly chosen non-zero color configurations. The virtual corrections were calculated at random phase-space
points satisfying the cuts detailed in the text. Unstable solutions were vetoed. Results from the color-dressed algorithm
are compared with those of the color-ordered method indicated by dashed curves and brighter dots in the plots. The
5(4)-dimensional case is shown in the top left (right) and center (bottom) part of the figure. The definitions of ε and r are
given in the text. All scatter graphs contain 2 × 104 points.



W.T. Giele et al. / Nuclear Physics B 840 (2010) 214–270 249
Fig. 11. (continued)

to reconstruct these poles can be determined in 4 dimensions and our algorithms have been set
up accordingly. In the absence of rational-part calculations it turns out that the finite parts may
on average be obtained slightly more precisely than the single poles. The tails of the 1/ε spectra
reach out to the largest ε-values occurring in the evaluation of the cut-constructible part. The
behavior is reversed in the 5-dimensional case owing to the addition of the rational part. For the
same reason, we note increased 〈εfp〉 in the “5D-case”, furthermore, the 5-dimensional scatter
graphs show higher densities with respect to the 4-dimensional ones at lower accuracies.

As a special case of Fig. 12 we have displayed in Fig. 13 accuracy distributions and scatter
plots for n = 6 gluons of polarizations λk = ++−−−− where instead of using random color-
space points the fixed non-zero color configuration (ij)k = (12)(21)(13)(31)(11)(22) has been
selected. We notice that all ε-spectra are shifted towards smaller accuracies. Also, as illustrated
by the scatter graphs, the magnitude of the virtual corrections is bound at O(1) with the exception
of the finite piece of the cut-constructible part of the one-loop amplitudes. Interestingly, this is
corrected back by adding in the rational part.
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In Ref. [37] it was shown that the finite-part accuracy of the evaluation of ordered amplitudes
is mostly correlated with that of the single poles. We have studied this issue for the dressed
algorithm in the “5D-case”. The corresponding scatter plots also include the vetoed events and
are presented in Fig. 19. The multitude of points is distributed along the diagonal indicating a
strong correlation. As for color-ordered amplitudes the evaluation of the rational part becomes
more involved with increasing gluon numbers. Therefore, regions of lower finite-part precision
start to get populated distorting the diagonal trend.

4.2.5. Convergence of Monte Carlo phase-space integrations using color sampling
Finally, we want to show that the Monte Carlo sampling as defined in Eq. (44) converges

sufficiently fast for the color-dressed calculated virtual corrections. To this end we generalize the
LO discussion following Eq. (35) with the details given in Section 3.3. The relevant quantity to
explore in the Monte Carlo averaging is

S
(0+1)
MC = 1

Ncolpts

Ncolpts∑
k=1

Wcol(n1, n2, n3) ×
[∣∣M(0)

k

∣∣2 + α̂s

2π
�(

M(1)
fp,k M(0)

k

†)]
(68)

where we choose α̂S = 0.12 and M(1)
fp,k is the finite part of the virtual corrections. The sum over

the Ncolpts color configurations for each phase-space point is an optional “mini-Monte Carlo”
over colors for faster convergence as a function of the number of phase-space point evaluations.
By adding the real corrections to Eq. (68) and performing the coupling constant renormalization
and mass factorization, one obtains the gluonic contribution to the NLO multi-jet differential
cross section. Therefore, the convergence of Eq. (68) is the relevant quantity to study.

Fig. 12. Double-, single-pole and finite-part accuracy distributions (upper part) and scatter graphs (lower part) extracted
from double-precision computations of one-loop amplitudes for n = N= 6 gluons with polarizations λk = +−+−+−
and randomly chosen non-zero color configurations. The virtual corrections were calculated at random phase-space
points satisfying the cuts detailed in the text. Unstable solutions were vetoed. Results from the color-dressed algorithm
are compared with those of the color-ordered method indicated by dashed curves and brighter dots in the plots. The
5(4)-dimensional case is shown in the top left (right) and center (bottom) part of the figure. The definitions of ε and r are
given in the text. All scatter graphs contain 2 × 104 points.
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Fig. 12. (continued)

By defining the n-gluon color-summed counterpart of S
(0+1)
MC ,

S
(0+1)
col =

3∑
i1,...,in=1

3∑
j1,...,jn=1

[∣∣M(0)
∣∣2 + α̂s

2π
�(

M(1)
fp M(0)†)]

