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W eprovide a calculation ofN -body (N

Theory D ivision, CERN , CH-1211 Geneva 23, Switzerland

3) nucleon interactions at short distances in holographic

QCD .In the SakaiSugin otom odelof large N. m asslessQ CD ,N baryons are described by N Yang-
M ills instantons In 5 spacetin e dim ensions. W e com pute a classical short distance interaction

ham iltonian for N

"tH ooft instantons. This corresponds to N baryons sharing identical classical
spins and isospins. W e nd that genuine N Jbody nuclear forces tum out to vanish for N

3,at

the leading order. T his suggests that classical N ©body forces are always suppressed com pared w ith

2-body forces.

| Introduction. Recent developm ents in com puta—
tional nuclear physics reveals that the m icroscopic de-
scription of nucleus In tem s of nuclkon degrees of free-
dom reguires threenucleon interactions. In fact, al-
though the nuclear threebody interaction is weaker than
the tw obody interaction, the binding energies of light nu—
clei ﬂ] and the saturation density of nuclear m atter E]
cannot be understood w ithout taking Into account the
threebody term s. This is due to a large cancellation of
the kinetic energy and two-$ody attraction. The m ain
com ponent of the threebody interaction is associated
with twopion exchange, such as the Fujita-M iyazawa
force E}. However, in addition to this, a repulsive three—
body interaction of short range is required for quanti-
tative description of nuclear system s B,Q]. T he short-
range threenucleon Interaction, which is assum ed to be
spin-isospin independent in m any cases, is in portant for
detem ination of the nuclear equation of state at high
density [2,[d1.

The twodbody interactions adopted in those m any-
body calculationsare determ ined by the phaseshift anal-
ysis of nucleon-nuclon scattering data. H owever, m uch
less Inform ation is available for the N body forces (N
3). Of course, we know that, In principle, the nuclear
properties should be derived from QCD @]. H ow ever,
QCD is strongly coupled at the nuclear energy scale,
which leads to a huge gap between QCD and nuclear
m any-body problem s.

A recent progress in string theory can bridge this gap,
analytically. Tt is called holographicQ CD ,an application
of of gauge/string duality ﬂ} to strongly coupled QCD .
W e apply the holographicQ CD to N -body nuclear force
(N 3).

In holographic QCD , one of the m ost successfiil D —
brane m odels is SakaiSugin oto m odel (SS m odel)@ ,E 1.
T he theory, which isa U (N¢ ) Yang-M illsC hem-Sin ons
(YM €S) theory In a warped 5-dim ensional space-tin e,
was con gctured to be dualto low energy m assless Q CD
with N¢ avors, In the large N. and large lin its (
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NcgéCD is a "tHooft coupling of QCD ). M odes of the
gauge elds correspond to m eson degrees of freedom and
thism odel reproduces surprisingly well various expected
featuires of hadrons, lncorporating very nicely the nature
of chiral Lagrangians.

Baryons are denti ed with soliton solutions localized
in the spatial 4-din ensions E]. T his is quite analogous
to that In pion e ective theory, baryons are denti ed
w ith Skym ions. Q uantization of a single soliton in the
SS m odel ,] gives baryon spectra, and also chiral
properties such as charge radii and m agnetic m om ents
] (for other approaches to baryons, see ]). M eson-
baryon-baryon couplings ] give a basis of a 2-body
nuclear force at long distances, a l onem eson-exchange
picture. Shortdistance nuclkon-nucleon forcesw ere com —
puted ], which generates a repulsive core w ith analytic
formula for potentials in the large N. lin it. A key is
that the warping can be absorbed Into the rescaling of
the YM €S theory and brings the string scale to QCD
scale. Furthem ore, when two solitons are close to each
other, the warping factor is alm ost constant, therefore
the e ects of the curved geom etry can be ignored so that
an exact two-soliton solution is available.

In this letter, we com pute N Jbody nuclear forces for
arbitrary N , w ith exact N <instanton solutions, general-
izing the m ethod in Ref. ]. T he exact treatm ent is in
contrast to the Skym ion and other chiral soliton m od-
els, In which m ulti=soliton solutions are quite di cult to
obtain.

| N uclear Force at Short R ange. Baryons, lnclud—-
ing nuclkons, are denti ed w ith solitonic solutions in the
SS m odel E}, and we provide a brief review of the con-
struction of the soliton and the 2-body nuclear force at
short range ortwo avors (N¢ = 2) com puted In ].