, (69)

we can form the ratios

R(0+1) =
〈S(0+1)

MC 〉 ± σ〈S(0+1)
MC 〉

〈S(0+1)
col 〉

, R(V) =
〈S(0+1)

MC 〉 ± σ〈S(0+1)
MC 〉

〈S(0)
col 〉

(70)

analogously to Eq. (39). We define the mean values and standard deviations of the ratios similarly
to Eqs. (37) and (38), respectively. Note that S

(0)
col is already defined at LO by Eq. (36). As we

increase the number of Monte Carlo points, NMC, the R(V)-ratios quantify the relative importance
of the virtual corrections, while the R(0+1)-ratios should converge to one. For the latter, this is
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nicely demonstrated in Fig. 20 for the 4-gluon virtual corrections and the “Non-Zero” sampling
scheme as described in Section 3.3. Including the error on the average color sum we obtain after
15,900 events 〈S(0+1)

MC 〉/〈S(0+1)
col 〉 = 0.939 ± 0.039(MC) ± 0.028(col), which is satisfactory for

this consistency check. Similarly to the tree-level case in Fig. 21 we again look separately at the
relative errors of the two Monte Carlo averages that make up the R-ratios. The two curves at
the bottom of the upper panel represent how σ〈S(0+1)

MC 〉/〈S
(0+1)
MC 〉 and σ〈S(0+1)

col 〉/〈S
(0+1)
col 〉 behave for

the results presented in Fig. 20. We notice that, as at tree level, the color sampling introduces an
additional uncertainty on top of the uncertainty given by the pure phase-space integration. For
the examples of 4- and 5-gluon scatterings, Fig. 21 also depicts as functions of NMC the relative
errors of the averages 〈S(0+1)

MC 〉 and 〈S(0)
col 〉 that feed into the corresponding R(V)-ratios. In all these

cases we find that the Monte Carlo integration for each average on its own converges sufficiently.
As in the LO discussion we want to illustrate how many events are needed to achieve a certain

relative integration uncertainty when performing the Monte Carlo color sampling. In analogy to
Eq. (40) we can construct the ratio

R
(0+1)
MC (NMC) =

∑NMC
r=1 S

(0+1)
MC,r∑NMC

r=1 S
(0+1)
col,r

(71)

as a function of NMC. Again, it is interesting to change the normalization of the ratio and also
define

R
(V)
MC(NMC) =

∑NMC
r=1 S

(0+1)
MC,r∑NMC

r=1 S
(0)
col,r

(72)

Fig. 13. Double-, single-pole and finite-part accuracy distributions (upper part) and scatter graphs (lower part) as obtained
from double-precision evaluations of one-loop amplitudes for n = N = 6 gluons with polarizations and colors set to
λk = + + − − − − and (ij)k = (12)(21)(13)(31)(11)(22), respectively. The virtual corrections were calculated at
random phase-space points satisfying the cuts detailed in the text. The veto procedure has been applied to reject unstable
solutions. The results given by the color-dressed algorithm are compared with those of the color-ordered method indicated
by dashed curves and brighter dots in the plots. The 5(4)-dimensional case is shown in the top left (right) and center
(bottom) part of the figure. The definitions of ε and r are given in the text. Each scatter graph contains 2 × 104 points.
94.7(94.1)% and 91.2(91.0)% of the events pass all tests in the dressed and ordered “5(4)D-case”, respectively.
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Fig. 13. (continued)

in order to study the impact of the virtual corrections. As before we partition Nevent = Ntrial ×
NMC events to have a certain number of trials to compute the corresponding mean values μ and
standard deviations σ for n-gluon LO and virtual scattering according to Eqs. (41) and (42),
respectively. For the case of R

(0+1)
MC (NMC) and 4-gluon scattering, the number of Monte Carlo

points versus a given relative accuracy is shown in the inlaid plot of Fig. 20. As at LO, the curve
bends behaving as statistically determined after a certain amount of Monte Carlo integration
steps.

To quantify the color-integration performances, we again perform fits to the functional form
A × N−B

MC and show the values of the fitted parameters in Table 11 for the various cases. As
argued in Section 3.3 for large enough NMC, we expect a scaling of σ/μ that is proportional
to 1/

√
NMC. The goodness of the sampling schemes is signified by the A- and A′-parameters,

where the latter is more important since the time factors are included. Smaller values of these
parameters indicate a better efficiency of the sampling procedure.
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Table 11
Parameter values B , A and A′ obtained from curve fitting of the σ(RMC)/μ(RMC) to the functional form A × N−B

MC .
The results are given for the different ways of sampling over colors in n-gluon scattering. The 4-gluon case marked

by “∗” corresponds to the consistency check shown in Fig. 20, where R
(0+1)
MC has been considered. In all other cases

R
(V)
MC has been used, cf. Figs. 22, 23 and 24. Note that for n = 6, we have fitted σ(R

(V)
MC). The parameters A′ = Af B

take into account that the evaluation of a fixed number of Monte Carlo events takes longer for the other than “Naive”
color-sampling methods. The time factors f relative to the “Naive” case are also displayed.

:) Naive Conserved Non-Zero Non-Zero, Ncolpts = 4

n B A B A A′ f B A A′ f B A A′ f

4∗ 0.479 3.36
4 0.497 22.0 0.489 5.41 17.0 10.4 0.476 3.57 13.5 16.4 0.485 2.05 15.6 65.7
5 0.482 59.4 0.454 13.3 43.3 13.5 0.442 9.71 36.4 19.8 0.439 5.56 37.8 79.2
6 0.325 7.08 0.344 5.37 14.0 16.3 0.255 1.60 3.50 21.7 0.233 0.850 2.14 87.6

Using the R(V) and R
(V)
MC(NMC) ratios, we summarize in Figs. 22–25 our Monte Carlo inte-

gration results for n = 4, . . . ,7 gluon scattering processes and for the various color-sampling
schemes. The upper graphs display the averaging of S

(0+1)
MC normalized to the Monte Carlo

average of the color-summed LO contribution as a function of the number of phase-space eval-
uations.13 We also indicate the estimate of the integration uncertainty of the color sampling,

Fig. 14. Double-, single-pole and finite-part accuracy distributions (upper part) and scatter graphs (lower part) extracted
from double-precision computations of one-loop amplitudes for n = N= 7 gluons with polarizations λk = +−+−+−+
and randomly chosen non-zero color configurations. The virtual corrections were calculated at random phase-space
points satisfying the cuts detailed in the text. Unstable solutions were vetoed. Results from the color-dressed algorithm
are compared with those of the color-ordered method indicated by dashed curves and brighter dots in the plots. The
5(4)-dimensional case is shown in the top left (right) and center (bottom) part of the figure. The definitions of ε and r are
given in the text. All scatter graphs contain 2 × 104 points.

13 As for the LO studies in Section 3.3, the gluon polarizations are taken alternating and remain fixed while performing
the Monte Carlo integrations.
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Fig. 14. (continued)

Table 12
Monte Carlo integration results for the R(V) ratios as defined in the text after NMC phase-space point evaluations for
n-gluon scattering and different color-sampling schemes using color-dressed tree-level and one-loop amplitude calcula-
tions. Note that the errors on R(V) indicated by “(col)” arise from the computation of the color-summed average. They
are given in addition to those related to the color sampling.

:) Naive Conserved Non-Zero Non-Zero, Ncolpts = 4

n NMC R(V) NMC R(V) NMC R(V) NMC R(V)

4 4 · 106 0.4739 ± 0.0054
± 0.0011(col)

4 · 106 0.4750 ± 0.0017
± 0.0011(col)

4 · 106 0.4724 ± 0.0013
± 0.0011(col)

1 · 106 0.4738 ± 0.0020
± 0.0022(col)

5 631 K 0.241 ± 0.022
± 0.0024(col)

631 K 0.2673 ± 0.0072
± 0.0023(col)

631 K 0.2744 ± 0.0058
± 0.0024(col)

160 K 0.2790 ± 0.0058
± 0.0044(col)

6 64 K −0.10 ± 0.12
± 0.003(col)

64 K −0.059 ± 0.094
± 0.002(col)

50.2 K −0.076 ± 0.062
± 0.003(col)

16 K −0.044 ± 0.066
± 0.005(col)

7 4 K −0.87 ± 0.66
± 0.07(col)

4 K −0.23 ± 0.09
± 0.02(col)

4 K −0.14 ± 0.10
± 0.01(col)

2 K −0.97 ± 0.65
± 0.19(col)
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σ〈S(0+1)
MC 〉, see Eqs. (70) and (38). The final values for R(V) are listed in Table 12 where in ad-

dition to the errors shown in the plots we have added those emerging from the determination
of the color-sum average. In the lower graphs of Figs. 22–25 we plot the number of phase-
space point evaluations needed to reach a certain relative integration uncertainty on R

(V)
MC(NMC).