T he follow ing rescaling of the coordinates @J can al
low one to understand the system asa 1= perturbation
around a at space, which is suitable for studying the
instanton solution:

g = 173 ™M = 1;2;3;4); g’ = XO; 1)

and accordingly £, (t;®) = Ay (te) and Ky (Gr) =
=2 Ay (t;R). In the following we om it the tide for
sim plicity. In these new variables, there are essentially
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two deviations from the YM theory in the at space, at

the leading order In 1= expansion: (i) the e ect of the

CS tem , and (il) the e ect of the space weakly curved

along the x* direction. T he additionalham iltonians are
Z

Y
(1) aN AA

H por A £y Ao @)

N, Y ’

SU (2) a
Hoor — dx" (') wEy oy )i (3)
M

respectively, with a 1=(216 3). Note that we work

In theunit M xx = 1, where M gk is the unigue scale
param eter appearing in the m odel, and it can be xed
by tting the meson mass,givingMgx = 949 M &V 1.
In particular, for a single baryon, the leading order so—
lJution isa single Instanton in the at4-dim ensionalspace,
that is BPST Instanton [15]. The instanton hasm oduli
param eters: the instanton location X ¥ , the size and
the orientation In SU (2). T hese ham iltonians induce po-
tentials in the m oduli space of the instanton, and qan_d

X * prefer particular values chassically, ( 1)’ = == 2,

X ;:11 = 0. For multiznstantons, there appears a poten—
tial for the m oduli representing the distance betw een the
Instantons, which is in fact the nuclear force.

In Ref. [14], this 2-body nuclear force was evaliated
explicitly. M ultiznstanton solitions are available in  at
space, while In this particular curved space it is di —
cult to nd them . However, when instantons are close
enough to each other, the e ect of the curved space
can be neglected, and as a leading order solution we
can use the multidZnstanton solutions in the at space.
T herefore, the distance r;j; between the i~th and the j-th
nucleons allowed in this approxin ation is Jj5j< M K}(
(F33<  ¥72M 4k ) in the original (rescaled) coordinates.
T huswe probe only the short range for the nuclear force.

T he construction of the tw o-instanton solution owes to
the renowned ADHM (A tiyah-D rinfeld-H itchin-M anin)
m ethod [16,117]. The m oduli param eters of generic N
instanton solutions are com pletely encoded in the real
N N matrix function L (x;X ;
mula [L8] tells us the instanton density

2

trEu x )° = 2 lgdetL (4)

w here & @y . Ushhg this expression, the equation
of m otion for the U (1) part of the gauge eld which is
sourced by the instanton density is solved as [10]

Xy =

32 2a logdetL : (5)

W ith this explicit dependence on the instanton m oduli
param eters in L, one can com pute the ham iltonians (2)
and (3) asfiinctionsofthem . T hen, the expectation value
of the ham iltonians for given baryon states (the wave
functions are written by the m oduli param eters) gives
the nuclear force at short range [14].

T here is the third contribution to the additionalham ik~
tonians, Hyi, , which is present only in m ulti-instanton

case. This com es from the m etric of the Instanton m od-
ulispace. In Ref. [14], itwas shown that it ishigher order
in 1=N . com pared to the other two ham iltonians (2) and
(3), so we need not com pute it in this paper.

| 3-body N uclear Force. The 2-body nuclkar force

com puted in Ref. [14] is for generic spin/isogpin com po—
nents. But since explicit generic N instanton solution is

notavailable,we considera specialsolution called "*H ooft
Instanton which has 5N 3 m oduli param eters (while
generic instanton solution has 8N 3 m oduli param e-
ters). It is In portant to notice that once we restrict our
m odulispace by hand like this, we cannot get the generic

expression for the nuclear force for given baryon states.

Instead ,whatwew illobtain is a classicalanalogue of the

nuclear force.

The m oduli param eters of the "tH ooft instantons are
only the size ; and the location X ! of each instanton
(i= 1;2;
tions of the Instantons in SU (2), are responsible for the
spdn/isospin wave functions of the baryons. Thus our
analysisw ith the "tH ooft Instantons is restricted to \clas—
sical" baryons, w here all the spin/isospins of the baryons
are dentical classically.