We show in Table 11 the results of the curve fittings represented by the dashed lines in these
plots.

As is clear from these Monte Carlo averaging tests and results, the convergence of the integra-
tions is satisfactory and suitable for future applications of the color-dressing techniques in NLO
calculations. If faster sampling convergence is required we can evaluate multiple color config-
urations per phase-space point. This is shown in the graphs, where we have chosen to evaluate
four color configurations at one phase-space point.

5. Conclusions

In this paper we explored the possibility of color sampling within the context of D-dimen-
sional generalized unitarity. Up to now generalized unitarity has only been used within the
context of color-ordered primitive amplitudes. In the color-ordered approach, color is treated
differently from the other quantum numbers such as spin and flavor. This makes the reconstruc-
tion of the full one-loop amplitude rather cumbersome.

We have reformulated the D-dimensional generalized unitarity formalism to include color
dressing. That is, we choose the explicit color of each parton, together with all other quantum
numbers, for each Monte Carlo event. In this way all particles, colored or colorless, are treated

Fig. 15. Double-, single-pole and finite-part accuracy distributions (upper part) and scatter graphs (lower part) extracted
from double-precision computations of one-loop amplitudes for n = N= 8 gluons with polarizations λk = +−+−+−
+− and randomly chosen non-zero color configurations. The virtual corrections were calculated at random phase-space
points satisfying the cuts detailed in the text. Unstable solutions were vetoed. Results from the color-dressed algorithm
are compared with those of the color-ordered method indicated by dashed curves and brighter dots in the plots. The
5(4)-dimensional case is shown in the top left (right) and center (bottom) part of the figure. The definitions of ε and r are
given in the text; the number of points contained by each scatter graph is found in the lower left.
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Fig. 15. (continued)

on an equal footing. There is no distinction between different particles as far as the formalism
goes. Consequently, the resulting algorithm is independent of the type and flavor of the external
particles. E.g. the same algorithm calculates the 6-gluon virtual corrections, the 6-photon virtual
corrections and the W + 6 parton virtual corrections.

The use of unordered amplitudes requires the partition of the external legs into unordered
subsets. This is necessary for the calculation of the tree-level amplitudes as well as for gener-
ating all the unitarity cuts. As a result the complexity of the resulting algorithm is exponential.
That is, the computer time needed to calculate the virtual corrections grows with a constant mul-
tiplicative factor when one adds external particles. In addition, we have to sum over all color
states of the internal lines. One may conclude from these general features that the implemen-
tation of the color-dressed D-dimensional generalized unitarity is less efficient in comparison
with an implementation based on ordered primitive amplitudes. As we have explicitly demon-
strated for the example of calculating the virtual corrections to n-gluon scattering, this is not the
case. We compared the color-sampling approach for both the color-ordered and color-dressed
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case. The calculation of the virtual corrections in the color-dressed case scales as 7n, while in
the color-ordered case the effective scaling up to 10 gluons behaves as 9n. Moreover, the color-
dressed method gives better accuracies compared to the color-ordered evaluations in calculating
the values of the one-loop amplitudes. The improvements become more obvious for an increasing
number n of gluons.

As we showed for n-gluon scattering, the color-dressed approach becomes more efficient
than the color-ordered method for large n. One could argue that the differences are small and
color sampling over the ordered n-gluon amplitudes will work as well. However, when including
quarks and other electro-weak particles the color-dressed approach will easily win out over the
color-ordered approach. This is because any notion of primitive amplitudes is absent. The al-
gorithm simply calculates the virtual correction. Moreover, the color-dressed algorithm remains
identical when including quarks and electro-weak particles. It is this algorithmic simplicity that
will enable us to employ parallel programming to significantly improve the computer evaluation
time.

We conclude that the color-dressed formulation is competitive for calculating one-loop virtual
corrections for n-gluon scattering. It is expected that it will be even more efficient in calculating
virtual corrections for processes involving quarks and electro-weak gauge bosons in addition to
the gluons.
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Fig. 16. Double-, single-pole and finite-part accuracy distributions (upper part) and scatter graphs (lower part) extracted
from double-precision computations of one-loop amplitudes for n = N = 9 gluons with polarizations λk = + − + −
+ − + − + and randomly chosen non-zero color configurations. The virtual corrections were calculated at random
phase-space points satisfying the cuts detailed in the text. Unstable solutions were vetoed. Results from the color-dressed
algorithm are compared with those of the color-ordered method indicated by dashed curves and brighter dots in the plots.
The 5(4)-dimensional case is shown in the top left (right) and center (bottom) part of the figure. The definitions of ε and
r are given in the text; the number of points contained by each scatter graph is found in the lower left.
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Fig. 16. (continued)

Appendix A. The tree-level 6-quark amplitude

As an example we can take a few recursive steps in calculating the 6-quark tree-level matrix
element. We start with the definition of the tree-level matrix element in terms of the 5-quark
fermionic current

M(0)(u, ū,d, d̄, s, s̄) = P −1[J (u, ū,d, d̄, s), J (s̄)
]

(A.1)

where we use the shorthand notation u = u
λ1
i1

(K1), ū = ū
−λ1
j1

(K2), d = d
λ2
i2

(K3), d̄ = d̄
−λ2
j2

(K4),

s = s
λ3
i3

(K5) and s̄ = s̄
−λ3
j3

(K6). The 5-quark fermionic current decomposes into

Js̄(u, ū,d, d̄, s) = Ps̄
[
D

[
J (d, d̄, s), J (u, ū)

]] + Ps̄
[
D

[
J (u, ū, s), J (d, d̄)

]]
+ Ps̄

[
D

[
J (s), J (u, ū,d, d̄)

]]
. (A.2)

The 3-quark fermionic current decomposes into
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Fig. 17. Single-pole and finite-part scatter graphs extracted from the double-precision computation of one-loop ampli-
tudes for n = N = 10 gluons with polarizations λk = + − + − + − + − + − and randomly chosen non-zero color
configurations. The virtual corrections were calculated at random phase-space points satisfying the cuts as described in
the text. Unstable solutions were vetoed and, therefore, not included in the plots. The upper (lower) row of plots shows
the results obtained from the 5(4)-dimensional color-dressed algorithm. For the definition of r , see text. The number of
points contained by each scatter graph can be found in the lower left.

Js̄(q, q̄, s) = Ps̄
[
D

[
J (s), J (q, q̄)

]]
, (A.3)

where q ∈ {u,d} and q̄ ∈ {ū, d̄}. The 1-quark fermionic current is simply the source term. Finally
the 4-quark gluonic current is given by

Jg(u, ū,d, d̄) = Pg
[
D

[
J (u), J (d, d̄,u)

]] + Pg
[
D

[
J (u,d, ū), J (ū)

]]
+ Pg

[
D

[
J (d), J (u, ū,d)

]] + Pg

[
D

[
J (d,u, ū), J (d̄)

]]
, (A.4)

and the 2-quark gluonic current is written as

Jg(q, q̄) = Pg
[
D

[
J (q), J (q̄)

]]
. (A.5)
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Fig. 18. Double-, single-pole and finite-part scatter graphs visualizing the accuracy of double-precision evaluations of
one-loop amplitudes for n = N= 9 and 10 gluons of alternating polarizations. Randomly chosen non-zero color config-
urations were used. Note that unstable solutions were not vetoed and therefore included in this presentation. The virtual
corrections were calculated at random phase-space points satisfying the cuts as described in the text. Results of the
5-dimensional algorithms either based on color ordering (ordr) or color dressing (drss) are shown; for n = N = 9, the
“4D-case” results are also given (ccp only). For the definition of r , see text; axis labels as used in Fig. 17 are understood.
The rightmost graph contains O(20) points per ε-pole, while the left plot of the “5(4)D-case” has approximately 50(120)
points per pole.
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Fig. 19. Finite-part versus single-pole accuracy (in double precision) as achieved in one-loop amplitude calculations
using the color-dressed approach for various numbers n = N of external gluons with polarizations λk = + − · · · + −(+)

and colors randomly chosen among non-zero configurations. Note that unstable solutions have not been vetoed. The
n = N= 9 and n = N= 10 graphs only contain 1.6 · 103 and 87 points, respectively, whereas all other plots comprise 104

points.