F irst, ket us show thatH Sftm given in Eq. (3) is irrel-
evant to the three-body nuclear forces. W e can use the
generic form ula obtained In A ppendix C ofRef. [14],

z R
d*x ') twFEyy )* =8 ?
i=1

for the N “tHooft instantons. The expression consists
of just a sum ofeach Instanton sector, which m eans that
there isno term involving the internucleon distance, that
is, no contribution to the nuclear force. Therefore, we
com pute the other ham iltonian () in this paper. (The
contribution from H vy, is suppressed as in the case of the
2 instantons [19].)

In this section, we concentrate on the case forN = 3,
ie. the 3-body force.

). The O sbom's or- por three tH ooft instantons, w hich corregpond to nu-—

cleons sharing classically dentical spins/isogpins, wehave

0 1
(x X0+ 2 12 13
L=20 12 (x X2+ 3 2 3 A
13 2 3 x X3)*+ 3

where we om it the index M and denote (¥ ¥ by x?.
T hen the O sbom’s form ula becom es particularly sin ple,

X
logdetL = og(x X;i)+ bgf; (8)
i
P 2
with £ 1+ im.ThjsgjyestheU(l)gauge eld
n X 2#
~ 1 £ @y £)
o= —— Io X+ — — (9
°T 327 gl Xl £2 ©)

;N ). The m issing param eters, the orienta-



The 1rst term i Eq. [) is a selfenergy which was
already com puted, and f is a ham onic function, ie:,
f = 0. Thus, allwe nead to evaluate is only the last
term in Eq. (@), (@ £)*=f2.
For three Instantons, w e can expand the expression for

(x  X1) (x X2P;(x X3)Y. In particular, we
can approxinate (x = X3 )? X, X5 ) x2,, and
a sim ilar expression for X ;3. Furthem ore, for sin plicity
weput X = 0. Then, the expansion is
5 1 1 : 1 1
°T g 2a x2 2+ 2 X%, X2
4 2 2 4,2 2 2 2
21 2,53 . 3% 5 5
x2+ 2P X7, X 2+ D) X7, %
272 2% X
T L)
x+ 1) X1 13

W e ke to com pute the potential (J). As seen from

the expression for AAO , the leading term of the nontrivial
three-body force has the form ﬁ . Thism eans that,
12 13

we should expect the nuclear force appearing in proper
to the 3-ody is, at the leading order,

H=0 Ne L ; (11)
- 2 xpxiy

in the originalcoordinates. Let us consider only tem s of
this leading form {I]). W e obtain

gum _ aNc
pot - 2(8 2a3)2
z 3 body
4 4,2 2 2
dx = 1 6 1% 2 3
%2 =2+ 2y ®2+ 2y XEXZ
4,2 2 2 4
6 1% 2 3 i 1
=2+ 2yXEXE x? =2+ 2)
4 2 4 2
+ 1 215 14 2715
X 5HXH (x> + 1) =+ 7)°
4 2 4 2
+ 1 215 14 215
X 5HXH x>+ 1) =+ 7)°
+(@! 2! 3)+ @' 3! 2): (12)

Perform ing the derivatives, and using the follow ing Inte-
gration form ulas
2 20 )

4
d*x =
(X2+ %)N+5

3+ 2)MN g+ 1)

2o 4 oay

(13)

we nd that the right hand side of Eq. [[2) vanishes.
T herefore, the leading term of the order 1=(X £,X 7;) van—

ishes. This m eans that the expansion starts from the
nextto-Jleading order,
N ( 4 4
Hoo = - 2)4; i)3, €14)
3 body 128 “a X X3 XX

w here

the indices 1;2;3. Here thedependenceon ; (i= 1;2;3)

is xed tobe ( § by a din ensionalanalysis. T he expec—
tation valie of this ( )* at the leading order in large N .
is given by the classicalvalue given before. T hen, rescal-
ing the coordihatesback asX 1, ! 72X 1, and write it
as the 3-dim ensional internucleon distance r;, since we
substitute the classicalvalie X { = 0, we obtain, at the
leading order in 1N .,

U 1) N 1 1
H oot =—0 ; ; ;7 (15)
°e 3 body ? rf2rf3 rfzrf3
again represents term obtained by pem utation for

the indices 1;2;3.