The above steps define the 6-quark LO amplitude recursively as would be done by the algorithm.
Note that we have ignored all flavor violating currents.

Appendix B. The implemented gluon recursion relation

Making use of the color-flow representation [43], we define the color-dressed gluon currents
as 3 × 3 matrices of ordered gluon currents:

J (IJ )
μ

(
g

λ1
1

) = δI
j1

δ
i1
J Jμ

(
g

λ1
1

)
, (B.1)

where the external gluon g1 has the polarization λ1 and four-momentum K1, its colors are de-
noted by (ij)1. The color-flow labels of the dressed current are (IJ ) and μ indicates the Lorentz
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Fig. 20. Consistency test for the Monte Carlo integration of 4-gluon virtual corrections using “Non-Zero” color sampling
compared to exact color summing. As a function of the number NMC of evaluated phase-space points the R(0+1)-ratio
is plotted converging to one as it should be – however only the errors due to color sampling are shown, see text for the
details. The inserted plot displays the number of phase-space evaluations needed to reach a given relative accuracy on

R
(0+1)
MC (NMC) while Monte Carlo integrating; cf. Eq. (71). The dashed line depicts the fit function σ/μ = AN−B

MC ; see
also Table 11.

label. Using this definition, the connection to the compact notation introduced in Section 3.1 is
found as

Jg(g1) = δI i1δJj1ελ1
μ (K1) ≡ δJ

j1
δ
i1
I Jμ

(
g

λ1
1

) = J (JI)
μ

(
g

λ1
1

)
. (B.2)

Since we only consider gluons, a plain numbering of the external particles gk = {gk,λk, (ij)k,Kk}
is sufficient and helps simplify the notation such that the color dressing becomes more empha-
sized. Hence, in all what follows we write Jg(1) = δJ

j1
δ
i1
I Jμ(1) = J

(JI)
μ (1). Dressed n-gluon

currents are then described by

J (IJ )
μ (1,2, . . . , n) =

∑
σ∈Sn

δI
jσ1

δ
iσ1
jσ2

· · · δiσn−1
jσn

δ
iσn

J Jμ(σ1, σ2, . . . , σn), (B.3)

which follows as a consequence of the color decomposition of the tree-level amplitude into or-
dered ones:

M(0)(1,2, . . . , n, n + 1) =
∑

δ
in+1
jσ1

δ
iσ1
jσ2

· · · δiσn−1
jσn

δ
iσn

jn+1
m(0)(σ1, σ2, . . . , σn, n + 1). (B.4)
σ∈Sn
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Fig. 21. Relative errors of the Monte Carlo phase-space integrations of color-summed and color-sampled 4- and 5-gluon
matrix elements at the Born (χ = 0) and Born plus virtual correction (χ = 0+1) level. The errors are shown as functions
of the number of generated flat phase-space points. The phase-space cuts are given in Eq. (65).

The vectors σ describe the elements of the permutations Sn of the set {1,2, . . . , n}. With the
color-ordered amplitudes m(0)(σ1, σ2, . . . , σn, n + 1) expressed through ordered J -currents and
the definition of the dressed currents at hand, we can re-write the last equation and formulate the
tree-level amplitude in terms of the color-dressed currents:
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Fig. 22. Upper graph: convergence of the 4-gluon virtual corrections integration as a function of the number of evaluated

phase-space points. Also shown is the standard deviation on the color-sampled average 〈S(0+1)
MC 〉 as an estimator of

the integration uncertainty. Lower graph: convergence of the Monte Carlo integration, where the relative integration
uncertainty is shown as a function of the number of phase-space evaluations. The dashed lines describe the fit functions
σ/μ = AN−B

MC , see also Table 11. The “Naive”, “Conserved” and “Non-Zero” color-sampling methods are explained in
Section 3.3. The points indicated by “Non-Zero, Ncolpts=4” average over 4 color configurations per phase-space point.
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Fig. 23. Upper graph: convergence of the 5-gluon virtual corrections integration as a function of the number of evaluated

phase-space points. Also shown is the standard deviation on the color-sampled average 〈S(0+1)
MC 〉 as an estimator of

the integration uncertainty. Lower graph: convergence of the Monte Carlo integration, where the relative integration
uncertainty is shown as a function of the number of phase-space evaluations. The dashed lines describe the fit functions
σ/μ = AN−B