Note that we are working in a regine
X 12113 1 in theunitM xx = 1. The natural scale for
the 2-body force [14]isO (N .= X 122 ). So, ifwe consider a
natural separation of the nucleons as X i 1Mk , the
3-body force is suppressed com pared to the 2-body force.
W e conclude that the 3-body force at short range is an all,
for baryons carrying classical and equal spin/isospins.

1=2

| N -body N uclear Force. W e can easily extend the
analysis in the previous section to N "tH ooft instantons.
The result for the leading term vanishes again, as we
explain brie y below .

T he quantity necessary for com puting Ko is

@£y 4f Foaltix x ¥ o4
£2 0 x5 x4X X &
i= i=2 *
%" #2
2 2
X 475Xy X5 ¢ 2 b 2
P Lk L R (16)
X X x2 X 2,
i6 5 1i°* 15 i=2 1i

T he expansion analogous to 3-body case in plies that the
leading order of the shortrange nuclear force in proper
to N body would be

¥oq

2;
Xli

gum _ Ng 0
pot TN 1
N body i=2

17)

A gain,we have rescaled back the coordinates to the orig—
inal coordinates and
In the previous section, we showed that for N = 3 this
leading contribbution vanishes, for the tH ooft instantons.
In this section, we prove that forany N this leading con—
tribbution vanishes.

F irst, in the integral (2), it is straightforw ard to cbtain

@ £)? (@ £)°
f2 f2

=N 1yeaf 1)t
>g(N 4)(X2+ %)N 5

: (18)

represents tem s obtained by pem utation 0§ sing the form ula {I3), this can be easily integrated w ith

d*x to give 0.

represents perm utation tem s.



In the ham iltonian (I7), there are additional tem s
|
Z S 4
d*x + —
=2

@y £)°

(19)
X7 £2

4
x?
com ing from the rsttem inEqg.[@). In the sam em anner
this is shown to vanish at the order ({I7). Therefre,
w e conclude that the leading order N -body nuclear force
(I7) vanishes, for arbitrary N . Note that the 2-body

nuclear force does not vanish at the leading order, as
N = 2 com putation is exceptional.

| Summ ary and D iscussions. Usihng the SS m odel
ofholographic Q CD ,we have found that the N -body nu-
clear force at short range (N 3)isorder ofNo( r?) N ,
for nucleons sharing identical classical spin/isospins.
This is small com pared to the 2Jbody force which is
O (Nc(r?)!) in contrast, and it leads to a hierarchy
of the (N + 1)body / N -body ratio v & * 1=y ™)
1=(r?) 1HrN 3, In the unit Mgx = 1. This
suppression is consistent w ith our em pirical know ledge.

E ects of the shortrange m any-body interaction be-
com esm ore prom inent for higherdensity nuclearm atter.
T herefore, for physics of neutron stars and supemovae,
for instance, properties of N -body interactions such as
w hat is revealed in this letter are in portant, even ifqual-
iative.

Our com putation is not fully satisfactory since the
quantum spin/isogpin states of each baryon have not
been incorporated. The wave function of the classical

spdn/isospin isa delta-finction ofthe SU (2) ordentational
m oduli of the instantons, thus it is di cult to relate it
w ith the quantum spin/isogpins. N evertheless, it is quite
rem arkable that the generic N body nuclear force can be
obtained by analytic com putations. T he successfiil per—
form ance of this com putation owes in particular to the
sin plicity of the SS m odel, iIn contrast to other chiral
soliton m odels.

Furthem ore, the theory on which our com putations
of the nuclear force is based is not a phenom enological
m odelbut a theory which hasbeen \derived" from large
N. QCD at strong coupling, through the gauge/string
duality. Therefore, In principle, we can try to address
theoretically what is di erent from QCD and what is
Inherited from it. T he present com putations go beyond
the lim itations of argum ents using universality of chiral
symm etry breaking.

A Ythough them odelathand is for largeN . Q CD , these
tw 0 properties of baryons in holographic Q CD woul be
su ciently strong m otivations for studying holographic
QCD and its relation to nuclear physics further.
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