MC , see also Table 11. The “Naive”, “Conserved” and “Non-Zero” color-sampling methods are explained in
Section 3.3. The points indicated by “Non-Zero, Ncolpts=4” average over 4 color configurations per phase-space point.
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Fig. 24. Upper graph: convergence of the 6-gluon virtual corrections integration as a function of the number of evaluated

phase-space points. Also shown is the standard deviation on the color-sampled average 〈S(0+1)
MC 〉 as an estimator of the

integration uncertainty. Lower graph: convergence of the Monte Carlo integration, where this time the standard deviation
is shown as a function of the number of phase-space evaluations. Note that for this case, the virtual corrections are as large
as the LO contributions so that the full result is close to zero. The dashed lines describe the fit functions σ = AN−B

MC ,
see also Table 11. The “Naive”, “Conserved” and “Non-Zero” color-sampling methods are explained in Section 3.3. The
points indicated by “Non-Zero, Ncolpts=4” average over 4 color configurations per phase-space point.
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Fig. 25. Upper graph: convergence of the 7-gluon virtual corrections integration as a function of the number of evaluated

phase-space points. Also shown is the standard deviation on the color-sampled average 〈S(0+1)
MC 〉 as an estimator of the

integration uncertainty. Lower graph: convergence of the Monte Carlo integration, where for this case, only the standard
deviation is shown as a function of the number of phase-space evaluations. The “Naive”, “Conserved” and “Non-Zero”
color-sampling methods are explained in Section 3.3. The points indicated by “Non-Zero, Ncolpts=4” average over 4
color configurations per phase-space point.
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M(0)(1,2, . . . , n, n + 1) = K2{1,2,...,n}
∑
σ∈Sn

δI
jσ1

δ
iσ1
jσ2

· · · δiσn−1
jσn

δ
iσn

J

× Jμ(σ1, σ2, . . . , σn)δ
J
jn+1

δ
in+1
I Jμ(n + 1)

= K2{1,2,...,n}J (IJ )
μ (1,2, . . . , n)J (J I),μ(n + 1). (B.5)

Owing to the simple color structure of the one-gluon current, the summation over the color in-
dices (IJ ) effectively reduces to the calculation of a single scalar product of the ordered currents
J

(in+1jn+1)
μ and J (jn+1in+1),μ. The invariant-mass prefactor K2 is determined by the gluon mo-

menta via K2{1,2,...,n} = (K1 + K2 + · · · + Kn)
2. The one-gluon current is given in Eq. (B.1),

while the multi-gluon current is obtained recursively. Starting from Eq. (B.3), one incorporates
the ordered gluon recurrence relation to evaluate Jμ(σ1, . . . , σn) and re-groups accordingly to
identify the partitioning. After some algebra, one finds

J IJ
μ (1,2, . . . , n) = K−2

{1,2,...,n}

[ ∑
Pπ1π2 (1,...,n)

(
δILN
KMJ − δINL

MKJ

)[
J (KL)

μ (π1), J
(MN)
μ (π2)

]
+

∑
Pπ1π2π3 (1,...,n)

(
δILNP
KMOJ + δIPNL

OMKJ − δILPN
KOMJ − δINPL

MOKJ

)
× ({

J (KL)
μ (π1), J

(MN)
μ (π2), J

(OP)
μ (π3)

} + π1 ↔ π2
)]

(B.6)

where we have employed the bracket notation for ordered-current operations, which was intro-
duced in Ref. [26]. The partition sums are explained in Section 3.1 and an implicit summation
over the color indices K,L,M,N,O,P is understood. To efficiently compute the dressed cur-
rents, the color factors in front of the operator brackets can be pre-calculated such that the
computation of zero color-weight contributions can be avoided. We have used the shorthand
notation

δik···m
jl···n = δi

j δ
k
l · · · δm

n . (B.7)

The recursion relation presented in Eq. (B.6) scales asymptotically as 4n, since we kept the 4-
gluon vertex as an entity in our calculation. As a consequence we have to evaluate 3-subset
partitions and the corresponding curly brackets that merge three different dressed currents.
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